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Abstract: A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical
experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth
magnet, and user built application-specific wideband signal conditioning. The magnetoresistive
sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated
by differential motion or rotation of the near-by magnet, through the sensor. The performance
of an array of these sensors compares favorably to other conventional position sensing methods
employed at multiple locations along a 2 m long x 0.4 m deep laboratory strike-slip fault. For these
magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type
position sensor mounting, the wide band response (DC to ~ 100 kHz) that exceeds the capabilities
of many traditional position sensors, and the small space required on the sample, make them
attractive options for capturing high speed fault slip measurements in these laboratory experiments.
An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency
electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer
new insights into the physics of earthquake faulting.
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1. Introduction

Many laboratory rock friction experiments have previously focused on steady-state or quasi-static
fault motions, related to testing empirical rate- and state-dependent friction constitutive laws [1-9]
which are widely used to model a variety of earthquake processes. A critical part of laboratory
rock friction experiments such as these, is the ability to make detailed and accurate measurements
of the fault slip. A variety of position sensing technologies have been employed in laboratory
experiments to measure fault slip, including, but not limited to; linear-variable differential transformers
(LVDT and DCDT), magnetostriction devices, eddy currents, linear capacitors, foil strain gages, and
optical methods. All of these technologies can offer excellent accuracy and resolution performance.
Each technology offers advantages and disadvantages with respect to the measurement range,
bandwidth, ease of use, signal conditioning requirements, and cost. Experimental conditions also
impact sensor selection and performance with respect to mounting and space constraints, line of sight
access for optical sensors, and sensitivity to temperature, shock, and vibration.

In steady-state velocity experiments, the shock and vibrations related to stick-slip fault motion
are largely absent, and the frequency content of position signals is generally very low, DC to several
Hz. In this frequency range, investigators have wide latitude in the selection and mounting of
position sensors, as well as in the selection of signal conditioning. While all the previously mentioned
methods of measuring fault slip can be used to document total stick-slip fault motion, measurements
of the dynamic higher frequency aspects of stick-slip fault motion present challenges to all of these
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technologies. For example; sensor and signal conditioning bandwidth limitations, limited space near
the fault restricting sensor deployment, and shock induced resonance of sensor mounts can degrade
position measurements and obscure short period details of the actual fault motion.

In recent years, there has been renewed and increased interest in investigations of the dynamic
aspects of fault motion related to earthquakes [10-19]. Laboratory friction experiments have been
employed for many years to study a wide variety of dynamic earthquake processes. The long-standing
hypothesis is that laboratory stick-slip friction experiments are essentially earthquake analogs, and
have been thoughtfully examined by others, e.g., [11]. Examples of recent investigations into the
dynamic motion of laboratory faults include work by Lockner et al. [18] who performed triaxial
stick-slip experiments using 25.4 mm diameter X 63.5 mm long cylinder samples of Westerly granite
with a saw cut fault that show fault slip rates approaching 20 m/s, and estimates of event durations
as short as 70 microseconds. Passelegue et al. [17] also performed triaxial stick-slip experiments
using 40 mm diameter x 80 mm long cylinders of Westerly granite with a saw cut fault and report
fault slip rates approaching 10 m/s, and event durations measured in 10’s to 100’s of microseconds.
Ohnaka et al. [20] previously investigated stick-slip fault motions using 28 cm x 28 cm x 5 and 10 cm
thick saw cut samples of Tsukuba granite, and reported peak accelerations measured in 100,000’s m/s?,
and fault slip velocities approaching 1 m/s. As interest in laboratory stick-slip experiments continues,
fault slip sensors used in such tests will need to be rugged wideband instruments in order to accurately
resolve the details of rapid dynamic fault motions.

A new method to make accurate and detailed wideband measurements of dynamic fault
slip employs a small magnetoresistive sensor, a small but powerful magnet, and custom wide
bandwidth signal conditioning electronics. The sensors components are directly attached to the
rock samples, eliminating the need for a conventional cantilever type sensor mount. The inability
to reposition the sensor or the magnet as fault slip accumulates is accommodated by custom signal
conditioning electronics which keep the sensor output on-scale as the experiments are performed
and slip accumulates. The analog output of the sensor is sinusoidal, but becomes nearly linear if
an appropriate interval of the sensing range is chosen, as in these tests. A calibration technique is
presented that converts measured voltage to fault displacement, while maintaining an acceptable level
of error. Data generated by the magnetic position sensor in response to stick-slip fault motion along a
2 mlong x 0.4 m deep fault are compared to data simultaneously collected by two laser vibrometers
measuring the velocity and position (time-integrated velocity) of the sensor and magnet, and other
nearby position and strain sensors to demonstrate the capabilities, and sensitivity of this position
measuring method.

