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Abstract: Around the globe, innovation with integrating information and communication
technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart,
green living to improve energy efficiency, protect the environment, improve the quality of life,
and bolster economy competitiveness. Cities today faces multifarious challenges, among which
energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully
with the help of intelligent sensors and contextual systems would help build smart cities of the future.
In a Smart home environment Home Energy Management plays a critical role in finding a suitable
and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new
method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on
neural network based Q-learning algorithm. Although several attempts have been made in the past to
address similar problems, the models developed do not cater to maximize the user convenience and
robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning
method which is self-learning and adaptive. The proposed method provides an agile, flexible and
energy efficient decision making system for home energy management. A typical Canadian residential
dwelling model has been used in this paper to test the proposed method. Based on analysis, it was
found that the proposed method offers a fast and viable solution to reduce the demand and conserve
energy during peak period. It also helps reducing the carbon footprint of residential dwellings.
Once adopted, city blocks with significant residential dwellings can significantly reduce the total
energy consumption by reducing or shifting their energy demand during peak period. This would
definitely help local power distribution companies to optimize their resources and keep the tariff low
due to curtailment of peak demand.

Keywords: information and communication technologies; smart cities; smart home; home energy
management; Q-learning, user convenience; peak demand; carbon footprint

1. Introduction

Smart cities in brief can be defined as a city which uses information and communication
technologies (ICT) such as smart sensors, cognitive learning, and context awareness to make lives
more comfortable, efficient, and sustainable [1]. Cities today face multifarious challenges, including
environmental sustainability, low carbon solutions and providing better services to their citizens.
Given these trends, it is critical to understand how ICT can help make future cities more sustainable.
As microcosms of the smart cities, smart and green buildings and homes stand to benefit the most
from connecting people, process, data, and things. The Internet of Things (IoT) is a key enabler for
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smart cities, in which sensing devices and actuators are major components along with communication
and network devices. Management of smart homes often requires analyzing IoT data from the
interconnected networked devices to optimize efficiency, comfort, safety, and to make decisions faster
and more precise [2]. Internet of Things (IoT) is a decade-old term for the interconnection of a plethora
of heterogeneous objects and things over a global network so that they can exchange data and interact
in real-time. Technologies, such as radio frequency identification, wireless sensor networks, artificial
intelligence and machine learning, form the backbone of such interactions. The telecommunications
sector estimates that by 2020 more than a half billion devices will be connected with each other [3].

The significant efficiency gains from home automation can make cities sustainable in terms
of resources. Importantly, the IoT ambitions and scope are designed to respond to the need for
real-time, context-specific information intelligence and analytics to address specific local imperatives [4].
Further, realization of smart, energy-efficient and green home infrastructure would allow the
development of “livable” interconnected communities, which will form the backbone of a futuristic
green city architecture [5]. Hence, energy management in smart homes is a key aspect of building
efficient smart cities [6]. Energy management consists of demand side management (dsm), peak load
reduction and reducing carbon emissions [7]. In an industrialized country, residential and commercial
loads in urban centers consume a significant amount of electrical energy. As per the survey report [8]
nearly 39–40% of the total energy consumption in Canada is consumed by the residential and
commercial complexes. It is evident from various load surveys that the demand of electricity in these
residences is highly variable and changes throughout the day. Therefore, finding suitable strategies
for efficient management of home energy demand and to help reduce the energy consumption
during peak period will make the communities’ more energy efficient. The Canada Green Building
Council is working towards finding ways of making buildings greener and community sustainable [9].
Therefore, the need for energy efficient buildings is growing rapidly.

The power systems require equilibrium between electricity generation and demand [10].
Power system operators dispatch generating units primarily based on operating cost or market
bid price. In order to meet the increased demand during peak period, more resources are often
required to increase the generation capacity. Since addition of resources to meet the peak demand
is an expensive investment, distribution system planners and utility engineers very often consider
the reduction in peak load as a feasible solution to the problem. However, peak load reduction is
mostly valuable for utilities and most popular only in a purely market-driven energy management
environment. Under these circumstances, Demand Response (DR) [11,12] offers an opportunity for
consumers to play a significant role in the operation of the electric grid by reducing or shifting their
electricity consumption during peak periods in response to time-based rates or other forms of financial
incentives. In most of the cases, DR is a voluntary program that compensates the consumers. There are
many modern methods that reduce the peak load and load at peak time which is referred as Demand
Side Management (DSM) [13]. Current market framework and lack of experience and understanding
of the nature of demand response are the most common challenges in DSM nowadays [13].

Newer technologies like energy management using smart meters are now becoming popular in
places like Ontario, Canada where few utilities have introduced energy tariff based on the Time-Of-Use
(TOU) model in which a consumer pays differently for the energy consumption at the different time
of the day. This has been possible due to the implementation of smart meters which track the energy
usage in a home on an hourly basis [14] and then consumption information is bundled into multiple
TOU price brackets. However, all these processes mostly help the local distribution company and in
order to take advantages of the TOU, each household has to adopt a change in the use of the appliances
which may cause significant discomfort to the consumers. In this scenario home appliance scheduling
with electrical energy services for residential consumers is useful.

