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Abstract: Context aware systems are able to adapt their behavior according to the environment
in which the user is. They can be integrated into an Internet of Things (IoT) infrastructure,
allowing a better perception of the user’s physical environment by collecting context data from
sensors embedded in devices known as smart objects. An IoT extension called the Internet of
Mobile Things (IoMT) suggests new scenarios in which smart objects and IoT gateways can move
autonomously or be moved easily. In a comprehensive view, Quality of Context (QoC) is a term
that can express quality requirements of context aware applications. These requirements can be
those related to the quality of information provided by the sensors (e.g., accuracy, resolution, age,
validity time) or those referring to the quality of the data distribution service (e.g, reliability, delay,
delivery time). Some functionalities of context aware applications and/or decision-making processes
of these applications and their users depend on the level of quality of context available, which tend
to vary over time for various reasons. Reviewing the literature, it is possible to verify that the quality
of context support provided by IoT-oriented middleware systems still has limitations in relation to
at least four relevant aspects: (i) quality of context provisioning; (ii) quality of context monitoring;
(iii) support for heterogeneous device and technology management; (iv) support for reliable data
delivery in mobility scenarios. This paper presents two main contributions: (i) a state-of-the-art
survey specifically aimed at analyzing the middleware with quality of context support and; (ii) a
new middleware with comprehensive quality of context support for Internet of Things Applications.
The proposed middleware was evaluated and the results are presented and discussed in this article,
which also shows a case study involving the development of a mobile remote patient monitoring
application that was developed using the proposed middleware. This case study highlights how
middleware components were used to meet the quality of context requirements of the application.
In addition, the proposed middleware was compared to other solutions in the literature.
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1. Introduction

Context data is any information that can be used to characterize the situation of an observed entity
(e.g., person, device, system) [1]. Context-aware applications use such information to provide relevant
services to their users, with minimal human intervention [2]. The requirements of a context-aware
application varies according to its domain and goals, and the discovery of context data sources
and services is an essential mechanism that allows applications to be informed of the available
context information.

The Internet of Things (IoT) is a research field that integrates context awareness, mobile computing,
wireless sensor networks, communication protocols and devices with embedded sensors and/or
actuators. This integration aims to generate a global dynamic system that collects and distributes context
information provided by thousands of smart objects for diverse applications [3]. IoT applications are
being developed in several areas such as health, transportation, commerce, industry, and agriculture.

In many cases, due to memory and processing restrictions, smart objects do not have connectivity
to medium and long range networks. They do not implement a Transfer Control Protocol/Internet
Protocol (TCP/IP) protocol stack, making them unable to access the Internet with their own resources.
However, these smart objects are able to send their context data to a local gateway, using some kind
of short-range communication technology, such as Bluetooth or ZigBee. Upon receiving this data,
the gateway will be in charge of forwarding it to the Internet through network technologies such as Wifi
or 3G/4G. An IoT extension, called Internet of Mobile Things (IoMT) [4], conceives situations where
smart objects and IoT gateways can move or be moved with great flexibility. Wearable or portable
devices, robots, and vehicles are some examples of moving objects. In this scenario, conventional
tablets and smartphones can act as mobile system gateways, promoting discovery and opportunistic
connection with smart objects all around.

One of the factors that have a significant impact on the behavior of IoT applications and on the
quality of experience of their users is the Quality of Context (QoC) [5]. In a traditional and very
restricted view, QoC expresses only the quality of the information (QoI), excluding from this concept
the quality of the distribution service (QoS) and the quality of the devices (QoD) that provide the
information [6]. Contrary to this view, some researchs argue that the concept of QoC needs to be
updated to encompass both the quality of the information and the quality of the distribution [7], in order
to better meet the requirements of context consumers. A good example of a more comprehensive
definition of QoC, which has been well accepted in the literature, was proposed by [8]. For these
authors, the concept of QoC “indicates the degree of conformity of the context collected by sensors to
the prevailing situation in the environment and the requirements of a particular context consumer”.
This modern concept of QoC meets the objectives of this work.

The rationale behind this more comprehensive view is that in several cases the quality of the
information is affected by the quality of the data distribution service and vice versa. For example,
the age that the context information (QoI parameter) will have when it reaches the consumer will
depend on the communication delay (QoS parameter) between the producer and the consumer.
In another example, the validity time of the context information (QoI parameter) can be used to
implement lifespan mechanisms (QoS policy). These mechanism remove from the history/cache those
data whose validity time has already expired.

An aspect of QoC is its dynamic variability (it oscillates over time). In the best scenario, the QoC
of a selected service provider will improve, staying above the application expectations. In the worst
case, the QoC will fall in such a way that, at some point, it will no longer meet the requirements
demanded by the application. Several factors can degrade QoC at run time, such as hardware and
software failures of sensors, gateways, servers, and communication networks [9,10].

There are several reasons why applications may want to be aware of the available QoC
level. For example, QoC can be used as a criteria for consulting and selecting service providers.
Thus, applications can search and choose service providers that best suit their context and QoC
requirements. QoC can also be a clause to be defined in Service Level Agreements (SLAs),
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where producers declare context services and the QoC level they can provide, while consumers
specify the information of their interest and the required quality level [6].

A possible approach for the development of IoT systems is the one where applications directly
connect to the sensors, without any intermediate layer between them and the operating system.
However, when a large number of smart objects, technologies, and heterogeneous communication
protocols are applied, this approach becomes infeasible. In order to deal with this complexity,
several solutions based on a middleware approach have been proposed. Each solution focuses
on different aspects of IoT, such as device management, interoperability, portability, context modeling,
data distribution, dynamic adaptation, security and privacy, among others. Although some initiatives
attempt to address multiple aspects, an ideal IoT middleware solution, able to handle all these
challenges, has not yet emerged.

In recent years, some middleware proposals have appeared in order to support the development
of context-aware applications with QoC requirements. However, the QoC support provided is not
yet fully integrated with existing solutions and also has several gaps [11]. Although research on the
development of QoC-supported context middleware is relevant to the construction of context-aware
systems, the initiatives are still considered insufficient [12], motivating the continuity of efforts.

This article presents two main contributions. The first contribution consists of a literature review
regarding context middleware aimed at IoT applications with integrated QoC support. It is important
to emphasize that, although there are works whose objective is the survey of middleware systems
of context management, a comparative analysis focused on the QoC support offered by the different
tools, considering different aspects, is still lacking. The second is the presentation and evaluation
of a new middleware for the development of applications for IoT with comprehensive support
for interaction with physical sensors, reliable distribution of context data, QoC provisioning and
monitoring. In addition to being submitted to quantitative evaluation, the middleware was validated
through a case study involving the development of a mobile application with QoC requirements aimed
at monitoring patients using wearable sensors. In order to reinforce the contributions of the proposed
solution to the state of the art, a comparative analysis is promoted between this new middleware and
those found in the literature consulted.

The remainder of this paper is divided as follows. Section 2 presents the state of the art related
to this work, giving greater emphasis to the analysis of the main proposals of context middleware
with QoC support known in the literature. Section 3 shows an overview of the proposed middleware,
its requirements, architecture and components. A case study in which the middleware can contribute
significantly in the development of a solution is also shown. The functionalities and implementation
aspects of the solution presented in case study are illustrated in Section 4. Section 5 describes the
middleware performance evaluation experiments and discuss their results. The section 6 presents a
discussion about the advances obtained with proposed solution in relation to the other middleware
systems with QoC support presented in Section 2. Finally, Section 7 presents conclusions and
future work.

2. State of the Art of Middleware with QoC Support

The state of the art related to Context-Aware systems and Internet of Things and encompasses
works with different objectives.

Cavalcante et al. [13], Breivold [14], Weyrich and Ebert [15] analyzed different reference architectures
for IoT. A reference architecture defines an initial abstract set of building blocks for IoT environments,
taking into account all the requirements of these environments [13]. A reference architecture is
the basis for building concrete architectures. Some of the main reference architectures analyzed in
these paper are: Reference Architecture Model for Industrie 4.0 (RAMI4.0) [16], Industrial Internet
Reference Architecture (IIRA) [17], IoT Architectural Reference Model (IoT-ARM) [16], Arrowhead
Framework [18], WSO2 IoT Reference Architecture [19] and Intel IoT Platform Reference Architecture [20].
Bellasvista et al. [7], Delicato et al. [21], Perera et al. [22], Bandyopadhyay et al. [23] Li et al. [24] and
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Yürür et al. [25], Blair et al. [26] produced surveys of context-aware systems and IoT. Addressing
issues related to Quality of Context (QoC), Buchholz et al. [6], Krause et al [27] and Manzoor et al. [8]
provided motivation and definitions of several QoC parameters. Lei et al. [28], Henricksen et al. [9],
Hönle et al. [29] presented the advantages of describing characteristics of the context information
using QoC metadata. Gray et al. [30], Buchholz, et al. [6], Henricksen et al. [9], Hönle et al., [29],
Schmidt [31]. Sheikh [32] and Manzoor [8] focused on the proposition and/or evaluation of QoC metrics.
Bu et al. [33], Schmidt [31], Herbscher et al. [34], Chantzara et al. [35], Pawar et al. [36], Neisse et al. [37],
Sheikh et al. [32] and Manzoor et al. [38] presented different motivations and situations for the use of
QoC in context-aware systems.

However, none of these works focus on providing a deep analysis of context middleware systems
with support for QoC provisioning and monitoring. This Section describes the middleware systems
that, to the best of our knowledge, can be considered the most relevant ones in respect to QoC support:
AWARENESS [39], COntext entitieS coMpositiOn and Sharing(COSMOS [40,41], COntext Provisioning
for ALl (COPAL) [42,43], INCOME [11,44,45] and Scalable context-Aware middleware for mobiLe
EnviromentS (SALES) [46–49]. After the middleware descriptions, an analysis of their limitations and
open research issues are presented.

2.1. AWARENESS

AWARENESS [39] is an infrastructure for the development of adaptive context-aware mobile
applications. The middleware architecture is divided into two layers: application and infrastructure.
The application adaptation mechanism is based on Event-Condition-Action rules [50] that are executed
in the infrastructure layer, which incorporates an ECA Engine. When an application defined event of
interest is detected, the software infrastructure triggers the ECA related action that will be performed
by the application itself. A peculiar feature of this middleware is that applications can interact with
the infrastructure and retrieve context data in two distinct ways: synchronous (request/response)
and asynchronous (publication/subscription). AWARENESS also distinguishes two forms of service
discovery: instantaneous (or active) and subscribed (or passive). In the first, the client issues a request
and a discovery service immediately returns a response containing the available services satisfying the
specified criteria. In the second, the discovery service will notify the client about available services
meeting the specified criteria as they are discovered withing a client specified time period. In relation to
QoC provisioning, context sources can provide the following metadata that characterizes QoI: accuracy,
probability of correctness, trustworthiness, and up-to-dateness. The user can specify, through privacy
policies, the type of context information, the recipient, and the QoC level he/she wants to share.
In some cases, the defined privacy policy requires the direct consent of the user, which releases the
information on a case-by-case basis. With regard to quality of service, the middleware provides
persistence policies and data history. In the paper describing AWARENESS a case study involving a
remote monitoring application of patients with epilepsy is presented. However, the work does not
present the QoC requirements of this application.

2.2. COSMOS

COSMOS [40] is a context management framework for ubiquitous environments. All the
system entities are modeled and implemented from a basic structure, called context node, organized
hierarchically. Communication within the hierarchy can be bottom-up (notification) or top-down
(observation). The COSMOS architecture is conceptually divided into three layers: lower, intermediate
and higher. In the lower layer reside context collectors, which provide raw data for the upper layers.
At the middle layer there are context processors, which filter and aggregate the collected data, even
though the system does not provides the implementation of data processing techniques. In the
upper layer reside the context nodes responsible for the situation inference, which may trigger some
kind of application adaptation. COSMOS supports the following quality information parameters:
Up-ToDateness, Trustworthiness, Accuracy, Precision, Security and Completeness. However, according to
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the authors, new parameters can be added. The disclosure of the QoC can be done in two ways: (1)
together with the information; or (2) separately from the information. In the first mode, all information
is enriched with QoC. This mode is useful for applications interested in both the information itself
and the QoC associated with it. In addition, it allows the filtering of information based on QoC but
imposes a higher computational cost. In the second mode, the QoC is sent in separate messages,
periodically or through an application request. In this case, the QoC information that is sent may
correspond to the last computed QoC or to an average. This approach consumes fewer resources
and is compatible with applications that use COSMOS versions without QoC support. The extended
version of COSMOS with QoC support was evaluated through a case study involving an e-commerce
application. The QoC requirements of the application served by the middleware are: Trustworthiness,
Up-to-Dateness and Precision.

2.3. COPAL

COPAL [42,43] (http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/downloads.html)
is a context management middleware for adaptive applications. The middleware provides broad
support for event specification and processing (e.g., filtering, aggregation, summarization, etc.) based
on the use of Complex Event Processing (CEP) [51] rules. The COPAL architecture is divided into three
layers: device services, COPAL core, and context-aware services. The device services layer describes
the devices and sensors with which the middleware interacts. The device discovery and connection
are based on the UPnP protocol [52]. From COPAL’s point of view, each device is a publisher.
The COPAL core layer concentrates the responsibilities related to the registration of components and
services, processing of context queries, event processing and execution of actions. The Context-aware
Services layer contains listeners that applications use to be notified when their context queries are met.
The context data exchange between publishers and context-aware applications is supported by an event
processing service implemented with the Esper CEP Engine (http://esper.codehaus.org). In terms
of quality of information, COPAL supports the following parameters: Source Location, Authorization,
Freshness, Trustworthiness, Precision and Time-to-Live. Regarding quality of the distribution service,
COPAL supports policies that manage the priority of event delivery, as well as mechanisms that discard
those events (stored or not in a history) as soon as the data lifetime expires. One of the main limitations
of COPAL is the fact that the distribution of context data is only local. However, the authors plan for
the implementation of a distributed architecture. Programmers using the COPAL middleware have
the flexibility to develop applications using both an Application Programming Interface (API)-based
model and a Domain Specific Language (DSL)-based model. The only type of evaluation presented in
the articles describing the middleware is restricted to comparing the size of the files and the number of
lines of code obtained when using both programming models in the implementation of a smart home
monitoring application.