An unanticipated observation of this study is the apparent sensitivity of this sensor to
electromagnetic (EM) signals generated during dynamic stick-slip along the 2-m fault used in these tests.
While clear EM signals have long been observed nearby, and at the time of many large earthquakes
and volcanic eruptions apparently related to crustal stress release, no unambiguous observations
of EM precursor behavior in the epicentral region have been observed [21-24]. Some associations
of global EM disturbances in the ionosphere and magnetosphere prior to large earthquakes have
been made [25], but these observations appear to result from inadequate correction of normal EM
disturbances and selective use of data only prior to these earthquakes [26-35]. In addition to field
studies, numerous laboratory investigations have documented EM emissions related to the fracture of
rock samples [36—46]. A smaller number of laboratory investigations have investigated EM emissions
related to rock friction and stick-slip fault motions, generally using relatively small samples and single
point measurements of EM radiation [47-51]. No experiments appear to have used an array of sensors
along a sufficiently long fault to observe EM emissions related to propagating fault rupture processes,
as this report documents. Nevertheless, the search for the physics behind EM emissions related to
earthquakes and volcanic processes remains the subject of debate [52].

Various physical mechanisms have been identified as contributing to the generation of earthquake
and volcanic related EM emissions. These include piezomagnetic effects, electrokinetic effects, induced
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EM signals from seismic wave motion, triboelectric effects and other charge generation processes [22].
Piezomagnetism is the property of some ferro-crystalline materials where induced and remnant
magnetism changes with applied stress. Electrokinetic effect can result from tectonic stress induced
flow of conductive fluids through porous, permeable and conductive rock mass [53]. EM signals can
also be generated by motion of the earth’s crust within the dynamic and static geomagnetic field,
caused by crustal loading and/or seismic waves [54]. EM effects can be both fast and slow since
movement of the crust can occur fast (earthquakes) and slowly (tectonic loading). Triboelectric effects
result from charge separation during microcracking and rock shearing around the rupture surface [23].
Regardless of the origin of the signals detected in this report, which are not known, the study of the
origin and quantification of suspected EM signals observed in these tests requires equipment and
techniques beyond the scope of this report. Accordingly, the discussion of the physical origin of EM
signals observed here will be the subject of further investigation.

2. Materials and Methods

This measurement technique relies on the Honeywell HMC1501 [55-57], a high resolution
anisotropic magnetoresistive linear, angular, and rotary displacement sensor in a Small Outline
Integrated Circuit (SOIC) surface-mount package, referred hence forth as the AMR sensor.
Magnetoresistance is a property of some ferrous materials where electrical resistance varies as
a function of the strength of an applied magnetic field. Anisotropic magnetoresistance (AM) is
a property of some magnetoresistive materials, where the electrical resistance of the material varies as
a function of both the strength and direction of an externally applied magnetic field, as well as the
path of current flow through that material [58-61]. The magnitude of the change in electrical resistance
of Permalloy, the AM material used in these AMR sensors, in response to changes in the orientation
of an applied magnetic field, is as much as 2 to 3 percent at room temperature. For comparison,
a standard 350-ohm foil strain gage with a gage factor of 2, subject to 1000 micro-strain of shortening
or elongation, will change the resistance of that gage by only about 0.2 percent. A sufficiently
strong, or ‘saturating’ magnetic field maximizes the AM effect in magnetoresistive materials while
simultaneously minimizing any effects of stray external magnetic fields. Once the magnitude of the
applied magnetic field exceeds the saturation threshold of the AM material, and the path of current
flow through the AM material is fixed, the electrical resistance of that AM material then should only
vary with the direction of the applied magnetic field, which is the principle behind the functionality of
this AMR sensor.