Recent developments in the area of information and communication technologies have provided
an advanced technical foundation and reliable infrastructures for the smart house with a home energy
management system [15,16]. Development of low power, cost-efficient and high performance smart
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sensor technologies have provided us with the tools to build smart homes [17,18]. As a result, a service
platform can be implemented in a smart home to control the DR intelligently. This type of system
should also give the users enough flexibility to input their choices while deciding on control of
home devices [19] This makes the system more coherent, user friendly and scalable. In this paper,
a home energy management system named as Home Energy Management as a Service (HEMaaS) is
proposed which provides intelligent decisions, is interactive with the environment, scalable and
user friendly. Wi-Fi connected smart sensors with centralised decision-making mechanism can
identify peak load conditions and employ the automatic switching to divert or reduce power demand
during peak period, thereby reducing the energy consumption. While different hardware, software,
communication architectures have been proposed and compared by their power consumption,
performance, etc. [20–22], the cost of implementing the infrastructure like: hardware devices,
software framework, communication interfaces, etc. are still high enough that hinder the process of
implementing the smart home technology for ordinary users. Moreover, the hardware and software
architectures may not be able to handle the growing number of sensors and actuators with their
heterogeneity. Therefore, by implementing monitoring and controlling sections of the HEMaaS
platform using web services, one may achieve the agility, flexibility, scalability, and other features
required for a feasible and affordable HEMaaS platform.

In this paper, peak reduction DR problem is formulated based on an agent-learning framework.
Many authors have attempted to address this problem using multiple tools such as model predictive
control [23], particle swarm optimization [24], iterative dynamic programming-based [25] and
gradient-based methods [26]. However, these models are probabilistic and do not constitute learning
from interaction with the environment. Further, these models are mostly price based, where cost
saving instead of user preferences is a predominant factor. Some other solutions proposed in [27,28]
do consider Q-learning based agent interaction system, however they target only particular appliances
like air conditioners and LED lights.

In [29], authors have proposed a fully-automated energy management system based on the
classical Q-learning based Reinforcement Learning (RL). The modelling is delay based, where users
have a way of inputting their energy requests via time-scheduling and the agent learns gradually with
time to find the optimal solution. However, this approach has several limitations. The author assumes
mathematical disutility fuction and consumer initiated energy usage. Finding disutility function
for each home or residence is costly and difficult and too much user interaction is not desired for a
interoperable energy management system. Reference [30] focuses on applying a batch RL algorithm to
control a cluster of electric water heaters. A more relevant work is reported in [31], which proposes
device-based Markov Decision Process (MDP) models. It assumes that the user behaviour and grid
control signals are known. However, these assumptions are not realistic in practice as described in this
paper. This paper uses neural networks to learns this behaviour from historical data. In [32], authors
use a discrete-time MDP based framework to facilitate the use of adaptive strategies to control a
population of heterogenous thermostatically controlled loads to provide DR services to the power grid
using Q-learning. Again the application here is specific to load controlled by ambient temperature.

In this paper, authors have used a typical canadian residential apartment to investigate the
effectiveness of the proposed home energy management service. The main objective of HEMaaS is to
shift and curtail household appliance usages so the peak demand and total energy consumption can
be reduced. A new neural network based reinforcement learning algorithm has been proposed in this
paper to achieve the objectives. The classical Q-learning problem of the reinforcement learning
has been formulated as a neural fitted supervised learning problem here and is named Neural
Fitted Q-based Home Energy Management (NFQbHEM) algorithm. This paper designs a node-red
framework based user interface for controlling home appliance action based on NFQbHEM algorithm.
The reward matrix incorporates user convenience parameters for state-action transition and includes
user preference, power cost savings, robustness measure and user input preferences to initialize
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the algorithm. Peak demand reduction is of major goal of this paper maximizing user convenience.
In summary the contributions of the paper are as follows:

• User interface: Using a node-red development framework [33] (Node-RED is a web-based
programming tool for wiring together hardware devices, APIs and online services.) and message
queue telemetry protocol secure broker, a user interface has been designed. It incorporates
intelligent energy management capability and provides user input options. Temperature control
of appliances, operation rescheduling and On/Off commands are initiated through the interface.

• Peak demand reduction: Using the proposed HEMaaS methodology, a reward matrix is generated
for each peak reduction threshold. There are four peak reduction thresholds considered in this
paper: 5%, 10%, 15% and 20%. Based on the user convenience suitable load reduction decisions
are obtained.

• Fault tolerance and user privacy: Taking different random combinations of robustness measure,
it has been shown how the user convenience is affected when user privacy is compromised
and system has hardware fault. This part of the results is specific to this paper and not shown
anywhere in state-of-art literature.

• Energy saving and Carbon-footprint reduction: The energy savings and carbon emmission
reduction has been shown for a community of 85 houses over a year.

The paper uses several abbreviations, which are defined in Table 1. This paper is organized as
follows: Section 2 describes the HEMaaS platform and its architecture. Section 3 formulates the home
energy management problem as a markov problem and its possible solution strategy is described using
various modelling parameters. The NFQbHEM algorithm is explained in Section 4. The experimental
results are shown in Section 5 for different cases. Finally, the paper is concluded in Section 6 followed
by references.

Table 1. Nomenclature.