2.4. INCOME

INCOME [11,44,45] is a distributed context middleware with content-based data routing.
The processing and consumption of context data can be distributed on servers or mobile devices
with limited resources. The processing functions (e.g., filtering, aggregation, inference) are defined
using JavaScript. INCOME support for application development provides four main components:
Context Collector, Context Capsule, Context-Aware Application, and Brokers. Context Collectors
are responsible for encapsulating the complexity of raw data acquisition from physical sensors.
Context Capsules are responsible for processing the collected data and transforming it into more
high-level context information. This information can be made available to other Context Capsules
and/or consumer applications. Therefore, this component can act as a context producer and/or
consumer. The Context-Aware Application component, as the name suggests, is used by the consumer
application to query and receive context data. Brokers are components that act as intermediaries
between producers and consumers. These brokers are organized in a network overlap, in which

http://www.infosys.tuwien.ac.at/m2projects/sm4all/copal/downloads.html
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each customer (producer or consumer) can connect to a single broker at a time. The distribution
mechanism was implemented using a framework called MUltiscale Distributed Event-Based System
(MuDEBS) [53]. The quality of information support provided by INCOME is based on an API
that allows producers and consumers to specify their context and QoC offerings and requirements.
The middleware supports the following parameters: Freshness, Precision, Completeness, Accuracy and
Spatial Resolution. A peculiar feature of INCOME is that quality of information parameters are
implemented using a model-driven approach (The model-driven engineering allows to generate
a complete or partial system implementation from the system model [54]), using a framework called
Quality of Context Information Model (QoCIM) [55]. INCOME was evaluated through a case study
involving an urban pollution monitoring application . The QoC parameters required by the application
are: Refresh Rate, Precision and Spatial Resolution.

2.5. SALES

SALES [46–49] defines an infrastructure for the distribution of context data based on QoC.
Nodes running a middleware instance are logically organized hierarchically and can communicate with
each other to send and/or receive context data a via fixed infrastructure network or an ad hoc mobile
network. SALES provides a mobility management mechanism for neighboring nodes. This mechanism
promotes the opportunistic discovery of the devices as well as creates groups of nodes that are
coordinated by a dynamically elected leader node. Information retrieval is made possible by context
queries dissemination. These queries express the context and QoC requirements of the requesting node
and can be disseminated both horizontally and vertically in the hierarchy. Upon receiving a query,
each node checks the context data stored in its cache and, if there is a positive match, creates a context
response containing the requested information. The response is then routed back to the requesting
node using a hop-by-hop mechanism. The middleware provides three parameters that determine the
quality of the context data distribution: Freshness; Data Retrieval Time and Priority. These parameters are
defined by means of a Context Data Distribution Level Agreement (CDDLA). In SALES, there are three
user classes whose QoC parameter values are statically defined: (i) Gold: has priority 0 and requires
receiving the most recent version of the data in a recovery time of up to 2 s; (ii) Silver: has priority 1 and
accepts to receive valid data (even if not the most recent) in a recovery time of up to 4 s; (iii) Bronze: has
priority 2 and accepts to receive data already expired in a recovery time of up to 6 s. For data retrieval to
occur according to CDDLA, SALES automatically maps QoC parameters to context query parameters.
Query parameters specify how the infrastructure will route and treat queries. The SALES distribution
service performance was evaluated through experiments. The objectives of the experiments were to
measure the retrieval time of the context information the percentage of satisfied context requests in
different scenarios.

2.6. Analysis and Open Issues

Analyzing the middleware systems with QoC support described, it is possible to see that they
cover one or more issues relevant to the development of IoT applications, such as context modeling,
data distribution and requirements specification of QoC. However, it is also possible to notice that
there are at least four open issues, such as:

• QoC provisioning: the middleware’s ability to provide a significant variety of QoI and QoS
parameters, in order to satisfy IoT applications that have multiple QoC requirements;

• QoC monitoring: the middleware’s ability to provide mechanisms that detect variation in context
quality at runtime in order to allow context aware applications to dynamically adapt to such
oscillations. In this case, the middeware should allow the application itself to define the monitoring
events it requires to be notified in real time;

• Heterogeneous physical sensors management: the middleware’s ability to discover device services
and to interact with heterogeneous sensors and technologies in a dynamic and opportunistic way.
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In addition, the middleware must abstract the hardware heterogeneity so that the application
does not know the details of the sensor driver implementation;

• Reliable data delivery in mobile environments: the middleware’s ability to ensure delivery of
context data, even in situations where applications run in mobile environments with weak or
intermittent connectivity or when IP address exchanges happen.

Table 1 summarizes a comparison between AWARENESS, COSMOS, COPAL, INCOME and
SALES emphasizing the described open research issues.

In respect to QoC provisioning, INCOME and COSMOS are focused only on the quality of
information. AWARENESS and COPAL, while more focused on QoI, also provide some quality service
policies. However, QoS support in AWARENESS is limited to persistence and data history. In COPAL,
the quality of the distribution is somewhat less limited than the one provided by AWARENESS, since it
includes policies for prioritizing event delivery and eliminating data and events that exceed defined
lifetimes. SALES, on the other hand, focuses only on the quality of the distribution, supporting three
parameters (Time To Live, Data Retrieval Time and Priority). Therefore, the major limitation of these
middleware systems in this aspect is that they natively offer few QoI and QoS policies/parameters,
and are unsuitable for applications that have multiple QoC requirements.

Regarding QoC monitoring, none of the middleware systems presented provides evidence for the
existence of mechanisms that allow context-aware applications to specify events of changes in quality of
context so that they are notified of the occurrence of such events in real time. Therefore, one limitation
of these middleware systems is that they are not suitable for applications that need to dynamically
adapt to QoC variations. Although there are works whose objective is to implement and evaluate QoC
monitoring mechanisms [56], since they are not integrated with a context middleware they are not
subject of this paper.

Concerning support for management of heterogeneous devices and technologies, most middleware
systems presented do not offer any type of service that dynamically manages the discovery, connection,
and acquisition of raw data from physical sensors. Almost all solutions are limited to providing
only a set of interfaces or abstract classes that facilitate the implementation of sensors adapters,
also called wrappers, specific to each device. Wrappers encapsulate the sensor drivers provided by the
manufacturer and expose to the upper layers of the middleware, in a standardized and convenient way,
all or only some functionalities/services natively implemented by the by the sensor drivers. In other
words, the wrapper function is to abstract the hardware heterogeneity. Therefore, IoT application
developers often have the task of extending the context middleware and implementing these wrappers,
as well as the responsibility of implementing the sensor discovery and interaction mechanisms. COPAL
escapes the rule because, besides standardizing the implementation of wrappers, it offers a device
management service that is responsible for the sensor discovery and monitoring of device status.
The device services description is based on the Universal Plug and Play (UPnP) standard, which can be
extended. It is important to note that the device management service offered by the SALES middleware
does not apply to sensors, but only to the discovery and acquisition of data from mobile nodes that
execute an instance of the middleware.

The support for the reliable delivery of context data in mobile environments is also neglected
by the middleware systems presented. AWARENESS and COPAL solutions, for example, do not
define a standard network communication technology in the middleware layer, transferring that
responsibility to the application programmer. It is therefore natural that these middleware systems fail
to address the inherent challenges of communicating in mobile environments. COSMOS, INCOME,
and SALES, although they indicate the existence of mechanisms to support distributed communication,
also do not explore the implementation of mechanisms that guarantee the reliability of data delivery in
unstable networks.
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Table 1. Comparison between related work emphasizing the open research issues.

Middleware Quality of Context
Provisioning

Quality of Context
Monitoring

Heterogeneous Sensors Management
Reliable Data Delivery
in Mobility Scenarios

AWARENESS Focus on QoI, but with some
support for QoS. Not addressed.

Provides only an API for implementing
adapters/wrappers for the sensors drivers.

Not addressed

COSMOS Focus on QoI, only. Not addressed.
Provides only API for implementing
adapters/wrappers for the sensors drivers.

Not addressed.

COPAL Greater focus on QoI, but
with some QoS support. Not addressed.

Provides an API for implementing specific
adapters/wrappers for the sensors drivers;
Provides a sensors management service.
Service description is based on the UPnP.

Not addressed.

INCOME Focus on QoI, only. Not addressed.
Provides only API for implementing
adapters/wrappers for the sensors drivers.

Not addressed.

SALES Focus on QoS, only. Not addressed.
Provides only API for implementing
adapters/wrappers the sensors drivers.

Not addressed.
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Taking into account the evaluation methodology of each presented middleware system, it is noted
that most evaluations are restricted to concept tests based on case studies, without the performance of
the middleware being measured. The exception to the rule is the SALES middleware, which presents a
performance evaluation of the distribution service. Given the above, it is considered that the presented
middleware systems still need to move towards more comprehensive QoC support. It is necessary
to extend QoI and QoS provisioning in order to meet the different quality requirements of a wide
variety of IoT applications, and it is necessary to extend the middleware systems so that they are
able to detect variations of QoC in real time. It is noticeable the need to advance in the provision
of sensor management mechanisms capable of dealing with aspects of mobility and volatility of
intelligent objects. Similarly, the presented middleware systems still lack mechanisms that guarantee
delivery reliability in mobile environments, because for many applications data loss has negative
impacts on the quality of service. In addition, most middleware systems still require more consistent
performance evaluations.

3. Proposed Solution: M-Hub/CDDL

3.1. Middleware Overview

Mobile Hub (M-Hub)/Context Data Distribution Layer (CDDL) is a new middleware for context
data management (acquisition, processing, and distribution) with broad support for the development
of context-aware IoT/IoMT applications that have QoC (QoI and QoS) requirements. This middleware
was developed by the Laboratory of Intelligent Distributed Systems (LSDi) of the Federal University
of Maranhão (UFMA), in partnership with the Laboratory for Advanced Collaboration (LAC) of the
Pontifical Catholic University of Rio de Janeiro (PUC-Rio). The proposed solution combines a mobile
gateway (the Mobile Hub [4,57]) for the acquisition of raw data from heterogeneous physical sensors
with a CDDL. This layer is also responsible for registering and discovering the available context
services, as well as for provisioning and monitoring context information and for ensuring the context
data distribution service quality.

In previous work [4,57–63], M-Hub has used the Scalable Data Distribution Layer (SDDL) as the
default mechanism for the dissemination and processing of context data. SDDL uses two distinct
communication protocols in the path between context producers and consumers: Mobile Reliable UDP
(MR-UDP) and Data Distribution Service (DDS) [64]. MR-UDP is used for communication between
mobile clients and servers that act as entry points to the SDDL cloud (SDDL Gateways). MR-UDP
implements typical TCP functionality, such as packet delivery and packet retransmission, but on top of
a UDP protocol stack [61]. In turn, the DDS is used for communication between the different types of
servers running in the SDDL cloud, that is, the inter-node stationary communication inside the cloud.
DDS is a fully decentralized and scalable publish/subscribe communication protocol, with support for
various QoS policies, such as reliability, deadline, latency, history, ordering, etc. However, the QoS
offered by DDS in the cloud does not extend to mobile clients as they use MR-UDP. There is no QoS
compatibility between MR-UDP and DDS. Therefore, the use of two distinct protocols is one of the
factors that makes SDDL not to offer end-to-end QoS.

Unlike SDDL, CDDL adopts Message Queuing Telemetry Transport (MQTT) [65,66] as the only
communication protocol, both local and remote. This decision ensures that even QoS policies based on
MQTT, such as reliability, for example, are configured and applied end-to-end. Another advantage of
adopting a single protocol is that this eliminates the need to convert messages from one protocol to
another. MQTT is a protocol implemented over TCP, which offers different levels of reliability and
uses brokers to exchange messages between publishers and subscribers. This protocol presents low
communication overhead, making it a good choice for telemetry applications that run on networks
with low bandwidth and high latency. In addition, because it is lightweight, MQTT consumes few
computational resources and is adequate for use on mobile devices with limited resources [67].

Once connected, MQTT clients can send and receive messages to/from brokers using topics.
Upon receiving a message, a broker analyzes the publication topic and forwards the message to one or
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more online subscribers who have signed the same topic (topic-based filtering). Therefore, a broker
prevents MQTT clients from having to establish a direct connection between them so that they can
share messages. A priori, brokers do not store any messages received after delivery confirmation to
subscribers (which is only necessary in cases where delivery reliability is required), unless the message
was marked by the publisher as “retained”. Retained messages will be forwarded to subscribers who
were offline at the time these messages were published. Unlike technologies such as JMS, brokers do
not maintain message queues for each subscriber.

DDS and MQTT share some common principles, such as parsimony and efficiency,
temporal decoupling, and anonymity. However, each protocol has unique characteristics that make it
more applicable to certain use cases [67]. In addition to the features already presented, CDDL adopts
MQTT because it is an optimized protocol for device-to-cloud communication. SDDL, in turn,
adopts DDS for inter-node messaging in the cloud, as it is an optimized protocol for device-to-device
communication, which is based on the use of IP multicast for the implementation of global data
buses. However, since IP multicast is not available from commercial Internet providers, the potential
of DDS, especially QoS policies, can not be fully exploited outside of local networks. While there
is the possibility of encapsulating DDS messages in Hypertext Transfer Protocol (HTTP) requests,
this type of solution is generally provided by a small group of private companies, which aim to
provide communication between DDS applications spread across multiple web domains or that seek
interoperability between local DDS applications and remote applications that use other protocols,
including MQTT itself. However, even with this possibility, CDDL rules out the use of DDS on
mobile clients because that would make the middleware dependent on proprietary solutions whose
acquisition involves costs. In favor of MQTT, the availability of open-source MQTT libraries and
brokers makes CDDL independent of proprietary solutions.

The proposed solution suggests that developers use M-Hub and CDDL in an integrated way.
However, these layers have been designed in such a way that they can be executed independently of
one another. This means that the M-Hub can disseminate data using other distribution services (besides
the CDDL), and that the CDDL can publish context data collected using other data acquisition services.
M-Hub runs on personal mobile devices (e.g., smartphones and tablets) running the Android platform.
There are three types of CDDL clients: mobile (for Android devices), desktops (for personal computers,
workstations, and servers with a Java Virtual Machine (JVM) installed) and web. Mobile and desktop
clients follows the Internet of Things model and use the standard version of the MQTT protocol
(3.1.1 specification) [66]. Web clients, in turn, follows the Web of Things (Wot) [68] model and use
MQTT as a protocol with WebSockets.