This AMR sensor is considered ‘saturated’ if used in a magnetic field with a strength equal or
greater than 80 oersteds (approximately 80 gauss) [57]. For reference, the intensity of the Earth’s
magnetic field, F, in Menlo Park, CA is approximately 50,000 nT or 0.5 Gauss [62]. A small rare-earth
neodymium magnet with a nominal surface field strength of 5876 Gauss, item number B824 from
K&] Magnetics, Inc. (Pipersville, PA, USA) [63], was identified as one of many suitable magnets for
use with the AMR sensor for these tests. The strength of the magnetic field around the AMR sensor,
with a 5-mm gap between the magnet and the sensor, as deployed in these tests, was found to exceed
80 Gauss using a model GM1-ST DC Gauss meter from AlphaLab Inc. (Salt Lake City, UT, USA) [64].

Identifying magnets with sufficient field strength to ‘saturate’ the AMR sensor is a straight
forward process. Identifying the shape of the magnetic flux planes that emanate from a magnet, and
evaluating the geometry of how the sensor will cut through those flux planes during anticipated slip
motion is a more complex process and must be considered when selecting a magnet to pair with the
sensor. The AMR sensing bridge is a two-dimensional structure, while magnetic field flux can vary
in three-dimensions. One method to identify the orientation of the flux planes of a target magnet
to aid in the positioning and planned motion of the sensor and its target magnet is to use a 3-axis
(X-Y-Z) linear translation stage to precisely move the AMR sensor and magnet relative to each other,
generate contour plots of equal signal output from the AMR sensor, and map the flux planes of the
target magnet. The AMR sensor generates the largest change in the analog signal output when it and
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its magnet are positioned such that the relative motion between the sensor and the magnet causes the
greatest number of magnetic field lines to orthogonally cross the sensing element of the AMR sensor.
Careful consideration must be given to how undesirable or unexpected motions of either the sensor
or the magnet may influence the signal output of the sensor. The AMR sensor has a continuously
varying analog voltage output and is capable of resolving angles between planes of magnetic flux
as small as 0.07 degrees. The signal to noise of the signal conditioning used in these tests impacts
sensor resolution as well. As deployed in these tests, with a 5-mm gap between the sensor and a
laterally moving magnet, 0.07 degrees of angular resolution translates into a fault slip resolution of
approximately 6 microns. For these tests sensor response was examined for both the anticipated fault
parallel /horizontal fault slip motion to develop calibration curves for the slip displacement data,
as well as for possible differential vertical fault motions, to determine the transverse sensitivity of the
AMR sensor.

To facilitate the use of the AMR sensor, the SOIC chip was first attached to a small (19 mm x
13 mm x 1.6 mm) piece of solid epoxy glass composite prototyping board (no copper cladding or
pre-drilled holes) using a slightly viscous cyanoacrylate adhesive (Loctite 454). The prototype board is
a rigid inert (electrically non-conductive, and non-magnetic) platform for the SOIC chip, and greatly
facilitates the subsequent handling, wiring, and installation of the sensor assembly. Shielded twisted
pair wiring is used to make the power-in and signal-out connections with the sensor. A top coat of
two-part epoxy is used to encapsulate and firmly secure the SOIC chip and the attached lead wires
to the prototype board. The result is a low profile, rugged, easy to handle sensor assembly. When
deployed, the magnet and sensor assembly are bonded directly to the test samples using the same
cyanoacrylate adhesive, eliminating the need for additional sensor mounting fixtures (Figure 1).
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Figure 1. Diagram, left, and photo, right, of the Honeywell HMC1501 magnetoresistive position sensor
used in this study. The red, black, and uninsulated wires in the photo are under a cover of clear epoxy.
The gray vertical strip partially covering the left most red wire in the photo is retroreflective tape which
is the target material for the laser vibrometers to determine the velocity of the sensor. Another piece of
retroreflective tape, not seen, is on the right side of the magnet.