Abbreviations Expanded Form

IoT Internet of Things
DR Demand Response
DSM Demand side Management
TOU Time-of-Use
HEMaaS Home Energy Management as a Service
RL Reinforcement Learning
MDP Markov Decision Process
NFQbHEM Neural Fitted Q-based Home Energy Management
MCCU Main Command and Control Unit
CCM Community Cloud Management
NAT Network Address Translation
MQTT Message Queue Telemetry Transport
UI User Interface
NFQI Neural Fitted Q-Iteration
UIP User Input Preferences
R Reward Matrix
UC User Convenience
CIPK Carbon intensity per Kilo-Watt-hour
MWh Mega Watt-hour

2. Home Energy Management as a Service

Home energy management is a service platform for the users to efficiently perform demand side
management and control. It consists of home appliances connected through a grid of interconnected
network of devices with preference given to the user convenience. The platform may be used for
different types of community houses (condo and town homes) to manage their energy consumption.
The systems may be categorized into hardware and software architectures.
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2.1. The Hardware Architecture

A typical home consists of various appliances. These appliances establish a connection with the
user and provide them with the monitoring and controlling capabilities. They are to be monitored and
controlled locally or remotely by a HEMaaS platform using a Sonoff wireless switch [34] (The Sonoff
is a device that is to be put in series with the power lines allowing it to turn any device on and off
remotely. Its voltage range is 90–250 V and it can handle a max current of 10 A). Most of the common
home devices fall within the (current, voltage) range of Sonoff currently commercially available in
the market.

The architectural diagram is shown in Figure 1. It consists of a Main Command and Control Unit
(MCCU), Sonoff wireless switch, Smart meter, Gateway router and a Community Cloud Management
panel (CCM). The MCCU is the main intelligence of the network which is responsible for triggering
grid signals based on the output of the machine learning algorithms. It also has an input port which
monitors for user input signals and accordingly provides user input to the controller. Sonoff Switch
receives the trigger at its input port from the MCCU and turns the appliance Off/On accordingly. Smart
meter provides power consumption data to the power station for overall efficient community energy
management. Gateway router translates the MCCU messages using network address translation
(NAT) in order to translate from a private network address (like 192.168.x.x, 10.0.x.x) to a public
facing one. The smart meter and CCM are outside of gateway router and are separated by a secured
firewall. CCM is monitored by the city power substation. The substation according to its generation
and distribution has a set amount of available power for the community to use. CCM receives input
from the substation and sends those commands to the each home’s MCCU which in term updates its
power management strategy.

Figure 1. HEMaas hardware architecture of a typical Canadian condo.
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2.2. The Software Architecture and Communication Interface

The HEM MCCU needs to process the NFQbHEM algorithm integrating historical data as well
as the user input preferences. Thus a decision needs to be formed quickly. Moreover, the state-action
pair and user preferences change rapidly throughout the day and HEMaaS platform needs to provide
service in a timely manner. Therefore, in this paper a Linux-based fast microcontroller has been used,
namely Raspberry Pi3 [35]. Raspberry Pi3 runs the NFQbHEM algorithm using python programming
language and plots the charts with its matplot library. Figure 2 shows the software architecture and
communication framework of HEMaaS platform.

Figure 2. Software architecture and communication framework of HEMaaS platform.

The web-based node-red programming model have been choosen to implement the controlling
structure of the HEMaaS platform. It is easy to implement with a flow and is easily explandable if
more appliances join the network. The user input is modelled inside the flow with a switch. User input
manually can cause either a delay in the operation of the appliance or it will reset its temperature.
These settings can also be changed via the smart MCCU algorithmic decision. A lightweight, low-power
and secure protocol has been used in the paper to communicate between home appliances and the
MCCU over Wi-Fi. The protocol is called Message Queue Telemetry Transport (MQTT) [36] and it is
optimized for high-latency or unreliable networks. MQTT provides three level security for the data
over the network. It uses a broker to publish messages to clients who subscribe to a particular topic.
Topic are in the form of a hierarchy of devices in the home [Home/(Room)/(Device)/RaspberryPi
GPIO Pin]. Mosquitto [37] broker has been used in this architecture. Broker performs authentication
via username and password, client ID and X.2 certification to validate the clients in the HEM network.
Thus intrusion can be prevented. A dashboard user interface (UI) for desktop and mobile have been
designed to give users ample interaction opportunities. The design of the UI is described in detail in
the result section.

3. HEM as a Markov Decision Process and Its Solution

We formulate our HEM problem as a set of discrete states, where each state represents a binary
formulation of the power levels of home appliances. The MCCU issues command to switch these
power states. We model the power states as a Markov Decision Process (MDP) and derive its solution
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using reinforcement learning (RL) based Neural Fitted Q-Iteration (NFQI) algorithm. The reason for
choosing RL with neural network function classifier is based on the type of system being modeled
and its behavior. As per [38,39], the machine learning algorithms are divided into unsupervised and
supervised learning. For unlabeled data algorithms, such as k-means, gaussian mixture models
are applied to the data. However, as we have historical data [8] to be used for our modeling,
these algorithms will not be the best suited for our scenario. For labeled data training and fitting,
algorithms, such as regression, decision trees, support vector machines, naive Bayes classifier and
neural networks are used. As the HEMaaS system has user interaction and feedback from wireless
access point of the appliances, only using supervised learning algorithms to fit the data for maximum
accuracy/minimizing cost will be time and resource consuming. The algorithm has to interact with
the environment and objects, learn from their feedback and should update its goals accordingly.
Thus reinforcement learning (RL) [40], which starts from a particular state, learns from the environment
and update its goals is the best suited for our application. As the algorithm will pass through multiple
states in order to reach its optimum goal, a supervised classifier can be used in conjunction with the
RL algorithm. Neural network is slow, but classifies accurately in comparison to other supervised
learning methods [41]. Hence it is chosen as the modeler for our system.