M-Hub/CDDL simplifies the process of developing applications for IoT/IoMT because it abstracts
the complexity that is related to mechanisms that are responsible for several phases of the context
management process, providing the programmer with functionalities ranging from data acquisition to
its delivery to the consumer. For example, sensors discovery and interaction via Wireless Personal Area
Network (WPAN) is a complex task, but developers do not have to worry about it as the middleware
already supports some WPANs and can be easily extended to support others. Depending on the
sensor type, some QoC parameters can be automatically measured without the programmer having to
intervene in this process, which is also an advantage. Another task that the middleware simplifies
is the distribution of context data. Regardless of the origin of the data, whether local or remote,
the programmer can use the same interfaces/methods/abstractions, without having to adopt different
programming models. Instead of requiring the programmer to implement mechanisms responsible
for managing the quality of the distribution service, M-Hub/CDDL already offers a very broad set of
QoS policies. Thanks to them, the programmer simply configures the parameters that determine how,
when and where the data will be delivered. Nevertheless, the middleware simplifies operations of
context service discovery, filtering, and data monitoring, taking into account QoC, through the use of a
very expressive language.
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Figure 1 illustrates the use of the M-Hub/CDDL infrastructure in a scenario known as Ambient
Assisted Living (AAL). In this scenario, monitored patients use a body sensor network that provides
data related to their health status and a smartphone running the M-Hub/CDDL for collecting sensor
data and distributing it through brokers located in a cloud. The health sensor data can be delivered
to physicians, caregivers and the patient’s family members. This scenario is an example of IoMT,
since it assumes unrestricted mobility of wearable/portable sensors, local gateways, and consumer
applications running on mobile devices.

Figure 1. M-Hub/CDDL Infrastructure Overview.

AAL applications may have different context requirements. For example, an AAL emergency
care application needs to receive monitored patient location data with sufficient accuracy to direct
the ambulance service to the exact location he/she is in. Therefore, monitoring the data accuracy
or filtering data based on this QoI can be very useful in this case. In AAL systems, event delivery
reliability that characterizes an emergency is a fundamental QoS requirement, because if the event
notification is not delivered to the monitoring center, no decision and action will be taken, for lack
of knowledge of the situation in which the patient is. Therefore, patient monitoring systems need
a mechanism that detects the loss of messages and retransmits the information in case of failure to
deliver it.

The complexity in the development of context aware applications, such as the AAL, imposes several
requirements for the middleware solutions. In order to elucidate the necessary requirements for a better
QoC management of by the middleware, a case study of a context-aware application will be presented in
the following section.

3.2. Case Study

In some cases, drug treatment is not sufficient to ensure the improvement of a patient clinical
condition. The monitoring of a patient physical activity allows the development of an individualized
therapeutic strategy, complementing the drug treatment. The practice of physical exercise with
correct frequency and intensity can help to improve outcomes, specially in the case of cardiac and
respiratory diseases.

Recognition and activity intensity measurement systems are intended to infer human movement
patterns (e.g., walking, running, sitting, standing) and calculate the intensity with which the activity is
being performed by the patient. The inference can be made from data supplied by sensors of different
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types (e.g., heart rate and accelerometer). The hit rate of inference mechanisms used by the system
varies according to several factors, including the accuracy of the sensors and the adopted activity
classification technique. By detecting the activity that the patient is performing and the corresponding
body stress level, the system can detect situations where the activity performed favors or harms the
patient health.

With the recognition and monitoring of the patient activity, health professionals can check if the
level of effort used in carrying out the activity is compatible with the physical limits of the patient and
make the necessary corrections. These limits vary according to the patient condition, age, weight and
other factors.

In order to fill the gap in the described scenario, a context-aware application named Mobile Human
Activity Recognition System (MHARS) [69,70] was developed. MHARS is a mobile monitoring system
that performs activities recognition, calculates its intensity level, and correlates these data with other
context information for inferring relevant situations related to the patient health status. The system was
developed by the Laboratory of Intelligent Distributed Systems of the Federal University of Maranhão
in partnership with the Center for Research in Nephrology of the UFMA Hospital (HUUFMA).

MHARS correlates the inferred activity and intensity with other contextual information
(e.g., the patient disease and body temperature, environmental temperature and height relative to sea
level, etc) to detect specific situations related to the patient health status. A decision-making mechanism
defines an action plan to be executed when relevant health situations are detected. The actions to be
performed are represented using ECA rules (Event-Condition-Action). The system can, for example,
issue a warning to a patient with a chronic cardiovascular disease (or to his/her physician) that is
running if the intensity level of his/her activity is above the prescribed one.

The general requirements of the system were defined through interviews with health professionals.
The main requirements are:

• Interaction with Heterogeneous Physical Sensors: the system must be capable of interacting with
different types of sensors (e.g., portable, wearable or embedded in intelligent environments) in
order to obtain different types of context data about the patient (e.g., physiological, movement
and location) and the environment in which it is located (e.g., light, temperature, air quality);

• Activity recognition: the system must be able to determine the activity performed by the patient
in real time, based on the grouping, sorting and processing of the data collected in real time;

• Intensity measurement: The system should be able to measure the intensity of the performed
activities, as well as to determine if the intensity is low, high or moderate;

• Situational inference: the system must be able to infer the patient’s state (e.g., patient with atrial
fibrillation running with moderate intensity at 1800 m altitude at 3:00 p.m.) by specifying rules
whose execution infers different situations based on an analysis that combines data from the
sensors, activity and intensity, taking into account the specific treatment of the patient;

• Decision making and execution of actions: the system should be able to perform actions predefined
by health professionals for each type of detected situation (e.g., send an emergency notification to
health professionals);

• Mobility support: the system must provide mobility to the users, allowing patients and health
professionals to use the system to recognize activities in a flexible way and in different situations;

• Local and remote data distribution: the system must be capable of distributing data and context
for both the application running on the patient’s mobile device and the applications running on
the healthcare providers devices.

To better detect and respond to different situations, MHARS needs to calculate various parameters.
The requirements of MHARS regarding the quality of the information are:

• Accuracy: The accuracy rate in activities recognition, intensity measurement, and status inference
depends on how the collected context data reflects the reality in which the patient is;
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• Available attributes and completeness: the efficiency and success rate of activity recognition
mechanisms and situation inference are greater when all the attributes of the collected information
are available;

• Sensor location: in emergencies, it may be necessary to inform the location of the patient to a
response team, doctors, caregivers or family members.

Finnaly, the MHARS requirements for quality of service are:

• Delivery reliability: the data processed by the mobile device (activity, intensity, situation) must be
delivered to the remote server running in a cloud infrastructure. Since mobility requires the use
of wireless networks, which are more prone to failures in the transmission, it is important that the
system be able to retransmit the data if delivery is not confirmed;

• Refresh Rate: the system must be able to adjust the frequency used for detecting activities and
situations, allowing patient monitoring in real-time or only occasionally as needed;

• History: the system must be able to store detected activities, inferred situations and other patient
data so that they can be available to the health professionals when necessary.

• Lifespan: the system should provide the means for health professionals to determine the
context information expiration time. Therefore, out-of-date data must be removed from the
application history.

Those system requirements have contributed to define the M-Hub/CDDL requirements, as it is
described in the following section. The implementation aspects related to MHARS are described in
details in Section 4.

3.3. M-Hub/CDDL Requirements

The following are the main requirements of context aware applications that are served by the
proposed middleware.

• Interaction with Heterogeneous Physical Sensors: the middleware must provide mechanisms
for interacting with a broad range of heterogeneous physical sensors. It must also allow
the opportunistic discovery and ad-hoc interaction with sensors using short-range wireless
communication technologies such as Classic Bluetooth and BLE. The support for wireless
technologies must be extensible, allowing easy integration of new technologies as needed.

• Local and Remote Data Distribution: it must provide mechanisms of data distribution, in order
to allow information sharing between context producers and consumers in a flexible way.
The middleware must support both local distribution (producers and consumers running
on the same device) as well as remote distribution (producers and consumers running on
different devices).

• Discovery and Registration of Distributed Services: the middleware must provide mechanisms to
describe the characteristics of the available context services (at least, publisher id, service name, last
read value, and averages of QoC attributes) provided by smart objects so they can be registered in
a local and/or in a global directory service. The later should run in a cloud/cluster infrastructure
and maintain a register of all discovered services provided by a group of CDDL publishers.
Context-aware applications (subscribers) should discover the services available by performing
queries on those directories. The query should use an expressive language that allows the
developer not only to describe the application demands for context information services but also
the required QoC that they must provide. CDDL clients (publishers and subscribers) connected to
the same broker are automatically part of the same domain (the CDDL domain).

• Uniform and Location-Independent Programming Model: indicates that the programming model
(interfaces, components) used for development of applications that consume local data is the same
one adopted for applications that consume remote data. That is, the developer does not have to
change the way of programming if the data origin changes.
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• Context Information Quality, Monitoring, and Provisioning: the middleware must provide
mechanisms that allow the context information to be enriched with attributes that describe
its quality (e.g., accuracy, source location, measurement time, expiration time, available attributes
and completeness) and provide methods to calculate them dynamically. The mechanisms for
registering and discovering services should take QoI into account. The local and/or global
directory service must be aware of the provided QoI. The context query language should allow
the specification of the consumer QoI requirements for selecting appropriate context services that
match the specified criteria. In addition, the middleware must provide monitoring mechanisms
that allow consumer applications to be notified when the QoC changes significantly, allowing the
application to react to those events.

• Distribution Quality Monitoring and Provisioning: this requirement means that producers and
consumers can independently define quality of data distribution service policies. These policies
express a set of configurations that determine how CDDL handles a broad set of non-functional
properties (e.g., delivery reliability, deadline, refresh rate, latency budget, history, lifespan).
The service registration and discovery mechanisms should also take into account the need to
store and query information about the quality of the distribution service. For some QoS policies,
monitoring mechanisms should be provided to ensure that publishers and subscribers are notified
when the required quality is no longer met.

• Reliable Data Delivery in Mobility Scenarios: In order to also handle the distribution of context
information in unrestricted mobility scenarios, the middleware must provide mechanisms that
minimize data loss, in the presence of weak or intermittent connectivity of local gateways and/or
consumer applications with the Internet.

The following subsection describes the middleware architecture highlighting each
component functionality.

3.4. M-Hub/CDDL Architecture

The mechanisms presented in the previous section are implemented by different M-Hub/CDDL
components, as can be seen in Figure 2. The figure shows the M-Hub components (Short-Range
Sensor Presence and Actuation (S2PA), Bluetooth Classic Technology (BT), Bluetooth
Low Energy (BLE) Technology, Internal Technology), CDDL components (QoC Evaluator,
Local Directory Service, Publisher, Subscriber, Monitor, Filter, Connection and
Micro Broker) and Cloud/Cluster components (Server Broker and Global Directory Service).
In the following subsections, the components of each layer are described in detail. Although they can
be used in isolation, the architecture presented shows how they can be interconnected.
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Figure 2. M-Hub/CDDL architecture.

3.4.1. M-Hub Components

M-Hub is responsible for discovering and interacting with opportunistic sensors as well as
monitoring the availability status of each device. This layer provides a generic interfaces that standardizes
the way middleware discovery and interacts with heterogeneous devices and technologies. The idea is
that M-Hub/CDDL programmers use this interfaces to implement specific adapters/wrappers for each
sensor type. The adapters/wrappers encapsulate the sensor driver and expose the services implemented
by the device to the upper layers of the middleware. The sensor driver is always supplied by the sensor
manufacturer and contains the native software/code required for the interpretation/conversion of the
sensor data packets. M-Hub/CDDL programmers can share sensor adapters/wrappers implemented in
accordance with these standard interfaces defined by the proposed middleware through Web software
repositories. In this way, the M-Hub/CDDL programmers form a community for sharing sensor
adapters/wrappers implementations, speeding up the development process. M-Hub is able to download
sensors adapters/wrappers from these repositories and load them dynamically. This ability is fundamental
for opportunistic interaction with sensors in IoMT scenarios, in which the gateway generally does
not know all the sensors it may encounter along the way. Other requirements implemented by the
M-hub layer are: data transcoding to a standard format; data caching to optimize data transmission for
cloud/cluster processing; in-network (pre)processing of context data through Complex Event Processing
rules (details about the use of CEP are in Section 3.7.1) or Java code that can be dynamically downloaded
and instantiated; and adaptive power management mechanisms.

A full description of M-Hub is provided in [4,57,62]. In this paper, we highlight the main M-Hub
components related to the discovery of nearby smart objects services and context data acquisition.
This components are:

• S2PA: component responsible for managing the discovery, connection, and interaction with
smart objects. M-Hub standardizes the sensor adapters/wrappers implementation through three
main interfaces provided by S2PA: Technology, Technology Device and Technology Listener.
S2PA APIs were designed to provide generic methods for short-range communication between the
M-Hub and smart objects, that can be directly mapped to the specific capabilities of the underlying
short-range wireless communication technologies (WPANs). Hence, for each supported WPAN
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was introduzed into the M-Hub the component that implements the methods defined by the S2PA
APIs. The Technology Interface posses a unique ID that is defined at programming time to
identify each technology (e.g., Bluetooth Classic, BLE, ANT+, etc.). That interface has the required
methods to handle different short-range protocols used for the interaction with sensors. Some of
the main methods defined by the Technology interface are the followings: boolean exists(),
method that verifies if the device provides support for the technology; readSensorValue() and
writeSensorValue(), methods that request a read or a write of a sensor, respectively. There is an
attribute called serviceName (a String), which represents the sensor service (e.g., “Temperature”,
“Humidity”, “Accelerometer”). From the M-Hub point of view, each device adapter/wrapper
(e.g., Zephyr Bioharness) is a class that implements the Technology Device interface. All the
context information and QoC attributes that a sensor adapter/wrapper can provide are send to
the Technology Listener, that takes care of sending the data retrieved from the different devices
to the CDDL layer, responsible publishing the context data. S2PA also manages the device’s
reachability, notifying eventual disconnections that can occur due to several reasons, such as
the movement of smart objects or the gateway, considering the unrestricted mobility of IoMT.
Once started, the S2PA service periodically searches for available nearby devices supporting
the enabled communication technologies. If there are adapters/wrappers compatible with the
discovered devices, S2PA will connect to them and start receiving their data (in case of sensors)
or wait for remote commands to be sent to the device (for actuators). Whenever a new smart
object is discovered, S2PA generates an event for each service provided by the smart object
notifying its availability. Local Directory Service (see Section 3.4.2) receives those notifications,
registering the discovered services. In addition, S2PA monitors the connection established with
the smart object in order to be able to notify the Local Directory Service whenever there is a
disconnection (spontaneously or abruptly) and the connection is not restored within a configurable
time window. This time window is intended to prevent sending unavailability notifications in
situations where the smart object connects and disconnects to the gateway frequently.

• BT Technology and BLE Technology: components that implement the functionality required
for the interaction with devices supporting Bluetooth Classic (e.g., Zephyr Bioharness (https:
//www.zephyranywhere.com/)) and Bluetooth Low Energy (e.g., Sensor Tag (http://processors.
wiki.ti.com/index.php/SensorTag_User_Guide)) respectively, based on the operations defined by
the Technology interface.

• Internal Technology: component that implements the functionality required for the interaction
with built-in sensors available on the Android device running the M-Hub.