Since the sensor components are permanently attached to the samples and not physically
adjustable, the signal conditioning circuit needs to electronically compensate for continuously
accumulating fault slip over many stick-slip events that would otherwise cause the sensors amplified
signal output to shift off scale. Sufficient amplification of the sensor signal is also required so details
of quasi-static and dynamic sensor motion are resolvable. The signal conditioning electronics are
comprised of a reference voltage source to provide a stable excitation voltage to the sensor, a two-stage
amplifier with a user adjustable output offset between the two amplifier stages, and low-pass active
filters for the signal outputs as needed. For details regarding the signal conditioning for the AMR
sensor as used in this study, see the Appendix A in this article.
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The analog signal output of the AMR sensor, responding to relative motion of the sensor and a
magnet, is approximately sinusoidal, Figure 2. However, within a limited range of motion, a significant
portion of the sensor output is approximately linear, and exploited to measure fault slip in these tests.
The desktop calibration of the sensor was performed using a precision linear translation stage(s) paired
with manual micrometer head with 20 micron graduations and 1 micron of sensitivity. The sensor
and magnet were attached to the calibration stand using plastic mounts to maintain a minimum
gap of about 4 cm between the sensor/magnet and any metal to minimize any unwanted magnetic
interactions. The 5-mm gap separating, and the relative motion of the sensor and magnet in the
calibration stand, are both exactly as they are deployed on the sample blocks. Calibration data were
collected from the signal output of the first (lower gain) stage of the signal conditioning circuit at
100 micron intervals. Representative calibration data with a quadratic curve fit are shown in Figure 3.
For additional details regarding the calibration of this sensor, see the Appendix A in this article.
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Figure 2. Example of the amplified output of the AMR sensor demonstrating its approximately
sinusoidal output over an extended range of linear motion. The output of the AMR sensor is nearly
linear over a more limited range of linear motion, which is exploited in these tests.

Determining a static position calibration for a position sensor is a straight forward procedure.
Directly determining the frequency dependent response of a position sensor over a range of frequencies
likely to be encountered during dynamic stick-slip motion poses more difficulties. The problem is the
lack of a vibration source, calibrated or not, that can vibrate a sensor or sensor target, at frequencies
from Hz to several 10’s of kHz, with motion of sufficient amplitude that the sensor can accurately
resolve. Portable commercial reference shakers typically operate at 1000 rads/s (159.2 Hz) with
10 microns (rms) of motion, though some reference shakers have peak frequencies as high as 1 kHz
to 10 kHz. Costlier laboratory benchtop piezo vibrators can generate vibrations at frequencies of
several 10’s of kHz. However, as the frequency of the vibration increases from Hz to 10’s of kHz,
the amplitude of the motion of the reference shaker necessarily decreases from microns to nanometers.
The limited range of motion of high frequency reference shakers is likely at or below the resolution
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or noise threshold of most position sensors, thus preventing their use in any sort of meaningful
calibration procedure. In these tests, spectral analysis of the sensor signals is used to evaluate their
frequency response.
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Figure 3. Example of desktop linear calibration data used in these tests showing the nearly linear
output of the AMR sensor in response to nearly 10 mm of simulated fault motion. A quadratic curve
fit, along with the residuals for; a line fit, a quadratic curve fit for the entire data set, and multiple short
length quadratic curve fits of short segments of the calibration data. Short ~ 1.5 mm) segments of the
calibration data are fit with polynomial curves to scale the data collected in these tests. The polynomial
curve fits reduce maximum residual errors from 100’s of microns to 10’s of microns resulting in more
accurately scaled AMR position data.