MDP [42] is a set of discrete time stochastic control process where outcomes are obtained with
a combination of partly random events and partly by a decision making process. At each time step,
the MDP is modeled as a sequence of finite states si ∈ S, the agent action ai ∈ A that are evaluated
based on a random process to lead the agent to another state. For each action performed, the agent
receives an award R. As in [42], MDP is formulated as a set of four-tuple <S, A, P, R>, where P is
the state transition probability when agent moves from state (s(t)→s(t + 1)) ∈ S. From the current
state si(t) ∈ S to state sj(t) ∈ S in response to action a ∈ A, the transition probability is P(si, a, sj) and
an award R(si, a) is received. Let sk denote the state of the system just before the kth transition. In an
infinite horizon problem (s→ 1, ..., ∞), maximum average discounted reward received is found using
the action executed at each state using a reward policy π(s). RL [40] is a machine learning approach
that solves the MDP problem. It learns the policy online with real-time interaction with the dynamic
environment and adjusts the policy accordingly. After a certain set-up time, the optimal policy can
positively be found.

Q-learning is an online algorithm that performs reinforcement learning [43]. The algorithm
calculates the quality of a state-action pair which is denoted by Q and is initialized to zero at the
beginning of the learning phase. At each step of environment interaction, the agent observes the
environment and decides on an action to change state based on the current state of the system. The new
state gives the agent a reward which indicates the value of the state transition. The agent keeps a value
function Qπ(s(t), a(t)) according to an action performed which maximizes the long-term rewards.
The Q-factor update equation with discounted reward is as follows

Qt+1(s(t + 1), a(t)) = Qt(s(t), a(t)) + α(s(t), a(t))[R(t)+

γ ·MAX
(
Qt(s(t + 1), a(t))

)
−Qt(s(t), a(t))]

(1)

where, α(s(t), a(t)) is the learning rate (0 < α < 1) and γ is the discount factor within the range 0
and 1. If γ is close to 0, the agent chooses immediate rewards, else it will choose to explore and aim for
long-term rewards. In [43] it is proved that the learning rate α is a function of k, where k is the number
of state transitions. It satisfies the condition as

αk =
A

B + k
(2)

where, A and B need to be found out using simulations.
Online learning methods like Q-learning are good from a conceptual point of view and are

very successful when applied to problems with small, discrete state spaces. However, for more
realistic systems, the “exploration overhead”, stochastic approximation inefficiencies and stability
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issues cause the system to get stuck in sub-optimal policies. Updating the Q-value of state-action
pair (s(t), a(t)) in time step t this may influence the values (s(t− 1), a(t)) for all a ∈ A of a preceding
state st−1. However, this change will not back-propagate immediately to all the involved preceding
states. Batch Reinforcement Learning (BRL) typically address all three issues and come up with specific
solutions. It performs efficient use of collected historical data and yield better policies [44]. It consists
of three phases, which are exploration, learning and application. Exploration has an important impact
on the quality of the policies that can be learned. The distribution of transitions in the provided batch
must resemble the “true” transition probabilities of the system in order to allow the derivation of good
policies. For achieving this, training of samples is done from the system itself, by simply interacting
with it. When samples cover the state spaces closed to the goal state, policy achieved will be closed to
the optimal policy and convergence would be faster. NFQI algorithm is one of the popular algorithms
described in [45]. Given a set of transition samples over (s(t), a(t), R(t), s(t + 1)) and an initial Q-value
q0

s,a = 0, derive an initial approximation Q0 with Q0 = q0
s,a. Update the value of qk

s,a at each iteration.
Define a training set Tk and convert the update problem into a supervised neural network based
learning problem. Finally, find the resulting function approximator Q̂i using the pattern trained using
set Tk. At the end, a greedy policy is used to define the policy π(s).

π(s) = argmax
a∈A

Q(s, a) (3)

3.1. State-Action Modelling of Appliances

The software architecture of the homes in communities shown in Section 2.2 describes a typical
condo home architecture with living room, bedroom, kitchen and washroom. Each of the sections have
various common home appliances having varied peak load power rating as in Table 2 as taken from [46].
The states s(t) defined in the Algorithm 1 are different combinations of power levels derived from the
peak power rating of the appliances. Apart from refrigerator all other appliances can be turned On/Off
in a smart home as the refrigerator needs to continuously run throughout the day and should not be
stopped. Usage pattern of all other appliances vary throughout the day and can be controlled through
the MCCU. Therefore, in total there are 10 appliances and a 2n − 1 transition states depicting various
combination of power levels (n = 9) which results in 511 states. Lets depict each appliance in ascending
order of their peak power level from Table 2 with level “pl”. Thus Lighting will be symbolized by p1

and WasherDryer by p9. The power values are coded as binary states i.e., 0 represents the Off state and
1 represents On state. For example, 001001010 means Microwave, Heater-2 (Bedroom) and Stove are in
On state and rest all are in Off condition. The total power consumed at that instant t is 7600 Watts if
every On appliance is operating at peak load.