3.4.2. CDDL Components

The CDDL components are:

• QoC Evaluator: receives context data enriched with some QoI metadata from S2PA. One of
the responsibilities of the QoC Evaluator is to dynamically compute the value of some QoI
parameters, which are not provided during data acquisition since they are not intrinsically related
to the sensor hardware. The computed QoI is also added to the context data metadata structure
and then forwarded to the Publisher. The QoC Evaluator also periodically calculates the average
quality of context provided by each sensor. This average QoC is a relevant information for some
client applications, which can use it as a criteria for selecting context services. They are stored by
the directory services.

• Publisher: component responsible for publishing data, which may be originated from the S2PA or
provided by the application layer. From the point of view of client applications, each instantiated
Publisher is a context service provider. In addition to publishing context data enriched with QoI
metadata, this component can also be used to publish context queries and responses used in the

https://www.zephyranywhere.com/
https://www.zephyranywhere.com/
http://processors.wiki.ti.com/index.php/SensorTag_User_Guide
http://processors.wiki.ti.com/index.php/SensorTag_User_Guide
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process of searching for smart objects services. Data delivery to the broker is performed according
to a set of QoS policies implemented by this component.

• Local Directory Service: responsible for managing information related to the context service
providers running on the device. This information includes the available context data types,
the average quality of the information published, and data related to the quality of the distribution
service offered by each provider. Local Directory Service is also responsible for publishing
the service unavailability notification on the same topic used to publish and receive the context
data in order to notify the applications that a service is no longer available.

• Subscriber: component responsible for context data acquisition following a topic approach. In this
way, applications subscribe to a given context topic. In addition to receiving context data enriched
with QoI metadata, a Subscriber can also be used to receive context queries and responses.
Data delivery to the application layer is done according to some QoS policies implemented by
this component.

• Micro Broker: modified version of a Broker Server targeting mobile devices running the Android
platform. Its function is to intermediate the communication between publishers and subscribers
based on the definition of topic. A topic is a hierarchical structured string, which is used for
message filtering and routing. By default, this component is configured to only accept local
connections. In this way, message exchange is only possible between applications running on the
same device. However, the Micro Broker can also be configured to accept remote connections,
enabling communication between applications running on different devices.

• Connection: component responsible for managing connections and sessions established by clients
CDDL with brokers, whether local or remote. An application can establish multiple connections.
Each one of them can be either local or remote. For each established connection, an instance of the
Connection component is created for managing the connection.

• Filter: component that filters information based on the content of its attributes, including the
QoI metadata. MQTT allows clients to publish and subscribe context information based only on
the definition/signature of topics that are managed by the broker. However, it does not provide
content-based routing/filtering. Therefore, applications use the topic approach to send and
receive data to/from the MQTT broker and locally apply the content-based filtering mechanism,
if necessary.

• Monitor: component responsible for analyzing context data streams in order to detect the
occurrence of certain events that are of interest to the application. The monitoring mechanism is
rule-based, an approach that allows the application to define monitoring events of its interest and
implement the actions that must be performed when such events are detected. The monitoring
mechanism uses a CEP engine which allows event processing to occur in near real-time.
For each monitoring rule, a Listener is provided through which the application is notified
in case of an event occurrence. This component can also be used for QoI and QoS monitoring.
However, some QoS policies are self-monitored, i.e. the policy itself has a standard monitoring
mechanism that notifies the application if the required quality of service is violated.

3.4.3. Cloud/Cluster Components

M-Hub/CDDL architecture also comprise the following components running in the cluster
or cloud:

• Broker Server: intermediates the communication between publishers and subscribers connected
to the cloud. This component has a greater capacity of data distribution than the Micro Broker,
since it runs on a hardware with more powerful computing resources.

• Global Directory Service: component responsible for receiving and storing all records of service
providers available in the same CDDL domain. By default, each Local Directory Service
publishes events that characterize the discovery or disappearance of context services in topics
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managed by the server broker (if the CDDL client has a connection to the network). The Global
Directory Service is a subscriber of these topics and is able to update its records based on
the events it receives. However, each Local Directory Services can disable the sending of
information to Global Directory Service.

If an application does not know in advance the topics in which the context information of interest
is being published it can discover them dynamically. One way to do this, using CDDL, is by publication
of context queries. Local and global directory services are responsible for responding to incoming
queries based on the records they store. There are two types of queries: instantaneous and continuous.
The instantaneous query returns the available service providers that meet a given criteria at that
moment the query was issued. Since communication is asynchronous, the application can define a
time-out for receiving the response. The continuous query not only returns the service providers
meeting the specified criteria at the time it was issued, but also instantiates the query in the Monitor
component. In this way, the middleware continuously evaluates the query as new services providers
are discovered, returning to the application the ones the match the specified criteria. Both queries
can be canceled at any time by the application. Another way that can be used for applications to
discover the available services is through subscription to special topics. In these topics, both the
Local Directory Service and the Global Directory Service periodically publish updated lists of
registered services.

The CDDL is very flexible in respect to the configuration of how context data flows can be
established. A Publisher or Subscriber can be connected to the local Micro Broker running in their
same machine or can establish a connection with a Micro Broker running in any CDDL machine.
They can also be connected to the Server Broker running in the CDDL cloud/cluster infrastructure.
It is also allowed for Publishers and Subscribers to establish multiple connections. If they are
connected only to Micro Brokers, queries issued for service discovery will have a local scope. On the
other hand, if they are connect to the Server Broker, service discovery will have a global scope.
The use of MQTT brokers for both local and global distribution flows allows the development of
IoT/IoMT applications that, regardless of data location (local or remote) and the platform they run on
(desktop stations or mobile devices), the same programming model and protocol, as well as the same
quality of distribution service policies are available to the application programmer. The asynchronous
communication is implemented using the Paho MQTT Client Library (https://www.eclipse.org/paho/
clients/java/). This library releases M-Hub/CDDL client from having to wait for a confirmation before
attempting to send another message. Instead, it receives delivery confirmations in background using
listeners/callback functions.

3.5. Quality of Information Parameters

The CDDL provides an extensive support for both, QoI and QoS parameters. The available quality
of information parameters are:

• Accuracy: represents how close the measured value is to the actual value [8]. Generally,
IoT applications work with the accuracy estimated by the sensor. In some cases, sensor defects
and/or failures can cause the estimated accuracy value to be significantly distant from the actual
value. For mobile devices, S2PA obtains the internal sensors accuracy using the Android sensors
API. However, for external sensors (BT and BLE sensors), it is necessary for the sensor driver
programmer to use its APIs to obtain the accuracy and inform S2PA. After getting the accuracy
S2PA informs CDDL.

• Source Location: is the location where the context information was measured [8].
In M-Hub/CDDL, indicates the approximate position of the context source at the time of
measurement. If the smart object has a built-in location hardware, its provided location will
be assigned to the gathered data. However, in most cases, smart objects do not have their own
location hardware. In this case, the QoC Evaluator will assign to the data the position of the

https://www.eclipse.org/paho/clients/java/
https://www.eclipse.org/paho/clients/java/
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device it runs on. Since short range wireless communication networks are used for interaction with
smart objects, the provided location will only be an approximation of the context source location.

• Measurement Time: is the moment at which the context information was measured [8].
In M-Hub/CDDL, indicates the approximate time it which the information was measured at the
smart object. If the smart object does not provide this information, then the QoC Evaluator will fill
the corresponding metadata with the timestamp of data arrival. Note that in this case the elapsed
time between the measurement and the arrival of the data through the WPAN communication
is neglected. This usually takes miliseconds. A similar approach is adopted for internal sensors,
except for the fact that there is no short network communication, leading to a even better precision.

• Arrival Time: informs the arrival timestamp of the context information at the consumer.
The arrival time is entered in the context information by the Subcriber component.

• Expiration Time: is the time interval in which the context information can be considered valid
for the applications, counting from the measurement time [8]. The expiration time is specified
by the producer of the information, and can be considered or not by consumer applications.
Upon receiving the information, the consumer can accept the specified vality time or even extend
this time according to its own interests.

• Age: is the elapsed time between the measurement time of the information and the current
instant [8], calculated as follows:

Age = tcurr − tmens (1)

where tcurr is the current time and tmens is the measurement time.

Therefore, age is a very dynamic parameter, which must be recalculated whenever it is required
for some decision making.

In M-Hub/CDDL, the parameter is dynamically calculated based on the difference between the
measurement time and the current time. When the producer and the consumer run on different
devices, a time synchronization mechanism is required in order to calculate the age of the context
information at data receipt as accurately as possible (e.g., ClockSync (https://play.google.com/
store/apps/details?id=ru.org.amip.ClockSync&hl) synchronizes device system clock with atomic
time from Internet via Network Time Protocol -NTP).

• Measurement Interval: is the minimum separation interval between two sensor measurements [8].
This parameter is calculated dynamically by the QoC Evaluator based on the difference between
the measurement times of two consecutive samples of the same context information. Although the
sensors on the Android platform may have their frequency set, the actual sampling rate is not
always the same as that specified. Therefore, M-Hub/CDDL adopts the strategy of calculating
this parameter at runtime.

• Available Attributes: are the attributes that characterize a given information type [8]. For example,
location information provided by GPS has three attributes: latitude, longitude, and altitude. Under
normal conditions, all context information attributes are available. However, sensor failures can
cause incomplete readings.

• Completeness: indicates how complete is the information that the consumer receives. In other
words, it is the amount of information that is provided by a context object, and can be calculated
based on the ratio of the sum of the weights of the available attributes and the sum of the weights
of the total number of attributes that are required by the consumer. The equation for this metric is
as follows:

Completeness =
∑m

j=0 wj

∑n
i=0 wi

(2)

where m is the number of available attributes and n is the total number of attributes for the desired
information. The weights w are necessary due to the fact that each attribute may have a different
importance for each consumer. For example, if the location sensor provides only the latitude

https://play.google.com/store/apps/details?id=ru.org.amip.ClockSync&hl
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and longitude attributes, but not the altitude, then the reading completeness is approximately
66.6%. M-Hub/CDDL assumes, by default, the same weight for all attributes. In M-Hub/CDDL,
completeness is calculated dynamically by the QoC Evaluator. The lower the completeness value,
the more incomplete is the information received.

• Numeric Resolution: indicates the degree of detail of the context information [6]. It is called
granularity by [8]. In M-Hub/CDDL, for numerical data, the QoC Evaluator calculates the
numeric resolution as the granularity in relation to the number of decimal places of the measured
value. It should be noted that having a sensor that performs temperature readings with two
decimal places, such as 20.01 ◦C for example does not necessarily imply that it has a higher
accuracy than another one which measures with only one, 19.0 ◦C for instance.

3.6. Quality of the Distribution Service Policies

In the M-Hub/CDDL, the available quality of the distribution service policies are:

• Deadline: Publishers and subscribers use this policy to specify the maximum time they are
willing to wait to send and receive, respectively, at least one message. To time the deadline,
this policy uses a local Java TimerTask. This component notifies the application through a Listener
when the specified maximum wait time expires. The maximum wait time is set in milliseconds,
with the default value of this parameter being “disabled” (deadline equal to zero). In this case,
the application will not receive any notification. Publishers and subscribers define the maximum
waiting time independently of each other, meaning there is no negotiation between them.

• Refresh Rate: Publishers and subscribers use this policy to specify the minimum separation
interval between successive messages submissions and receipts, respectively. This policy
uses a time-based filter that causes only the last (most recent) message to actually be sent or
received. To control the send and receive intervals, this policy uses a local Java TimerTask
component. The minimum separation interval is defined in milliseconds, with the default value
of this parameter being “disable” (minimum separation interval equal to zero). Publishers and
subscribers do not negotiate the minimum separation interval. This way, even if the publisher
sends data with a very high frequency, the subscriber can establish a lower reception rate that
meets their requirements.

• Latency Budget: This policy is used by publishers and subscribers to set an additional delay in
sending and receiving messages, respectively. The definition of an additional delay greater than
zero causes the middleware to accumulate the messages produced in the specified interval and
send or receive them in a single burst by means of a packing message (a message in which all
accumulated messages are inserted). Therefore, if the packager message is lost, any messages
entered into it will also be lost. To delay sending and receiving messages this policy uses a
local Java TimerTask. The additional delay is set in milliseconds, with the default value of this
parameter being “disable” (additional delay equal to zero). In this case, the middleware will
not delay sending/receiving messages. Publishers and subscribers define the additional delay
independently of each other. Therefore, even if the publisher does not set an additional delay,
the subscriber can do so in order to receive the messages in a grouped fashion at regular intervals.

• History: This policy is used by publishers and subscribers to set the amount of message that
can be stored in their respective history. This policy can be configured in two ways: keep all
and keep last. In the keep all mode all messages are stored in the history (up to resource limits).
In keep last mode only the last n messages are stored in history (n needs to be defined by the
application). The default setting for this policy is keep last, where the size of the history is equal to
1. Publishers and subscribers define the type and size of the history independently of each other,
that is, there is no negotiation between them.

• Destination Order: This policy determines how messages are stored in the history of publishers
and subscribers. In the case of the publisher, the messages are always sorted by the measurement
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time (the arrival time of the data at the gateway, if the measurement time is not informed by
the sensor). In the case of the subscriber, the messages can be sorted by the measurement time,
publication time or message reception time at the subscriber. The default ordering of the subscriber
is the message reception time. If the subscriber sets the order by the measurement time or the
publication time, it is necessary to install clock synchronization software, since the middleware
does not provide this type of functionality.

• Lifespan: This policy is used by publishers and subscribers to control the lifespan of messages.
This policy uses a local Java TimerTask that removes from the history messages whose expiration
time has passed. The default value of lifespan is “disable” (lifespan equal to zero), indicating that
the messages do not have a given lifespan and therefore will not be removed from the history
(unless replaced by more recent messages in situations where the history is set to “keep last”).
This policy is flexible in relation to the agent of the lifespan definition. By default, the lifespan
agent is the publisher (in an analogy with the real world, it is always the product manufacturer
that specifies the expiration time). In this case, the message will be removed from both the
publisher’s history and the subscriber’s history. It is important to note that if the message reaches
the subscriber with the lifespan expired, it is not entered in the history. However, there is an
alternate setting, in which the subscriber ignores the lifespan specified by the publisher and sets a
different lifespan, which may be larger or smaller than that set by the publisher (in an analogy
with the real world the consumer sometimes discards products before the expiration date and
sometimes uses products even after the expiration date). This setting is intended to allow the
subscriber not to be forced to accept the lifespan imposed by the publisher. There is no negotiation
process between publisher and subscriber regarding lifespan.