The dynamic performance of the AMR sensor used in this study was verified directly using a pair
of Polytec CLV-2534 laser vibrometers, which use heterodyne interferometry techniques to generate
wide bandwidth high resolution measurements of velocity, which can later be integrated to position
for direct comparison to the AMR sensor measurements. The vibrometers are attached to a rigid
scaffold above the sample blocks, and the scaffold is resting on the floor of the lab. All vibrometer
measurements are therefore referenced to the floor of the lab. Ninety-degree beam turners attached to
the vibrometers direct their laser beams to their respective targets so the beams are orthogonal to the
target surfaces, and parallel with their anticipated motion. The vibrometers separately measure the
velocity of the sensor and magnets on opposite sides of the fault, and those signals are summed or
differenced (depending on the relative position of the vibrometer and motion of the target) to produce
differential fault slip velocity which is integrated to a fault slip displacement signal. Scaled velocity
signals from the vibrometers are linearly de-trended to remove any subtle instrument drift, which
improves the quality of position signals integrated from the velocity signals. Fault slip displacement
determined by the laser vibrometers should in principle, exactly match the fault slip determined by
the AMR sensor. In contrast, the AMR sensors measure fault slip displacement directly across the
fault. Vibrometer #1 performance specs: 0 to 350 kHz frequency response, and a frequency dependent
resolution of typically 0.06 (um/s)/+/Hz. Vibrometer #2 performance specs: 0.5 Hz to 5 MHz frequency
response, and a frequency dependent resolution, typically 0.5 (um/s)/+/Hz.
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Stick-slip experiments were performed using the large bi-axial test apparatus, using Sierra White
granite samples with a simulated strike-slip fault, 2-m-long and 0.4 m deep, located at the U.S.
Geological Survey in Menlo Park, CA, USA [10,12,13,65-69] (Figure 4). A constant normal stress of
5 MPa was imposed on the fault, and a constant shear stress loading rate of 1 kPa/s was applied to the
fault until a dynamic stick-slip event was generated. After the initial shear stress loading and stick-slip
fault motion, the loading process was repeated several more times until subsequent loading cycles
produced nominally consistent events, from which the data in this report were obtained. The initial
shear stress for each subsequent loading cycle was the residual shear stress of the preceding event.
The time between subsequent shear loading cycles was neither systematic nor considered in the analysis
of these data. Peak shear stress immediately prior to stick-slip was approximately 3.9 MPa, with a stress
drop of approximately 0.4 MPa for most stick-slip events in this study. During stick-slip, all sensor
signals were simultaneously recorded at either 1 MS/s (12-bit resolution), 1 MS/s (16-bit resolution),
or 10 MS/s (14-bit resolution) for a fraction of a second using three 50%/50% pre-trigger/post-trigger
recording systems. The 10 MS/s data were later resampled to 1 MS/s to facilitate the merger of all of
the data sets. All experiments were conducted at room temperature under dry conditions.
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Figure 4. Diagram of the two Sierra White granite sample blocks as they are used in the USGS biaxial

test apparatus in Menlo Park, CA, viewed from above. The locations of the fault slip, shear stress,
and ultrasonic sensors used in these tests are positioned to scale. The diagonal line from lower left to
upper right where the two granite samples meet is the simulated strike-slip fault. The fault plane is
approximately 2.05 m long and 0.4 m deep.

Fault slip data generated by the AMR sensor array were compared to fault slip data simultaneously
generated by a variety of other slip, strain, and ultrasonic sensors deployed along the length of the
2-m fault (Figure 4). The performance of the AMR sensors was compared directly to laser vibrometer
measurements at locations near the middle and at the end of the 2-m fault (Figure 5). An array
of 15 semiconductor strain gage pairs, configured to measure shear strain/stress, are deployed
along the length of the 2-m fault. The frequency response of the strain gage pairs and their signal
conditioning used in these tests is DC to ~ 100 kHz. An array of 15 Capacitec HPC-40 position sensors
paired with 4100-SL signal conditioners (specified frequency response: DC to 3.1 kHz) mounted
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in simple cantilever style mounts, are also deployed along the length of the 2-m fault to measure
fault slip. Two Micro-Epsilon U1 position sensors paired with eddyNCDT 3010 signal conditioners
(specified frequency response: DC to 50 kHz) were also deployed along the 2-m fault where space
permitted. The standard response of the Micro-Epsilon sensor is DC to 25 kHz, the response reported
here is the result of a factory modification to the eddyNCDT 3010 hardware. The mounts used with
the eddy current sensors are designed to mitigate the resonance vibrations previously observed in the
capacitive sensor records. Signals captured by an array of five 1 MHz Panametrics V103-RB ultrasonic
P-wave transducers with a -6 dB passband between approximately 450 kHz and 1.6 MHz and a 13 mm
nominal element diameter, were also employed in the analysis of the signals generated by the AMR
sensor. The ultrasonic transducers were previously deployed to capture high frequency acoustic
signals related to earthquake nucleation and rupture processes [12]. While all of the fault slip, fault
velocity, and shear stress sensors are positioned within several cm of the fault trace to monitor motions
along the surface fault trace, the ultrasonic transducers are positioned 20 cm from the fault trace,
one half the depth of the fault, to monitor AE emanating from the entire fault plane.
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Figure 5. Diagram to scale showing the location of the AMR sensor and other close by sensors used
in this report near one end of the 2-m fault (a), and near the middle of the fault (b). The red dashed
lines with arrows show the origins and paths of the laser vibrometer laser beams separately, but
simultaneously measuring the velocities of these AMR sensor/magnet pairs.