Table 2. Maximum Load Rating of Home Appliances.

Appliances Peak Power Rating [Watts]

Heater-1 (Living Room) 2500
Heater-2 (Bedroom) 2000
Heater-3 (Kitchen) 1500
Iron Center 1000
Microwave 1100
Dishwasher 1300
Lighting 600
Stove 5000
Washer Dryer 5500
Refrigerator 150
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Algorithm 1: Reward Matrix (R) Computation Algorithm

Initialize : n, R(s, a) = Zeros(2n − 1)
Initialize : Threshold Power (Th)
Load : Actual power consumption curve

1 while (s, a) ! = (2n − 1) do
2 R(s, a)←−1; (State Transition Not possible)
3 if cumulative power ≤ Th (Goal State) then
4 R(s, a)←0; (Turning Off an Appliance)
5 R(s, a)←1; (transition to the same state)
6 else
7 R(s, a)←0; (transition to the same state)
8 R(s, a)←UC(t); (Otherwise)
9 end

10 end
11 {

function UC(C1, C2, C3, Pa, Ca, Sa)
if Goal reached without turning Off appliance then

UC(t)← 1
end
if Goal reached after turning Off appliance then

UC(t)← 1−UIC(t)
end
if Goal not reached after turning Off appliance then

UC(t)← 1−UIC(t)− 0.2
end
if Goal reached but resulting power level ≤ 0.6·Th then

UC(t)← 1−UIC(t)− 0.1
end
UC(t)←0

return UC(t)
}

There are four different actions that can be performed based on the states. Turning the
appliance Off, turning it On, pausing the operation and postponing the operation. For the case
of simplicity, turning the appliance Off is considered to be a required action. Also pausing and
postponing the operation of the appliance can be selected for the symbolic Off state through the
MCCU control based on the situation. The representation remains the same but power level changes.
Moreover, we also define User Input Preferences (UIP) as a user input control which changes the
decision of the MCCU controller algorithm as desired by the user at a certain time interval. After the
scheduling task is over, the control is shifted back to MCCU algorithm. Agent can move from one state
to another state after performing an action. The user inconvenience is modeled in the reward matrix
and the goal of the strategy is to minimize the user inconvenience.

3.2. User Convenience and Reward Matrix

In this section, user convenience UC(t) is modeled at a time instant t and the goal is to maximize
the UC(t). The reward values for turning off an appliance is based on the user inconvenience.
The parameters taken to model UC(t) are user preference (Pa(t)) of the appliances, power consumption
energy cost saving (Ca(t)), and robustness (Sa(t)). Maximum inconvenience is caused by turning off
an user preffered appliance at a given time. The time slot is discretized for every 15 min regarding the
preferences and is divided into four times of the day i.e., Morning (MR), Afternoon (AF), Evening (EV)
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and Night (NT). Table 3 depicts the (Pa(t)) values of the appliances for different times of the day and
the preferences are set according to a typical winter usage in Canada.

Table 3. User Preference of Appliances (Pa).

Appliances Morning (MR) Afternoon (AF) Evening (EV) Night (NT)

Heater-1 (Living Room) 1 0.3 1 0.3
Heater-2 (Bedroom) 1 0.3 0.4 1
Heater-3 (Kitchen) 0.6 0.3 0.7 0.1
Iron Center 0.6 0.1 0.1 0.1
Microwave 1 0.1 0.8 0.1
Dishwasher 0.5 1 0.3 0.7
Lighting 0.4 0.1 0.7 0.1
Stove 0.7 0.1 1 0.1
Washer Dryer 0.6 0.6 0.3 0.5

User inconvenience UIC(t) due to turning off an appliance with preference represented by Table 3
will become

UIC(t) = C1 · Pa(t) (4)

C1 is a constant and is set to 1 to give user preference maximum importance while choosing the
agent action. As appliances are turned off, energy savings in terms of the cost is achieved. So turning
Off the maximum power consuming appliance at a given time t will give the maximum convenience
to the users in terms of cost savings. Rest all appliances’ energy cost is normalized w.r.t the maximum
power load of the maximum power consuming appliance at t. User inconvenience UIC(t) due to
turning off an appliance is also dependent on the cost saving (Ca(t)).

UIC(t) = C2 · (1− Ca(t)) (5)

The more the cost saving, the lesser the user inconvenience. However, cost cannot be saved
sacrificing preference comfort for users. Hence, constant C2 will have lower contribution to the UIC(t).
We take C2 as 0.5 here for our case. Emergency (Ea(t)) gives users options for choosing to start an
appliance regardless of the time of the day, power consumed and preference control. When the user
chooses to run an appliance, it becomes a do not care condition in the state for that instant t. Hence the
number of state-action pair for the reward matrix decreases. The appliance power is subtracted from
the goal usage power.