• Retention: the publisher uses this policy to signal that the broker should retain the last (and
only the last) post published on the topic. For the publisher, the default value is “disable”,
indicating that the broker should not retain the messages. Retention allows late subscribers,
i.e., subscribers who were offline during message posting, to receive the retained message as
soon as they (re)connect to the broker. Thus, the subscriber is not required to wait until the
next publication to receive an update. However, the client application will only receive retained
messages if the subscriber has the retention policy enabled. The default value of this policy for the
subscriber is also “disable”, indicating that the subscriber will not pass on any retained messages
to the client application. There is no negotiation between publishers and subscribers regarding
message retention.

• Vivacity: this policy allows clients to be notified of connection failures on other clients in the same
CDDL domain. In order for client B to receive client A fault notifications, client A must register
with the broker a Last Will Testament (LWT) message at the time of connection. If the client A
connection with broker fails, then the broker will publish the LWT message in the topic “Vivacity”.
Therefore, client B will only receive the notification if it subscribes to this topic. Receipt of
notifications can be filtered based on client ID. In this way, client B may indicate that it wants
to be notified only of client A faults, instead of receiving failure notifications from other clients.
The default policy value for the client is “disable”, indicating that it does not want to register
LWT messages with the broker at the time of the connection. There is no negotiation between
publishers and subscribers regarding this policy.

• Reliability: sets the reliability level to be used when delivering messages. There are three possible
values: 0 (at most once), 1 (at least once), and 2 (exactly once). At level 0, the best effort policy is
used. The message delivery is not confirmed by the receiver. It is not stored by the sender and can
be lost in the event of a delivery failure. This is the fastest transfer mode. At level 1, the receiver
must send an acknowledgment to the sender. If the sender does not receive the acknowledgment,
the message will be sent again with the DUP flag set until the delivery confirmation is received.
As a result, the receiver may receive and process the same message several times. The message
must be stored locally on the sender buffer until the acknowledgment has been received. If the
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receiver is a broker, it sends the message to the subscribers. If the receiver is a client, the message
will be delivered to the subscriber application. At level 2, at least two pairs of transmissions
are used between the sender and receiver before the message is deleted from the sender. In
the first pair of transmissions, the sender transmits the message and gets an acknowledgment
from the receiver notifying that it has stored the message. If the sender does not receive the
acknowledgment, the message is sent again with a DUP flag set, and this is periodically performed
until an acknowledgment is received. In the second pair of transmissions, the sender tells the
receiver that it has received the acknowledgment by sending it a “PUBREL” message. If the
sender does not receive an acknowledgment of the “PUBREL” message, the “PUBREL” message
is sent again until an acknowledgment is received. The sender deletes the message from its buffer
when it receives the acknowledgment of the “PUBREL” message. The receiver can process the
message in the first or second phases, provided that it does not reprocess the message. If the
receiver is a broker, it publishes the message to the subscribers. If the receiver is a client, it delivers
the message to the subscriber application. This is the slowest and most expensive transmission
mode. The default reliability value is level 0. There is no negotiation process between publishers
and subscribers regarding this policy. However, the subscriber’s reliability requirements will
only be met if the publisher uses a reliability level greater than or equal to that required by the
subscriber. For example, if the subscriber requires reliability level 1, then the publisher needs to
use reliability level 1 or 2.

• Session: defines whether the session held between the client and the broker is persisted or
not. A persistent session is one in which the broker stores the customer’s identifier and the
topics signed by him, preventing data from having to be re-informed in the case of reconnection.
During a temporary disconnect, the broker stores messages posted on topics that were of interest
to the subscriber in a buffer, but only those that require delivery confirmation. When the client
reconnects, the broker will attempt to send (or resend) the persistent messages, obeying the order
of receipt. The default value for this policy is “not persistent”, that is, the broker does not save
the session between the subscriber and itself and, therefore, does not attempt to resend persisted
messages when the connection is restored.

Note that in order to minimize the message losses in mobility scenarios caused by intermittent
connectivity, publishers and subscribers must enable both delivery reliability and persistent session.
On the one hand, enabling reliability without using a persistent session means that the subscriber will
lose messages that were posted while off-line, as those messages will not be persisted by the broker if
the client fails. On the other hand, if the subscriber only enables a persistent session, this will imply
that none of the messages will be persisted in the event of a connection failure, because the persistence
mechanism only applies to those messages for which delivery confirmation is required.

3.7. Implementation Aspects

M-Hub/CDDL executables and documentation are available for download on the middleware
webpage (http://www.lsdi.ufma.br/projetos/cddl/doku.php), where detailed instructions and
examples can be found about how the various middleware mechanisms should be configured and
used to develop applications that have management and quality of context requirements. This section
presents only a few details about the operation and implementation of some of the mechanisms that
have to do with QoC: evaluation, service discovery, monitoring and filtering. Since these mechanisms
are based on complex event processing (CEP), a brief explanation of this technology precedes the
description of such mechanisms.

In addition to the components mentioned in this section, the S2PA component plays a key role in
acquiring context information from external sensors. The implementation aspects of this component
and the interfaces used by the developers when using it are detailed in the works referring to the
M-Hub, nominally Rios et al. [4] and Vasconcelos et al. [57].

http://www.lsdi.ufma.br/projetos/cddl/doku.php
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3.7.1. Complex Events Processing

Complex Events Processing [71] is a technology that allows correlating continuous input events
and patterns of interest (e.g., filtering, aggregation, summarization, differentiation, enrichment) where
processing results can be other complex events, that is, events that are derived from the input
events. CEP is a low latency (in terms of processing) method of tracking and analyzing of data
flows. This method combines data from multiple sources to infer events or patterns that suggest
more complicated circumstances [51]. CEP is used to process data flows in near real-time as well
as to produce results without delays, even in cases where the flow of events is large. In a reversal
compared to traditional database management systems, where a query is performed on stored data,
CEP performs data in a stored query. Near real-time is a level of computer responsiveness that user
senses as sufficiently immediate (in the order of milliseconds), that is, there is no visible delay for
the user.

One of the CEP advantages is the possibility of using declarative languages to define processing
queries, known as Event Processing Languages (EPLs) [71]. EPLs allow one to express rich conditions
and correlations between events as well as time window concepts, thereby minimizing the development
effort required to configure systems that can react to complex situations [72]. Due to the expressiveness
of EPLs, complex event-detection scenarios that were previously difficult to implement using other
technologies can now be specified with few lines of code, favoring the reuse of solutions. Support for
running event flow queries, written in EPL, is provided by CEP engines. There are several CEP
engines, one of the best known being the Esper CEP (http://www.espertech.com/esper/) [72], an open
source engine written in Java. The EPL Esper is a rich, continuous query specification language,
based on Structured Query Language (SQL), but also includes several language-specific constructs for
processing real-time event flows, such as time windows [51]. M-Hub/CDDL uses Esper Engine in the
CDDL desktop/web version and Asper [73], a modified version of Esper Engine for Android devices,
in the CDDL mobile version.

3.7.2. QoC Evaluation

As mentioned in Section 3.4, in addition to automatically computing some of the QoC parameters,
when not provided by the producer/sensor, QoC Evaluator also calculates an average value of QoC
within a given time window. This average serves as an indicator of the QoC offered by the producer
and can be used as a reference value/metric that helps context consumers select the service provider
best suited to their context and QoC requirements. For this reason, average QoC values, as well as all
other information that characterizes the service provider, are sent to the service directories so that they
can be subsequently queried by consumer applications.

QOC Evaluator is implemented as a Java thread in the desktop/web version of CDDL and as a
Android service that runs in the background in the mobile version, and uses CEP to analyze sensor
data publication flow and thus detect new types of context as well as apply aggregation functions that
calculate the average quality of context of the information. The events that result from this processing
generate a new stream of events that are processed by the QoC Evaluator itself. This new flow is used
by the Local Directory Service to respond to service queries published by applications.

Listing 1 shows an example of the EPL Esper rule used to compute the average QoC. This rule
captures events of type SensorDataMessage, which corresponds to the message type published by S2PA.
This message contains the context data and its QoC attributes, within a configurable time window.
The result of processing these events is the creation of new events of type ServiceInformationMessage,
which corresponds to the type of message that contains the description of the available services.
These new events are sent to the local and global directories, which update their records based on
this information.

http://www.espertech.com/esper/
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Listing 1: EPL used to compute the average QoC.

insert into ServiceInformationMessage (
publisherID, serviceName, accuracy, measurementTime, availableAttributes,
sourceLocationLatitude, sourceLocationLongitude, sourceLocationAltitude,
measurementInterval, numericalResolution, age

) select publisherID, serviceName, avg(accuracy), avg(measurementTime),
avg(availableAttributes), avg(sourceLocationLatitude), avg(sourceLocationLongitude),
avg(sourceLocationAltitude), avg(measurementInterval), avg(numericalResolution), avg(age)
from SensorDataMessage.win:time(TIME_WINDOW)
group by publisherID, serviceName

SensorDataMessage is a specific type of message, which inherits from the Message class. A simple
example of how this type of message is published is shown in Listing 2:

Listing 2: Publication context data with QoC example.

// creates the message
SensorDataMessage msg = new SensorDataMessage();
// fill the message properties
msg.setServiceName(‘‘TEMPERATURE’’);
msg.setServiceValue(38); // the type can be any Java type (String, Integer, Object, etc.)
msg.setAccuracy(0.025); //or any other QoC parameter
// obtaning references to default publisher and publishes the message
Publisher publisher = MHubCDDL.getInstance().getDefaultPublisher;
publisher.publish(msg);

3.7.3. QoC-Based Service Discovery

As mentioned in Section 3.4, consumer applications discover the available service, as well as
the QoC offered by them, through instant and continuous queries. These queries are also written in
EPL Esper and allow the application to specify criteria about the type of context and level of QoC
required. Listing 3 shows an example of how the application publishes queries using the CDDL.
In this example, the application invokes the query(QueryType queryType, String epl) method
of the Publisher component. This method receives the EPL query to be published as a parameter.
The specified query searches for all location services whose accuracy is less than 5 m. The example
references messages of type ServiceInformationMessage in the EPL clause since this is the data
structure that contains the services description. In this example, the query is continuous, therefore the
consumer would receive all available services compatible with the query as they are discovered.

Listing 3: Example of query written in EPL Esper.

// obtaning references to default publisher and subscriber
MHubCDDL mhubcddl = MHubCDDL.getInstance();
publisher = mhubcddl.getDefaultPublisher();
subscriber = mhubcddl.getDefaultSubscriber();
// query for location of the publisher johndoe@example.com with accuracy less than 5;
String query = ‘‘serviceName = ’LOCATION’ and publisherID = ’johndoe@example.com’
and accuracy < 5’’;

// returnCode can be used to cancel the continuous query
int returnCode = publisher.query(QueryDestiny.LOCAL, QueryType.CONTINUOUS, query);
// creates the listener to receive subscriptions
subscriber.setSubscriberListener(new ISubscriberListener() {
@Override
public void onMessageArrived(Message message) {
// handles query responses
if (message instanceof QueryResponseMessage) {
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QueryResponseMessage response = (QueryResponseMessage) message;
// is the query response about location of johndoe@example.com?
if (message.returnCode == returnCode) {
// obtain the list of services from response
List<ServiceInformationMessage> services =
response.getServiceInformationMessageList();

// loop from all services from response and subscribe them
for(ServiceInformationMessage info : services) {
subscriber.subscribeServiceTopic(info.getTopic())

}
}

return;
}
// handles subscribed messages
if (message instanceof SensorDataMessage) {
SensorDataMessage sensorDataMessage = (SensorDataMessage) message;
// simulates showing message on UI.
showMessageOnUI(message);
// one can get the attributes of the message like:
// message.getPublisherID();
// message.getServiceName();
// message.getServiceValue();
// message.getAccuracy();
// message.getSourceLocation();
return;

}
}
// if, in any moment, the application wants to cancel the query above
// publisher.cancelQuery(returnCode)

});

Queries performed by consumer applications are received by local and global service directories
(LocalDIrectoryService and GlobalDirectoryService respectively) that use CEP engines for
processing. The LocalDirectoryService component is implemented as an Android service while
GlobalDirectoryService is a Java process running in the cloud.

3.7.4. QoC-Based Event Monitoring

Monitoring of variations in sensor measurements and QoC itself is also based on the specification
of EPL rules. However, unlike the evaluation and service discovery mechanisms, which implement the
CEP rules on producer-side data flows only, the monitoring rules can be applied to both sending and
receiving flows, that is, both the publisher and the subscriber can detect context and QoC monitoring.
As mentioned in Section 3.4, the component responsible for monitoring is the Monitor. This component
is implemented as a Java class that is instantiated by publishers and subscribers when needed.

To exemplify monitoring of the QoC variation, let us consider the following example:
an application wants to be warned whenever the accuracy of the temperature of a particular
publisher changes. In this case, the following CEP rule could be passed to the Monitor: select
* from pattern [every A=SensorDataMessage -> B=SensorDataMessage and A.accuracy <>
B.accuracy] where A.serviceName = ’TEMPERATURE’ and A.publisherID = ’bertodetacio’.
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Therefore, code in Listing 4 can be used in the above scenario:

Listing 4: Example of using the M-Hub/CDDL monitoring engine.

// first, define a monitor listener
IMonitorListener monitorListener = new IMonitorListener() {
@Override
public void onEvent(final Message message) {
// the monitoring event just happened.
// do something about it
doSomething(message);

};

// monitoring rule
String cepRule = ‘‘select * from pattern
[every A=SensorDataMessage -> B=SensorDataMessage and A.accuracy <> B.accuracy]
where A.serviceName = ’TEMPERATURE’ and A.publisherID = ’johndoe@example.com’’’;

// ruleId can be used to remove the query (see comment below)
int ruleId = subscriber.getMonitor().addRule(cepRule, monitorListener);

// cancel the monitoring using the statement bellow
// subscriber.getMonitor().removeRule(ruleId);

An inherent aspect of monitoring is that it can be enabled and disabled according to the interests
of the application. The example showed how to remove a monitoring rule dynamically.

3.7.5. QoC-Based Event Filtering

Event filtering is also based on the specification of EPL rules. As with monitoring, filtering rules
can be applied to both sending and receiving flows, that is, both the publisher and the subscriber
can filter out context information, including QoC-based filtering. As mentioned in Section 3.4,
the component responsible for filtering is the Filter. Like Monitor component, Filter is implemented
as a Java class that is instantiated by publishers and subscribers on demand.

To exemplify QoC-based filtering, let us consider the following example: an application that
subscribes to receive temperature data from multiple publishers and at a certain point wishes to receive
only data with accuracy greater than 0.9. In this case, the code shown in Listing 5 can be used:

Listing 5: Example of using the M-Hub/CDDL filtering engine.