Section 2.2 describes how MQTT handles broker security with Password Authentication, Client ID
Authentication, SSL/TLS Certification and firewalls. Robustness of a system shows how it is immune
to security threats and fault tolerant. Less robust system also creates inconvenience to the users.
Robustness of the system is modelled behaviourly has been categorized as {Good, Medium and Bad}.
For each behaviour of the system a constant C3 value have been assigned to the UIC(t) function as

UIC(t) = C3 · Sa(t)

C3 =


0.2, Good
0.3, Medium
0.5, Bad

(6)

The user experiences more inconvenience for a Bad system as compared to a Good system in terms
of their robustness measure. User convenience UC(t) is calculated from Equations (4)–(6) as

UC(t) = 1−
{

C1Pa(t) + C2 (1− Ca(t)) + C3Sa(t)
3

}
(7)
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Reward matrix (R) is based on the user convenience values for each appliance using Algorithm 1.
Size of the reward matrix depends on the number of appliances and the number of power levels the
house agent can occupy. The size of the reward matrix for this problem is 255× 255. Power level
zero is not taken into consideration as it is impossible for the power to reduce to zero level in a home
throughout the day. Algorithm 1 depicts the steps to formulate the reward matrix and is true for any
number of state transitions. According to required threshold power (Th) to be achieved, reward matrix
R(s, a) is computed as per Algorithm 1. Th is the goal state where the optimization of power stops.
The goal state may be reached with or without turning off an appliance. According to the power
level where the goal state is reached, user convenience value is penalized. The most penalty is for
goal state not being reached even after turning off an appliance. The penalties are 0.1 at goal state
power less than or at 60% of threshold power and 0.2 for goal not being reached even after turning off
an appliance.

4. NFQbHEM

The proposed Neural Fitted Q-based Home Energy Management (NFQbHEM) algorithm is
described in this section. The algorithm is based on the RL-based NFQI method as in Section 3.
The algorithm works in three phases: exploration, training and application. In the exploration phase,
NFQbHEM captures the historical demand data based on different seasons [46]. Winter month data
has been chosen in our application. The algorithm is defined in Algorithm 2 and the steps are listed
as follows:

Algorithm 2: NFQbHEM Algorithm

Input : Define Q0 = q0
s,a = 0, sk = Th

Output : π(s)
1 ITER←200
2 Tk←empty set
3 θ←randomweight
4 while (||Q(s + 1, a)−Q(s, a)|| < 10−4) do

5 qi
s,a = r(t) + γ·MAX Qi−1

(s(t + 1), a(t)) ;
6 for 1:ITER do
7 Tk←Tk−1∪(s, a; qi+1

s,a );

8 δ←Q̂(s(t + 1), a(t))−Qi
(s(t + 1), a(t));

9 φk(s, a)←exp
−
||s− sk||2

2 ∗ σ2
k ;

10 θ←θ+αδφ(s, a);
11 end

12 P(s, a)← eExplorationCount · age ·Q(s, a)
Σ(eExplorationCount · age ·Q(s, a))

13 end
14 return π(s)

Exploration Phase:

Step 0 (Inputs): Set the Q-factors to some arbitrary values (e.g., 0).
Step 1: For each state s, the set of admissible actions, a is defined, and an action a ∈ A is chosen
randomly and applied. After applying a(t) in s(t), the next state s(t + 1) is reached and the immediate
reward r(t) from Algorithm 1 is calculated.
Step 2: The set of (s(t), a(t), R(t), s(t + 1)) is inserted from the environment as a new sample F.
Repeating the process, sufficient samples are found to train the algorithm.
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Training Phase:

Step 1: The training initializes Q0 = q0
s,a = 0, and tries to find a function approximator Q̂i.

Step 2: Similar to the Q-update process, append a corresponding pattern set Tk to the set (s, a; qi+1
s,a ).

Step 3: As our historical data is a curve fitting problem, Radial Basis Function Neural Network
(RBFNN) [47] is chosen to approximate the function Q(s, a).
Step 4: The feature function φ: S x A maps each state-action pair to a vector of feature values.
Step 5: θ is the weight vector specifying the contribution of each feature across all state-action pairs.
The weight is updated at each iteration. The training is done for 200 iterations in our case.

Execution Phase:

Step 1: Current data determine the state of the system.
Step 2: A greedy policy is used to find the policy π(s) as in Equation (3).
Step 3: Later in learning with more episodes, exploitation makes more sense because, with experience,
the agent can be more confident about what it knows.
Step 4: Stopping criterian with absolute error

||Q(s + 1, a)−Q(s, a)|| < 10−4.