// subscribe to temperature of any publisher
subscriber.subscribeSensorDataTopicByServiceName(‘‘TEMPERATURE’’);
// the application will only receive context information with accuracy equal to 0.9
subscriber.setFilter(‘‘select * from SensorDataMessage where accuracy > 0.9’’);
// disable filtering and receive all information
subscriber.clearFilter();

Filtering can be canceled at any time through the clearFilter() method. From this moment on,
all subscribed information is received normally.

3.7.6. QoS Configuration

From the application point of view, each QoS policy is represented by an class that contains
specific methods for configuring QoS parameters. Except for the Session policy, all policies inherit from
the AbstractQoS class, which can be used to implement new policies. Once defined, the Publisher
and Subscriber interfaces are used to change publisher and subscriber policies, respectively.
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Listing 6 shows an example of how to configure the Reliability policy. The configuration of the
other policies is done in a similar way.

Listing 6: Reliability configuration example.

// informs the customer ID that will be used by all connections
MHubCDDL.getInstance().setClientId(‘‘bertodetacio@gmail.com’’);

// obtains the connections factory instance
ConnectionFactory connectionFactory = ConnectionFactory.getInstance();

// get an instance of the connection
Connection connection = connectionFactory.createConnection();

// activates the intermediate buffer
connection.setEnableIntermediateBuffer(true);

// instantiates the reliability policy
ReliabilityQoS reliabilityQoS = new ReliabilityQoS();

//configures reliability at level 1
reliabilityQoS.setKind(ReliabilityQoS.AT_MOST_ONCE);

// gets a default publisher instance
Publisher publisher = DefaultPublisher.getInstance();

// changes publisher reliability policy
publisher.setReliabilityQoS(reliabilityQoS);

// adds a connection to the publisher
publisher.addConnection(connection);

//connects
connection.connect();

4. Implementing an Application with QoC Requirements

Mobile Human Activity Recognition System (MHARS) [69,70] is a mobile monitoring system that
performs activities recognition, calculates its intensity level, and correlates these data with other context
information for inferring relevant situations related to the patient health status. The system runs on
Android mobile devices and uses a cloud computing infrastructure to store and retrieve the information
inferred from the patients. MHARS can recognize the following activities: walking, running, jumping,
standing, lying down, up and down the stairs. Acceleration data and machine learning algorithms
are used for activity recognition. The heart rate is used to calculate the activity intensity. This section
describes how MHARS was implemented using the M-Hub/CDDL and discusses the advantages of
using the middleware proposed in the development of the case study described in Section 3.2.

4.1. System Architecture and Key Features

The first version of MHARS was developed using the original version of M-Hub (1.0) as the
acquisition layer, and the Scalable Data Distribution Layer (SDDL) as the distribution layer. In this
version, the implementation of QoC requirements was the responsibility of the programmer, since both
M-Hub and SDDL did not support QoC at the time. However, MHARS version 2.0 was developed
using the middleware approach proposed in this work, which uses a modified version of the M-Hub
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and replaces the SDDL with the Context Data Distribution Layer CDDL (see Section 3), which offers
QoC support.

Figure 3 presents the MHARS 2.0 architecture. It shows the M-Hub/CDDL components and the
specific components that implement business system logic. The components are organized into two
subsystems: (i) the subsystem of data acquisition, activity recognition, intensity measurement, status
inference and decision making, which runs on mobile devices; and (ii) the subsystem of storage and
data visualization, which runs in the cloud.

Figure 3. MHARS architecture using M-Hub/CDDL components.

The S2PA is the middleware layer component responsible for interaction with external sensors
(using a WPAN) and the patient’s internal sensors smartphone (using the Android API) used as
gateway AAL. The S2PA receives data from the heart rate and acceleration in three axes (X, Y, Z),
collected by a wearable sensor device called Zephyr BioHarness (http://zephyranywhere.com/
products/BioHarness-3/). To make the activities recognition engine most efficient, the system also
receives acceleration data collected by the mobile device itself, plus the location (latitude, longitude,
and altitude). The QoC Evaluator calculates the QoC parameters required by MHARS and inserts
them as meta-data in each context information data sample.

The Publisher publishes the context data to be processed by Human Activity Recognition
Service (HARS), Intensity Measurement Service (IMS), Decision Make Service (DMS) and
Situation-aware Service (SAS) components on the mobile device. The local application signs
the topics in which the data is published, using the Subscriber component. Once all topics are
defined at compile time, the local application does not need to consult the Local Directory Service.
By default, the local application receives the acceleration data at a rate of 128 samples every 2.58 s.
This time window and their number of samples are considered sufficient for the activities of detection
performed repeatedly [74]. The default refresh rate for receiving heart rate and location data is 1 sample
every 2.58 s. All data are correlated by the measuring time.

The HARS is the application layer component that is responsible for conducting the recognition
of the activity being made by the user based on the acceleration data. This component performs
preprocessing steps (conversion, filtering and refining) that put the data into an input format
compatible with the activities classifier.

The activities classification is performed by machine learning algorithms to recognize the actual
activity patterns based on previously processed values. It can use several machine learning algorithms,
and most of them are provided by a library called Waikato Environment for Knowledge Analysis

http://zephyranywhere.com/products/BioHarness-3/
http://zephyranywhere.com/products/BioHarness-3/
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(WEKA) [50] that is specific to pattern recognition problems. Depending on the algorithm used,
the accuracy rate can approach 83%. Activity recognition systems with accuracy rate exceeding 70%
are considered satisfactory [75].

The IMS is responsible for measuring the activity intensity inferred by HARS. This calculation
takes into account the current heart rate and the maximum heart rate that can be achieved by the
patient. From this information, the IMS can determine if the intensity of carrying out the activity is
low, moderate or severe.

The SAS is responsible for inferring the different pre-defined situations in which the patient
can be during the course of an activity. The situation inference can consider various information
such as the detected activity, the measured intensity, the obtained location, chronic condition of the
patient, and other context data. The SAS has an intrinsic relationship with the DMS, the component
responsible for defining and implementing the actions necessary to respond to an inferred situation.
The decision-making is based on the execution of ECA rules (Event-Condition-Action).

The high-level context information representing the activity, its intensity, and inferred situation,
are published by the application in the CDDL cloud. A web application implemented as a CDDL web
client can be used by a medical staff, for example, to monitoring the patient and take actions when
appropriate. By default, the data are published as soon as available, in order to minimize the delay.
Regarding the location, the Filter component prevents activities and situations being published in
certain geographic coordinates defined by the local application. At the cloud, an application signs the
topics where the high-level context information are published. The refresh rate can be set dynamically
and depends on the minimum interval with which application would like to be notified about the
patient activities and situations. By default, the refresh rate is 2.58 s. The application can specify the
size of the history and the time by which the received data samples are still available.

4.2. Discussion on the Case Study

MHARS is an IoT application with a certain degree of complexity because, in addition to
requirements such as activity recognition, intensity measurement, situation inference, and others
that are inherent in its business logic, this application has several context management requirements
(acquisition, processing, distribution, and storage), quality of context requirements, both QoI (accuracy,
available attributes, completeness) and QoS (reliability, refresh rate, history, expiration time) as well as
mobility. In MHARS version 1.0, the implementation of these requirements was the responsibility of
the programmer, since both M-Hub and SDDL did not support QoC at the time.

The case study showed that MHARS’ quality of context and management requirements were
met very satisfactorily by M-Hub/CDDL. MHARS required the use of both the M-Hub and the use
of two types of CDDL client: the mobile version and the web version. Unlike MHARS version 1.0,
implemented with the use of SDDL, this time it was not necessary for the programmer to implement
such requirements at the application layer and/or middleware because CDDL provided all the QoC
support that the application required. Thus, from this particular case study, it can be generalized,
to some degree, that M-Hub/CDDL is applicable to the development of a series of IoT applications in
the health domain. In addition, considering that applications from other domains, such as transport,
commerce, and industry, for example, may have similar context management and QoC requirements,
it can also be deduced that M-Hub/CDDL can be used in the development of IoT applications in
various domains. Although it was not possible to apply all the concepts and mechanisms present
in the M-Hub/CDDL in MHARS, this case study showed that they are valid, that is, they can be
applied in the resolution of the problems to which the middleware is intended, fulfilling so the
objective of M-Hub/CDDL, which is to facilitate the development of context-aware IoT applications,
especially those that have multiple QoC requirements.
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5. Evaluation and Results

A complete evaluation of the M-Hub/CDDL, due to its wide range of functionalities that aim to
support the development of context aware applications with QoC requirements, could take into account
several aspects. We present next the evaluation of the following aspects related to the performance of
the distribution and monitoring services of the M-Hub/CDDL: (i) evaluation of the delivery time of
the context data to the consumer, considering different levels of reliability and network configurations;
(ii) the efficiency of delivery reliability policies implemented by the distribution service, considering
various scenarios of intermittent connectivity; (iii) the performance of the quality of context monitoring
mechanism, in relation to the QoC variation detection time, considering different data publication
frequencies and (iv) evaluation of memory and battery consumption.

5.1. Evaluation of the Context Information Delivery Time to the Consumer

Before arriving at the consumer, the context data passes through different stages/components
of the middleware: (1) the data is collected by the S2PA Service, responsible for the connection and
interaction with the sensors; (2) the data is processed by the QoC Evaluator, responsible for evaluating
the QoI and generating the Local Directory Service records; (3) the data is enriched with QoC
and sent to Publisher so that it is published in accordance with the producer QoS settings; (4) the
context data is sent to one or more brokers via Connection Service; (5) each broker that receives the
context information, be it local or remote, sends this information to the subscribers registered in the
corresponding topic; (6) the context data arrives at Subscriber, where it is handled in accordance with
subscriber QoS settings; (7) the information is delivered to the application layer by means of a listener,
registered by the application itself.

The purpose of this set of experiments is to evaluate the M-Hub/CDDL performance distribution
service. In addition, this experiment aims to demonstrate how different configurations of the delivery
reliability policy provided by the middleware and various types of networks can influence this
performance. To achieve this goal, the following evaluation metrics were defined:

• Communication Time: equals to the sum of the delay imposed by the network communication,
or local bus, with the message processing time in the local or remote MQTT Broker. Communication
time between publisher and subscriber is directly affected by the level of delivery reliability used
by publishers and subscribers, as well as by external factors over which the middleware has no
control, such as bandwidth, latency, and network packets loss rate.

• Middleware Processing Time: is the sum of the times that the context information takes to transit
or be processed by the middleware components in the producer (interval between the arrival of
the data at the publisher and sending the message to the MQTT Broker) and consumer (interval
between the arrival of the message at the subscriber and delivery of the data to the application).
The information processing time in the middleware includes marshaling and unmarshaling
operations, QoI evaluation, and application of QoS policies according to parameters set by
publishers and subscribers.

• Delivery Total Time: it is equivalent to the sum of the communication times between publisher
and subscriber and the middleware processing time, that is, the time elapsed between the arrival
of the data in the gateway and its effective delivery to the consumer application.

These metrics are natively computed by M-Hub/CDDL, in milliseconds, being made available to
the application as metadata.

Communication time is calculated based on the difference between the timestamp of the message
when it is sent by the Publisher component and the timestamp of the message when it arrives at the
Subscriber component according to the following equation:

CommunicationTime = PublisherTimestamp − SubscriberTimestamp (3)
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Delivery total time is calculated based on the timestamp of the information when it arrives in the
S2PA component and the timestamp of the message when it is effectively delivered to the consumer
application, according to the following equation:

TotalDeliveryTime = S2PATimestamp − ApplicationTimestamp (4)

It should be noted that the arrival time of the information at the Subscriber is not equal to the
delivery time of the information for the application. The difference between these times depends on
the QoS parameters of the subscriber. For example, if the subscriber uses the Latency Budget parameter,
then the middleware will impose an additional delay on delivering the message to the application.

Middleware processing time is calculated by subtracting the communication time from the total
delivery time, according to the following equation:

ProcessingTime = TotalDeliveryTime − CommunicationTime (5)

The experiment consisted of using a test application that publishes and receives data.
Both publisher and subscriber run on the same device and therefore there was no need for clock
synchronization to calculate the defined metrics. In each experiment, the publisher sends 1800 messages
to the broker, with the data upload rate being approximately 1 Hertz (Hz). The duration of each
experiment is approximately 30 min. The size of the payload of each message is approximately
1024 bytes.

To support the execution of this application (and consequently of the experiments), the following
hardware resources were used:

• Wearable Sensor: used to generate the context data. The Zephyr Bioharness 3 device, which has
several sensors, was used. However, the S2PA was set up to collect only heart rate data. The data
generation frequency of this sensor is approximately 1 Hz.

• Smartphone: used to run the test application. The smartphone model is a LG-K430F, which
has 2 GB of RAM, quad-core 1.2 Gigahertz (GHz) processor, Android 6.0 operating system,
Bluetooth and 802.11 Wifi.

• Notebook: used to run the test application monitoring tool (Android Device Monitor) and to run
a server broker in experiments using LAN. It was used a DELL Inspiron 15-5557, which has 16 GB
of RAM, Intel Core i7 2.5 GHz processor and Ubuntu 16.04 LTS operating system.

• LSDi Server computer used to run a server broker in experiments using the Internet. It has 32 GB
of RAM and an Intel Xeon processor 1.7GHz. This broker can be accessed using the following url:
www.lsdi.ufma.br:1883.

Regarding the reliability of delivery configurations, the experiments vary in three types:

• Experiments with reliability set to level 0: in this experiment the at most once.
• Experiments with reliability set to level 1: In this experiment the at least once policy was

employed.
• Experiments with reliability set to level 2: In this experiment the policy exacly once was used.

In this experiment, it is important to note that only Delivery Reliability and Session policies were
enabled. The other QoS policies were disabled and, therefore, did not affect the experiment performance.

In relation to the types of network used, the experiments varied in three types:

• Experiments without network usage: In this experiment no network connection was used.
Publisher and subscriber were connected to a micro broker running on the same device as
the test application (the smartphone).

www.lsdi.ufma.br:1883
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• Experiments using local network: in this experiment a Wireless Local Area Network (WLAN)
network was used. Publisher and subscriber were connected to an external server broker. In this
case, the server broker ran on the notebook, which also acted as a network access point. The WLAN
was formed only by the smartphone and the notebook, and there was no connection to the Internet.

• Experiments using fixed Internet: in this experiment, a local Wifi network was used. Internet access
was made via a wireless Asymmetric Digital Subscriber Line (ADSL) router/modem. Both
publisher and subscriber were connected to a server broker running on the LSDi server.

• Experiments using mobile Internet: in this experiment was used a 4G connection. Both publisher
and subscriber were connected to a server broker running on the LSDi server.

It is important to note that in the experiments using the Internet, the test application ran on a
network distinct from the one in which the broker was running. The LSDi server was connected
to the institutional network of the Federal University of Maranhão, located in the city of São Luís,
while the test application was connected to the Internet using the services of a telephone/band
operator called Oi (http://www.oi.com.br/), in the city of São José de Ribamar. Both cities are part of
a metropolitan region called São Luís Island, in the State of Maranhão. The distance between these
cities is approximately 20 km.

For each type of network, all possible reliability levels were tested. Therefore, experiments were
carried out with 12 different configurations. Considering that each type of experiment/configuration
was repeated 5 times, a total of 60 executions were performed. Tables 2–4 show respectively the results
obtained in relation to the communication time, processing time and total delivery time, taking into
account only the average obtained with the repetitions of each setting. The average, maximum,
minimum and standard deviation for each of the defined metrics were also calculated. We also
define that the representative performance of each type of network is given by the average obtained
considering the three levels of reliability tested.

Table 2. Evaluation of the Distribution Service Performance in relation to the Communication Time.

Configuration Reliability Average (ms) Maximum (ms) Minimum (ms) Standard Deviation (ms)

Without Network (Micro Broker) 0 62.25 66.61 59.60 3.20
Without Network (Micro Broker) 1 186.17 194.99 177.92 6.45
Without Network (Micro Broker) 2 236.68 241.77 232.87 3.35

Average of Experiments without Network Usage 161.70 167.79 156.80 4.33

Isolated Local Network 0 74.37 80.79 71.22 3.94
Isolated Local Network 1 92.51 99.92 88.59 4.60
Isolated Local Network 2 126.23 131.18 121.82 4.48

Average of Experiments using Isolated Local Network 97.70 103.97 93.88 4.34

Fixed Internet (Wifi + ADSL) 0 233.35 241.40 228.61 5.56
Fixed Internet (Wifi + ADSL) 1 417.04 490.48 375.22 46.57
Fixed Internet (Wifi + ADSL) 2 681.42 711.17 666.79 17.64

Average of Experiments using Fixed Internet 443.94 481.01 423.54 23.26

Mobile Internet (4G) 0 262.55 273.69 254.81 7.98
Mobile Internet (4G) 1 472.12 483.05 456.64 9.98
Mobile Internet (4G) 2 807.14 845.54 782.28 25.36

Average of Experiments using the 4G Internet 513.94 534.09 497.91 14.44

http://www.oi.com.br/
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Table 3. Evaluation of the Distribution Service Performance in relation to the Processing Time.

Configuration Reliability Average (ms) Maximum(ms) Minimum(ms) Standard Deviation (ms)

Without Network (Micro Broker) 0 37.21 42.05 34.01 4.21
Without Network (Micro Broker) 1 31.34 36.91 26.15 3.88
Without Network (Micro Broker) 2 34.95 37.66 32.84 2.26

Average of Experiments without Network Usage 34.50 38.87 31.00 3.45

Isolated Local Network 0 34.66 37.20 32.28 2.13
Isolated Local Network 1 37.14 39.44 34.36 1.83
Isolated Local Network 2 36.46 42.37 34.24 3.39

Average of Experiments using Isolated Local Network 36.09 39.67 33.63 2.45

Fixed Internet (Wifi + ADSL) 0 33.79 37.34 31.75 2.31
Fixed Internet (Wifi + ADSL) 1 34.60 36.20 33.68 0.97
Fixed Internet (Wifi + ADSL) 2 35.97 40.06 33.28 3.11

Average of Experiments using Fixed Internet 34.79 37.87 32.90 2.13

Mobile Internet (4G) 0 36.42 42.83 34.27 3.64
Mobile Internet (4G) 1 34.60 36.20 33.68 0.97
Mobile Internet (4G) 2 34.37 36.92 32.14 2.35

Average of Experiments using the 4G Internet 35.13 38.65 33.36 2.32

Table 4. Evaluation of the Distribution Service Performance in relation to the Total Time of Information
Delivery to the Consumer.

Configuration Reliability Average (ms) Maximum (ms) Minimum (ms) Standard Deviation (ms)

Without Network (Micro Broker) 0 99.46 108.19 93.60 7.35
Without Network (Micro Broker) 1 217.51 225.84 204.07 8.89
Without Network (Micro Broker) 2 271.64 278.91 266.51 5.31

Average of Experiments without Network Usage 196.20 204.31 188.06 7.18

Isolated Local Network 0 112.46 120.45 105.30 6.52
Isolated Local Network 1 128.60 134.85 123.47 4.24
Isolated Local Network 2 162.69 167.02 156.37 4.49

Average of Experiments using Isolated Local Network 134.58 140.77 128.38 5.08

Fixed Internet (Wifi + ADSL) 0 267.14 278.74 260.41 7.73
Fixed Internet (Wifi + ADSL) 1 440.07 472.06 412.94 24.68
Fixed Internet (Wifi + ADSL) 2 715.80 743.30 703.24 16.59

Average of Experiments using Fixed Internet 474.33 498.03 458.86 16.33

Mobile Internet (4G) 0 298.97 309.12 289.59 9.24
Mobile Internet (4G) 1 506.72 519.25 490.32 10.77
Mobile Internet (4G) 2 844.15 882.05 822.06 23.86

Average of Experiments using the 4G Internet 549.95 570.14 533.99 14.62

In relation to experiments without network use, it can be observed that the average communication
time using the level 0 reliability (62.25 ms), practically doubles by raising the level of reliability to 1
(reaching 186.17 ms) and triple when fraising the reliability level to 2 (reaching 236.68 ms). Meanwhile,
the average data delivery time using level 0 reliability (99.46 ms), practically doubles by raising the
reliability level to 1 (reaching 217.51 ms) and triples by raising the reliability level to 2 (reaching
271.64 ms). As expected, level 0 reliability performed better than levels 1 and 2 because it did not
require confirmation of message delivery. Level 1 has performed better than level 2 because the delivery
confirmation mechanism used by the first (simple handshake) requires fewer message exchanges than
the second (double handshake). Thus, the performance of the micro broker degrades as the level of
reliability used increases, because the higher the level of reliability, the more memory and processing
resources are required.
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In relation to the experiments with the use of isolated local network, which obtained the best
average performance, it can be observed that, as in the experiments without the use of the network,
and also for the same reasons, the communication time and the total data delivery time using
level 0 reliability (74.37 ms and 112.46 ms, respectively) were also lower than those using levels
1 (in which the communication time was 92.51 ms and the total data delivery time was 128.60 ms) and
2 (in which the communication time was 126.23 ms and the total data delivery time was 162.69 ms).
However, the difference between the communication times, and consequently between the total data
delivery times, using the levels 0 and 2, is much lower than those obtained in the experiments without
the use of the network. This time, as far as communication time is concerned, the difference between
levels 0 and 1, as well as the difference between levels 1 and 2, is less than 25%. Regarding total delivery
time, the difference between levels 0 and 1 is less than 25%, while the difference between levels 1 and 2
is less than 30%. The reason why this occurs is strongly related to the type of broker that each one uses.
While in the experiments without using the network a micro broker was used (executing in the mobile
device), in the experiments using the local network a server broker executing in the notebook was used.
The difference in processing power and memory available in both execution platforms causes the micro
broker’s performance to deteriorate faster than the server broker when reliability increases, causing the
latter to send messages to the recipients faster than the first. This difference in performance in favor
of the server broker is almost always enough to compensate for the delay imposed by the isolated
local network communication. The exception occurs when both types of experiments use reliability
level 0. In this case, thanks to the publication fee used, the cost of processing the messages (which do
not require delivery confirmation) is so low that the delay imposed by the isolated local network has
become more significant than the cost of processing carried out by the broker, resulting that the time of
communication and the total time of delivery of the data obtained in the experiments without use of
the network, for this level of reliability, are the smallest among all the types of experiments performed.

In both cases, the communication times obtained using level 0 reliability (233.35 ms using Wifi
and 262.55 ms using 4G) practically double when using level 1 reliability (reaching 417.04 using Wifi
and 472.12 using 4G) and triples by raising reliability to level 2 (681.42 using Wifi and 807.14 using 4G).
The total data delivery times, using level 0 reliability (267.14 ms using Wifi and 298.97), increased about
60% by raising the reliability level to 1 (reaching 440.07 ms using Wifi and 506.72 using 4G). The times
obtained using level 2 reliability increased about 60% from level 1 (reaching 715.80 ms using Wifi and
844.15 using 4G). As expected, the delay imposed by the Internet meant that these experiments had
inferior performances in relation to other network configurations.

Analyzing all types of experiments, it can be observed that the performance of the middleware in
the scenarios tested in relation to the average data processing time before sending and after receiving
the data is always low, close to 35 ms, with small variations. In general, we can conclude that the
processing time imposed by the middleware has a considerably smaller impact on the total data
delivery time than the communication time (transmission delay + processing time in the broker).
The observed communication times for all network configurations, even in experiments using the
Internet, whose results tend to vary according to the state of the network, allow us to conclude
that, under similar network conditions, the M-Hub/CDDL offers communication with low overhead,
allowing the transmission of sensor data in real time, thanks to the adoption of a protocol optimized
for IoT.

5.2. Evaluating of the Message Delivery Reliability

Mobile applications for IoT are generally subject to context data loss during the delivery process
due to intermittent connectivity and other types of failures. The objective of this experiment is to
verify the efficiency of the reliability policy implemented by M-Hub/CDDL in scenarios of intermittent
connectivity, which varied in two basic types:
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• Low-intermittency scenario: in which the connectivity to the broker was programmatically
interrupted within a range that varied randomly according to a uniform distribution in the
interval between 120 and 180 s.

• High-intermittence scenario: in which connectivity with the broker was programmatically
interrupted within a range that varied randomly according to a uniform distribution in the
interval between 12 and 18 s, so the intermittence rate was 10 times greater than the one in the
previous scenario.

In both scenarios, the duration of the disconnection varied randomly between 3 and 6 s, according
to a uniform distribution. We used the same test application from the previous scenario, as well as
the same hardware. Again, each experiment lasted approximately 30 min and the message delivery
rate was 1 Hz. Failures were generated by shutting down the wireless network interface, causing the
TCP/IP connection between the test application and the broker to close unexpectedly. The scenarios
considering low and high intermittency were tested using two of the network configurations employed
in the previous experiments: isolated local area network and Internet through Wifi. Variations were
also promoted in relation to the three levels of reliability offered by the middleware. As in the previous
experiment, only Delivery Reliability and Session policies were used. The other QoS policies were
disabled and, therefore, did not affect the experiment performance. Each experiment was repeated
5 times, totaling 20 experiments. The defined evaluation metric was the message loss percentage
obtained in each scenario. The results are presented in Table 5.

Table 5. Results from the Evaluation of Message Delivery Efficiency in Intermittent Connection Scenarios.

Network Configuration Reliability
Interval between

Disconnections (s)
Average

Loss Rate
Maximum
Loss Rate

Minimum
Loss Rate

Standard Deviation
Loss Rate

Isolated Local Network 0 120–180 3.8% 4.2% 3.6% 0.3%
Isolated Local Network 0 12–18 23.8% 28.6% 21.1% 2.9%

Isolated Local Network 1 120–180 0.0% 0.0% 0.0% 0.0%
Isolated Local Network 1 12–18 0.0% 0.0% 0.0% 0.0%

Isolated Local Network 2 120–180 0.0% 0.0% 0.0% 0.0%
Isolated Local Network 2 12–18 0.0% 0.0% 0.0% 0.0%

Internet (Wifi + ADSL) 0 120–180 3.8% 3.9% 3.5% 0.2%
Internet (Wifi + ADSL) 0 12–18 35.5% 36.3% 33.9% 1.0%

Internet (Wifi + ADSL) 1 120–180 0.0% 0.0% 0.0% 0.0%
Internet (Wifi + ADSL) 1 12–18 0.0% 0.0% 0.0% 0.0%

Internet (Wifi + ADSL) 2 120–180 0.0% 0.0% 0.0% 0.0%
Internet (Wifi + ADSL) 2 12–18 0.0% 0.0% 0.0% 0.0%

It is possible to observe that the middleware was able to deliver 100% of messages in all situations
where the reliability level employed was greater than zero, allowing to conclude that the M-Hub/CDDL
has a high degree of delivery efficiency when using such reliability configurations. This performance
was obtained due to the combination of the default delivery confirmation mechanism provided by
MQTT, coupled with the intermediate buffer mechanism implemented by M-Hub/CDDL. The latter
increases reliability for two reasons: (i) unlike the buffer provided by the default configuration of
MQTT clients, the intermediate buffer stores all published messages that require delivery confirmation.
This allows the middleware to resend to the broker all messages whose deliveries have not been
committed after a given period; (ii) contrary to what MQTT clients usually do by default (they stop
trying to resend lost messages as soon as the connection expires), the M-Hub/CDDL continues trying
to resend messages stored in the intermediate buffer as soon as a new connection is established.

It is also possible to observe that the average message loss rate in the scenario of high intermittency
using level 0 reliability on the Internet (35.5%) is significantly higher than that presented by the
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local network in the experiment that used the same intermittency rate and the same reliability level
(23.8%). The difference is practically 12%. This significant difference is attributed to the following
facts: (i) local network communication is typically more reliable and less subject to failure than in
long-distance networks; (ii) low intermittency forced the application to reconnect more often to the
broker. Considering that the observed local connection time (which ranged from 9 to 10 milliseconds)
was about 30 to 50 times greater than the Internet connection time (which ranged from 300 to
500 milliseconds), the test application spent more time connected to the broker in the experiments using
local network than in those using the Internet, allowing that the first delivered a greater number of
messages than the second. However, the connection time does not have a big impact if the application
does not have to reconnect to the broker so many times. For this reason, the loss rates for both types of
network configuration are very close in the low intermittent scenarios.

Finally, the low standard deviation presented allows us to conclude that the results tend to remain
stable for IoT applications that perform under conditions similar to those simulated in this experiment.

5.3. Evaluation of Monitoring Time

The monitoring time, i.e., the time taken to process the information in order to determine if there
was any kind of context or QoC variations, needs to be low. Otherwise, if significant oscillations occur,
they will be perceived very late by the consumer application. Consequently, this may prevent the
application from reacting to such changes in a timely manner.