5. Experimental Results

This section describes the simulated results of HEMaaS platform with the NFQbHEM algorithm
to control 10 appliances in a sample condo home in a smart community. Due to the experimental
nature of the setup and results, the results have been presented in the context of the sample condo
home. Comparison with other architectures in literature have not been drawn as the method described
here is unique to the setup and it would be unfair to compare algorithms with different setup. Due to
hardware complexity, it is very hard to implement other algorithms for the setup explained in this
work. As explained in the software architecture and communication interface in Section 2.2, the MCCU
consists of a Raspberry-Pi3 deploying a node-red platform. MQTT (Mosquitto) is used as the broker
between the MCCU publisher and subscribing home appliances. Custom python code with the
NFQbHEM algorithm deployed on it runs on the Raspberry-Pi3 to control the home appliances’
Delay/Pause/On/Off operation via sonoff wi-fi switches through a MQTT gateway. The node-red
dashboard interface designed in this work offers an easy and convenient user interface (UI) for a
homeowner to interact with the HEMaaS system. Figures 3 and 4 illustrates our user interface (UI)
flow design and dashboard control respectively. The UI shows the node-RED flow of the different
appliances as connected to the MCCU. Each appliance is controlled through a GPIO pin and follows
the Home/(Room)/(Device)/Pin hierarchy. The proposed UI also offers several visualization features
to a user. They can have access to real-time and historical appliance usage information with graphs
via the sonoff accumulated data information of real time power usage. User Input preferences (UIP)
can be set via the dashboard. The different options which are available include setting a temperature
for Heater-1, Heater-2, Heater-3 and washer-dryer, rescheduling washer-dryer operation and starting
necessary appliances immediately bypassing the automated control for a particular duration. The UI
is also accessible from anywhere in the world via the smart-phone app. If for any reason there is a
communication failure, the local settings of the appliances will take precedence.

Matplot library of python gives us the tool to analyse the power demand data for different cases.
Two different cases have been discussed here for analyzing and plotting our results.

Case I: A sample day’s total power consumption data is compared with different peak power
reduction of 5%, 10%, 15% and 20% of the total peak demand. The user convenience is also shown as
a comparison.
Case II: The user convenience in terms of random (Good, medium and bad) behavior of the system is
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analyzed in this case.

For the Case I above, the energy in KWh savings and reduction in carbon-footprint for a
community consisting of 85 condos of our typical architecture as in Section 2.1 is also plotted.

Figure 3. User interface design.

Figure 4. HEM Interface.
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5.1. Case I

In this section, the actual power consumption plot is generated using 10 smart appliances.
The plot in Figure 5 shows the peak demand in watts versus time of the day. The interval of time
duration is 15 min. Starting with initial Q(s, a), the HEMaaS platform has to learn to find the optimal
path when peak demand power during a certain interval exceeds the available power. The available
power is taken as a percentage reduction of the peak power. 5%, 10%, 15% and 20% are taken as the
peak reduction percentages to test and validate our methodology. Algorithm 2 has been initialized with
starting parameters of learning α = 0.5, discount γ = 0.8, A and B as 90 and 100 respectively. The center
state sk is taken as the median power consumed at a particular interval. The peak power is 6300 watts
and Algorithm 1 depicts the reward matrix initial computation. The total energy consumption historical
data of a typical condo has been taken from national resources canada [48] for a typical winter month
in canadian ontario province. The feature function φ is derived from approximating the curve of the
historical data and is used to train the weight vector θ. When the total power consumption is greater
than the peak power power reduction, it selects actions (randomly) and moves from current state to a
new state, receives reward and then it starts issuing control signals (Delay/Pause/On/O f f ) to other
appliances until one of the goal states is reached.

Figure 5. Plot of the total demand versus time during a typical Canadian winter month in Ontario.

Figure 6 depicts the learning process of the NFQbHEM algorithm. The graph is plotted between
number of episodes algorithm running for look-up table based Q-learning and the neural network
Q-learning-based NFQbHEM algorithm. The proposed algorithm learns faster and reaches a stable
value in only about 570 episodes as compared to look-up only based Q-learning. The algorithm
is stopped at 570 episodes as the error achieved is 10−5. Thus neural network modeler helps the
Q-learning achieve its goal state faster. Figure 7 shows the total demand versus time for different
peak reduction percentages. Once the optimal policy is found, the MCCU will execute the sequence
of rules (turning off appliances, rescheduling their timing of operation and temperature control
one by one) until the goal state with maximum user convenience is reached. At the optimal policy,
MCCU determines when the power goes above the desired reduction, it modifies its power as in
Figure 7. Table 4 shows the appropriate actions taken by the MCCU unit at varied time intervals for
different appliances.
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Figure 6. Plot of sample episodic run NFQbHEM learning process.

Figure 7. Plot of the total demand versus time for different peak reduction percentages.
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Table 4. Actions Taken by MCCU.

Time Required
Load Reduction Required Action

5% Reduction Threshold

10:15–10:30 a.m. 400 W Turn off the Heater-1 and Heater-3

10% Reduction Threshold

10:15–10:30 a.m. 650 W Turn off the Heater-1, Heater-2 and Heater-3

6:00–6:15 p.m. 600 W Reduce the temp. setting of Heater-1

15% Reduction Threshold

6:00–6:15 a.m. 500 W Reduce the temp. setting of Heater-1 and Heater-2

10:00–10:15 a.m. 1500 W
The temperature setting of the washer-dryer may be
changed to reduce the power demand or washer-dryer
operation may be rescheduled to another time.

10:15–10:30 a.m. 1500 W
The temperature setting of the washer-dryer may
be changed to reduce the power demand or washer-dryer
operation may be rescheduled to another time.

5:00–5:15 p.m. 250 W Turn off the Heater-1

5:15–5:30 p.m. 300 W Turn off the Heater-2

6:00–6:15 p.m. 600 W Reduce the temp. setting of Heater-1

20% Reduction Threshold

6:00–6:15 a.m. 500 W Reduce the temp. setting of Heater-1 and Heter-2

6:30–6:45 a.m. 500 W Turn off the Heater-2

10:00–10:15 a.m. 1500 W
The temperature setting of the washer-dryer may
be changed to reduce the power demand or washer-dryer
operation may be rescheduled to another time.

10:15–10:30 a.m. 1500 W
The temperature setting of the washer-dryer may be
changed to reduce the power demand or washer-dryer
operation may be rescheduled to another time.

11:15–11:30 a.m. 150 W Refrigerator Turned Off

4:45–5:00 p.m. 150 W Turn off the Refrigerator

5:15–5:30 p.m. 500 W Turn off the Heater-3

5:30–5:45 p.m. 800 W Turn off the Heater-2 and Heater-3

6:00–6:30 p.m. 600 W Reduce the temp. setting of Heater-1

The user convenience (UC), is shown in Figure 8 for the four peak reduction threshold values.
It can be inferred from the figures that the UC decreases with the increase in the threshold for power
saving. Some of the peak load consumption which lies during the afternoon and evening time slots are
affected severely. One suggestion of improvement in the user convenience could be having a variable
thresholds for the NFQbHEM algorithm. Therefore the times of day having maximum user utility
power consumption, the available power threshold can be increased and can be compensated with a
lower available power threshold during other Off peak times while maintaining the overall average
power threshold at the same level. If the user convenience level can be maintained more than 70%
for most times of the day, then the HEMaaS system can be successful in delivering a coherent and
inter-operable platform.

In this section, the behavioral modeling of the system is considered in terms its robustness.
Robustness measure evaluates a systems quality in terms of security and fault tolerance. To simulate
this behavior in the system, the UC(t) from Equation (6) has been chosen with randomly assigning
measure of robustness C3 at different time intervals. The power level of peak reduction at 15% is taken
as the threshold. Figure 9 depicts the UC w.r.t the time of the day and is compared for two different
situations. The first situation has (20% Good, 60% Medium and 20% Bad) robustness measure and the
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second situation has (10% Good, 40% Medium and 50% Bad) robustness measure respectively. The user
convenience is severely affected for both cases specifically in the second situation, due to presence of
more faulty/malicious channel. Thus security and fault tolerance is shown to have significant effect to
the users. Once the UC goes below 50%, the system is considered to be a very poorly managed system
where users are forced to save energy sacrificing their comfort, which is highly undesirable.

Figure 8. Plot of the user convenience (uc) versus time.

Figure 9. Plot of the user convenience (uc) versus time for (20% Good, 60% Medium and 20% Bad) and
(10% Good, 40% Medium and 50% Bad) robustness measure.

5.2. Case II

The carbon intensity per KWh (CIPK) is a fundamental measure of a sustainable society.
The lesser the CIPK, the better the society in terms of its environment and livability index. The energy
savings that are obtained from results in Section 5.1 can be seen as potential price saving for the
community as well as a means of reducing the CO2 gas emissions. As Canada is progressing towards a
sustainable green building infrastructure, it is a healthy sacrifice to have some inconvenience to achieve
the greater benefit of having a greener environment in terms of achieving lesser carbon emissions.
From [48], the Ontario province’s CIPK is obtained as 125 gr − CO2 per KWh. Using the CIPK,
the energy savings and carbon emission savings have been computed for a community consisting of
85 condos. Figure 10 shows the energy savings in Mega-Watt-hour (MWh) per year. It also shows the
carbon-footprint savings in Kg− CO2 per year. The improvement is nearly 14 times from 5% to 15%
peak power reduction, which is quite substantial.
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(a)

(b)

Figure 10. Comparison of peak reduction energy savings and carbon-footprint reductions. (a) Energy
savings with peak demand reduction; (b) Plot of carbon-footprint reduction.

6. Conclusions

Energy management in smart cities is an indispensable challenge to address due to rapid
urbanization. In this paper, we first present an overview of energy management in smart homes
to build a green and sustainable smart city, and then present a unifying framework for IoT in building
green smart homes. To achieve our goal, a neural network based Q-learning algorithm is proposed to
reduce the peak load demand of a typical Canadian home while minimizing the user inconvenience
and enhancing the robustness of the system. The user convenience level for 5% and 10% load reduction
is maintained at and above 80%. Whereas other levels of peak power reduction causes more discomfort
for the users. While Canada Green Building Council is working towards finding ways of making
buildings greener and community sustainable, a novel method has been applied for finding suitable
strategies for efficient management of home energy demand and reducing the energy consumption
during peak period in a typical Canadian Condo. In a purely market-driven energy management
environment, peak-reduction is mostly valuable for utilities. In order to make the demand side
management more user friendly and consumer centric, a reward matrix-based self-learning algorithm
has been applied. The energy savings and carbon-footprint reduction is also shown to be quite
significant. In future, it has been planned to incorporate real time scheduling into the system to
schedule and pause appliance operation. Moreover, it is also proposed to design a system that learns
from feedback smart sensors in the environment to ease the MCCU decision making and reduce user
input, yet still maintaining a high enough user convenience.
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