In order to evaluate the performance of the M-Hub/CDDL in relation to the monitoring
time, a single type of experiment was conducted in which the arrival rate of messages (generated
synthetically by a virtual sensor) was 1 message per millisecond, a frequency that can be considered
relatively high. In each experiment, 1800 messages were published. Of this total, 180 samples had
accuracy values greater than zero, while the others had values equal to zero. The monitoring rule
used in this experiment consisted of detecting the arrival of samples whose values were greater
than zero (“Select * from SensorDataMessage where accuracy> 0.0”). Every 10 milliseconds,
a sample with different accuracy was sent, simulating a QoC variation. Each experiment was repeated
5 times, always using the local micro broker (without network use) and level 0 reliability. Except for
reliability, all other policies were disabled and, therefore, did not affect the experiment performance.
The smartphone that ran the test application was the same as the previous experiments. Monitoring
time considered is the interval between the arrival of the message at the subscriber and the notification
of the QoC variation to the consumer application. Thus, neither the network configuration nor the
level of reliability chosen interfered with the results obtained.

The average monitoring time was 12.49 milliseconds. The maximum monitoring time reached was
14.53 milliseconds, while the minimum time was 10.15 milliseconds, generating a standard deviation
of 1.56 milliseconds. These results allow us to conclude that M-Hub/CDDL monitoring time is quite
low, and the standard deviation obtained in the experiment indicates that this performance tends to
remain stable if it is repeated in similar conditions. It is important to note that the execution of the CEP
rules did not compromise the performance of the test application, that is, the middleware remained
stable throughout the period of the experiments, even with a high event arrival rate.

5.4. Evaluation of Memory Consumption

The objective of this experiment was to measure the amount of memory allocated to the
middleware components responsible for QoC monitoring and QoC evaluation, both based on the use
of complex event processing (CEP) agents, as explained in Section 3.7. The same test application used
in the previous experiments was used, only changing the publication rate, which in this experiment
was 1 message per second (a frequency considered moderate). For this experiment, all QoS policies
were disabled and, therefore, did not affect the experiment performance. The application was run
for 30 min. From the use of the Android Monitor tool (built into the Android Studio) data regarding
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memory consumption were collected in 5 instants of application execution: 5, 10, 15, 20 and 25 min.
Table 6 shows the average results obtained considering 5 repetitions of the experiment.

Table 6. Memory consumption in Kilobyte (Kbytes).

5 min 10 min 15 min 20 min 25 min Average Standard Deviation

QoC Evaluator 263 262 268 269 270 266 2.77
Monitor 213 213 216 219 280 214 3.14

From these results, it is possible to observe that the QoC monitoring and QoC evaluation
components require a little amount of memory to process data flows with a moderate frequency
and that this amount remains stable during the entire application execution period.

5.5. Evaluation of Battery Consumption

The objective of this experiment was to evaluate the battery consumption by the middleware
components. For this, we used the same test application of the previous experiment and the same data
publication rate. The application was run 5 times for 12 h each, and the battery level was measured
at the beginning and at the end of the execution. It is important to note that while the application
was running the device screen remained turned off. In addition, with the exception of operating
system processes, there were no other processes running on the device. As in the previous experiment,
all QoS policies were disabled and, therefore, did not affect the experiment performance. As shown
in Table 7, the average battery consumption was 15.6% . This average consumption is considered to
be low, indicating that middleware can be used to publish data and monitor QoC on conventional
mobile devices.

Table 7. Battery Consumption.

Minimum Maximum Average Standard Deviation

Battery Consumption 15% 16% 15.6% 0.55

6. Comparative Analysis and Discussions

Analyzing the case study and experiments performed, as well as the functionalities implemented
by the various components of the proposed middleware, it is concluded that M-Hub/CDDL fulfills
all the requirements defined in Section 3.3 and therefore fulfills the purpose for which it was built,
which is to facilitate the development of IoT/IoMT applications, especially those that have multiple
management and quality of context requirements.

This section addresses two discussion points. Initially, the proposed middleware is positioned
in relation to the reference architectures for IoT analyzed by Calvalcante et al. [13]. Subsequently,
a comparative analysis is performed between the M-Hub/CDDL and the middleware systems with
QoC support presented in Section 2, taking into account the open issues that have been raised.

In relation to the comparison with reference architectures for IoT, it is noted that M-Hub/CDDL is
closer to WSO2 (version 0.9.0) [19] than other architectures. Both have several common requirements,
such as context awareness, support for device heterogeneity, sensor discovery and management,
high-level programming interfaces, event processing, among others. Another similarity between
the proposed middleware and the last version of WS02 is that both adopt MQTT as the standard
communication protocol between the devices and the cloud. WSO2 recommends the use MQTT over
WebSockets because it architecture follows the Web of Things model. M-Hub/CDDL, on the other hand,
depending on the platform on which the CDDL client executes, can use both the standard MQTT (on
mobile and desktop CDDL clients) and MQTT over WebSockets (on CDDL web client). As explained
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in Section 3, the standard MQTT version is used by desktop and mobile CDDL clients, whereas the
MQTT over WebSockets version is used by CDDL web clients. Therefore, in addition to meeting
the requirements of the traditional IoT model, the proposed middleware also encompasses WoT
requirements. It is important to note that WSO2 recommends HTTP as an alternative communication
protocol to MQTT, while M-Hub/CDDL does not have a second device-to-cloud communication
protocol option. Another difference is that WSO2 does not define how producers and consumers
running on the same mobile device can communicate without using the network. M-Hub/CDDL
solves this problem using MQTT and a Micro Broker that mediates communication between producers
and local consumers. However, the main difference between M-Hub/CDDL and WSO2 is that this
reference architecture, unlike the proposed middleware, does not address aspects of QoC provisioning,
evaluation, and monitoring.

With respect AWARENESS, COSMOS, COPAL, INCOME and SALES middleware systems, Table 8
summarizes a comparison between them and the M-Hub/CDDL emphasizing the described open
research issues.

Regarding quality of context provisioning, unlike the middleware systems presented, M-Hub/CDDL
is not limited to the provisioning of a specific class of QoC parameters. Instead, the QoC support offered
by the proposed middleware comprises both QoI parameters and QoS policies. Thus, M-Hub/CDDL is a
more suitable middleware system for applications that have multiple QoC requirements.

Concerning QoC monitoring, M-Hub/CDDDL advances over the other middleware systems
presented because it provides mechanisms that allow the context-aware application to specify QoC
variations events from which it requires to be notified in near real time. Therefore, compared to
middleware systems, M-Hub/CDDL may be considered more suitable for applications that need to
dynamically adapt to changes in quality of context.

In relation to the support for interaction with heterogeneous physical sensors, most of the
middleware described only provide a programming interface to mask the data source using sensors
adapters/wrappers. In this case, it is up to the programmer to implement the device-specific
adapters/wrappers and the lower-level mechanisms responsible for the discovery of nearby sensors
and direct acquisition of raw data, which would require considerable effort. M-Hub/CDDL and
COPAL stand out in this respect since both offer not only abstractions for the sensor hardware
heterogeneity, but also provide mechanisms that facilitate these tasks, even though they are focused on
devices with different characteristics. In the case of COPAL, the service descriptions is based on the
UPnP standard. However, papers presenting the COPAL middleware do not discuss issues related
to how to describe device services taking into account the quality of the information provided by
the sensors. In the case of M-Hub/CDDL, sensor management is a requirement implemented by
the S2PA Service. This service already provides native support for interaction with sensors using
Bluetooth Classic and BLE technologies. However, programmers can extend the middleware to
implement support for other communication technologies. M-Hub/CDDL’s services description takes
into account the quality of the information provided by the sensors, as well as the quality of service
offered by the context service provider. Thus, QoC (both QoI and QoS) becomes a criteria that can be
used in service discovery queries. In addition, M-Hub is able to download sensors adapters/wrappers
from a Web repository and load them dynamically. This ability is relevant in IoMT scenarios because it
allows the mobile gateway to get the sensor adapters/wrappers opportunistically.

Another advancement in middleware systems presented, including those that have some kind
of QoS support, is that M-Hub/CDDL addresses the challenge of providing reliability in mobile
environments. It is important to highlight that the proposed middleware, in comparison to the other
solutions described, is the only one that adopts an optimized IoT protocol: MQTT. Thanks to the use
of this protocol combined with the intermediate buffering mechanism of the CDDL, the proposed
middleware becomes the most appropriate solution for IoT applications that, in addition to other QoS
parameters, also require delivery reliability in unstable networks.
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Table 8. Comparison between related work and M-Hub/CDDL emphasizing the open research issues.

Middleware Quality of Context
Provisioning

Quality of Context
Monitoring Heterogeneous Sensors Management

Reliable Data Delivery
in Mobility Scenarios

M-Hub/CDDL Provides multiple QoI
parameters and QoS policies.

Monitors various QoI
parameters and QoS policies.

Provides an API for implementing specific
adapters/wrappers for sensors drivers;

Provides a generic and extensible sensors
management service with native support
for Bluetooth Classic and BLE technologies;

Provides support for the sensor dynamic
loading from the web software repositories.

Provides support for
multiple reliability levels;

Provides an intermediate
buffer which increases
the reliability delivery;

Provides support also for
disconnected operations
and IP address exchange.

AWARENESS
Focus on QoI, but with
some support for QoS.

Not addressed.
Provides only an API for implementing
adapters/wrappers for the sensors drivers.

Not addressed.

COSMOS Focus on QoI, only. Not addressed.
Provides only API for implementing
adapters/wrappers for the sensors drivers.

Not addressed.

COPAL Greater focus on QoI, but
with some QoS support. Not addressed.

Provides an API for implementing specific
adapters/wrappers for the sensors drivers;

Provides a sensors management service.
Service description is based on the UPnP.

Not addressed.

INCOME Focus on QoI, only. Not addressed.
Provides only API for implementing
adapters/wrappers for the sensors drivers.

Not addressed.

SALES Focus on QoS, only. Not addressed.
Provides only API for implementing
adapters/wrappers the sensors drivers.

Not addressed.



Sensors 2017, 17, 2853 40 of 45

Considering the way in which each presented solution was evaluated, it is noticed that
M-Hub/CDDL and SALES are the only middleware systems with QoC support whose evaluation
was not restricted to case studies alone. Both had performance/efficiency of the distribution service
quantitatively assessed. However, the M-Hub/CDDL evaluation is more comprehensive, as it also
addresses measurement aspects of resource consumption in mobile devices.

Given the above, it can be concluded that, in general, M-Hub/CDDL presents significant advances
in relation to other middleware solutions with QoC support, since it addresses the challenges presented
more consistently.

7. Conclusions and Future Work

Quality of Context (QoC) is a requirement imposed by emerging services and applications for the
Internet of Things (IoT) that need to be aware of the user context and their environment, as well as of
the quality of the data provided by sensors and/or the quality of the distribution service of this data
through different types of networks. In IoMT scenarios, the unrestricted mobility of smart objects with
limited resources leads to the use of mobile gateways to enable discovery, opportunistic interaction,
and data acquisition via WPAN, as well as an efficient data distribution layer capable of delivering the
context information to consumers with the quality level they require, since QoC has a direct impact on
the user experience of context aware applications.

One of the most important quality of service requirements is the delivery reliability, that is,
the ability to ensure that the data reaches its destination. The refresh rate parameter allows applications
to send and receive data according to their processing and memory capabilities, which on mobile
devices are more scarce resources. Regarding quality of information, which can be directly affected by
QoS, parameters such as age, validity time, resolution, and accuracy can help determine the relevance
that context information will have for a particular application. Considering that QoC may oscillate over
time, it is important that context-aware applications have at their disposal a monitoring mechanism
capable of detecting changes in quality of context in a timely manner. In this way, these applications
can quickly perform actions in response to these variations.

One of the contributions of this work was a state-of-the-art survey regarding QoC-supported
context middleware systems for IoT applications. This survey corresponded to an important
contribution of this article because, to the best of our knowledge, no literature review had focused on
analyzing how these tools meet application QoC requirements. Based on this survey, a comparative
analysis was carried out between the known middleware systems and the M-Hub/CDDL, taking into
account different aspects of comparison. It was possible to conclude that the support offered by the
proposed middleware is more comprehensive and complete than that provided by other tools analyzed.
Regarding QoC, in addition to providing more context quality parameters and policies, M-Hub/CDDL
is able to meet both QoI and QoS requirements, unlike other solutions that are focused on provisioning
one or other quality dimensions, something that is reflected in the monitoring support, since the
mechanisms implemented for detecting QoC variations are focused on the provided parameters.
In addition, most of the work related to other context middleware systems do not address other
relevent aspects highlighted in the comparative analysis, such as the support for interaction with
physical sensors and the reliable delivery of context data in mobile environment.

As another contribution of this work, a new context middleware, called M-Hub/CDDL,
was presented aimed at the development of IoT/IoMT applications, especially those that require
quality of context. This middleware, which combines the use of a mobile gateway with a data
distribution service, was designed to meet a wide range of requirements, such as: (i) interaction with
physical sensors; (ii) local and remote data distribution using multiple connections; (iii) registration
and discovery of services through queries; (iv) unified programming model; (v) provisioning and
monitoring of various quality of context (QoI and QoS) parameters.

The performance evaluation of the M-Hub/CDDL’s data distribution service led us to the
conclusion that the data processing time of the middleware components is relatively low, and a
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small impact on the total delivery time required for communication between data producers and
consumers. This communication time varies mainly according to the type of network configuration,
the type of broker and the level of reliability employed. For all the network configurations in which
the middleware was evaluated, the performance obtained by it was considered satisfactory. In relation
to the evaluation of the reliability of the data delivery to the consumer, the combination of the
message loss detection mechanism of the MQTT protocol, which provides three levels of reliability,
combined with the intermediate buffer mechanism of the M-Hub/CDDL, which stores and returns
lost messages as soon as the connection is reestablished, has achieved 100% of successful messages
delivery in different evaluation scenarios that have simulated high and low intermittent connection
with the broker. The performance of the monitoring mechanism was also satisfactory, since the time
it takes to process events, even with a high data arrival rate, is a few milliseconds. The efficiency
of this mechanism is related to the integration of the middleware with a mobile-based CEP Engine,
responsible for the execution of complex event processing. On the other hand, the middleware most
computing intensive components (QoS Evaluator and Monitor) present low memory and battery
consumption. These results reinforce the thesis that the middleware is suitable for use on commonly
used mobile devices, allowing the context aware application to publish and monitor data without
significantly compromising the device’s battery life.

Finally, as last contribution, a case study was presented allowing us to verify the middleware
suitability to the development of a mobile application focused on patients monitoring. Since the
middleware has satisfactorily met the requirements imposed by the target application, it is possible to
generalize that the M-Hub/CDDL can be used for a series of IoT applications with similar characteristics.

Future work involves the ability to perform semantic processing of context data considering large
data flows. Another requirement to be explored is a built-in support for high level queries useful in
IoT, such as the ones considering the smart objects movement patterns.
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