Lacking specialized equipment to properly document the unanticipated, but presumed EM signals
observed in these experiments, a test was devised using available equipment. One HMC1501 SOIC
chip and a target magnet were glued to a single piece of epoxy glass composite prototyping board with
the same 5-mm gap as if deployed on the granite samples, and employed one of the existing signal
conditioning modules. This sensor was deployed at several locations along the 2-m fault, both simply
resting on the sample block spanning the fault, and later, still spanning the fault, but suspended a few
millimeters above the sample block attached to the same scaffold supporting the laser vibrometers.
The output of this test AMR sensor should be constant since the sensor/magnet pair are attached to
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the same piece of epoxy fiber board and should not experience any differential motion, and that sensor
assembly is either lightly resting on or simply not physically connected at all to the granite sample
blocks to minimize or eliminate any signals generated by any motion or vibrations of the sample blocks
or test apparatus.

3. Results

3.1. AMR Sensor Calibration

Calibration data from the AMR sensors were obtained from five separate sensor/magnet pairs.
Each sensor-magnet pair was separated by a 5-mm gap, as shown in Figure 1, and total lateral
displacement of the magnet with respect to the sensor was about 9.2 mm, simulating cumulative
maximum fault slip on the 2-m fault in the biaxial test apparatus. The 9.2 mm of simulated fault slip
generated an output signal of approximately 10 volts via the signal conditioning amplifiers low gain
(200x) output. Calibration data acquired at 100 micron intervals produced detailed records to which
a variety of scaling methods can be applied. See the Appendix A for details of applying low gain
calibrations to high gain recorded signals. Simple line fits of the position data over the full range of the
approximately linear output range of the sensor (Figure 3), produced fits with maximum non-linearity
errors that varied from 2.4% to 3.2% of the full-scale output. The central (=~ 4.3 mm displacement and
~ %5 volts output) portion of the calibration curves produced line fits with maximum non-linearity
errors that varied from 0.16% to 0.36%. A second degree, or quadratic polynomial curve fit over the
same 9.2 mm calibration span produced curve fits with maximum residual errors between 1.2% and
2.3% of the full-scale output. Quadratic polynomial curve fits over shorter, ~1.5 mm portions of the
full 9.2 mm span, produced curve fits with maximum residual errors as high as 0.88% of the full-scale
output at the ends of the 9.2 mm span, and maximum residual errors as low as 0.06% towards the
middle of the 9.2 mm span. Higher order polynomial and other curve fits could also be applied to
these data. For this analysis, simple quadratic curve fits of short segments of the calibration curves
were used to scale the recorded sensor signals to fault slip displacement data.

Calibrations were also performed to determine the sensitivity of the deployed sensors to vertical
cross fault motions that may accompany dynamic fault slip that could register as fault slip by the AMR
sensors. A 3-axis linear translation stage was used examine the sensitivity to simulated differential
vertical fault motions of 0.4 mm at 1 mm intervals along the 9.2 mm roughly linear output range of
the AMR sensor. The transverse sensitivity of the AMR sensor to vertical motion as deployed in these
tests is estimated to vary from as 0.4% to as high as 3.2%, with an average of 1.8% $1.0%. Using the
average transverse sensitivity of 1.8%, a differential vertical fault motion of about 56 microns would
generate about 1 micron of apparent fault slip displacement. In tests using the laser vibrometers to
measure differential vertical fault motion at several locations along the 2-m fault, maximum differential
vertical fault motion of just a few microns was observed. In these tests, apparent fault slip displacement
resulting from low amplitude vertical fault motions would likely be obscured by the background noise
of the AMR sensor signals.

The signal conditioning circuit frequency response was determined to be —3 dB at about 700 kHz.
Since the specifications of the AMR sensor lists a bandwidth of 5 MHz, the currently used signal
conditioning circuit limits the overall bandwidth of the sensor system. The frequency of the signal
conditioning electronics was determined by using a function generator to supply a small amplitude
sine wave signal to the amplifier input, and using an oscilloscope to monitor the attenuation of the
amplitude signal (£10 volts nominal) as the source frequency varied. The high bandwidth capability
of the signal conditioning circuit likely contributes to noise in the recorded signals, a 15.63 kHz small
amplitude wave, present in each of the AMR sensors signals. The use of a 200 Hz wide notch filter
during post-processing of the data appears to reduce that noise signal to acceptable levels without
degrading the data.
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The sensitivity of the AMR sensor SOIC chip to temperature changes is well documented by
the manufacturer [57]. A quick and simple test of the sensitivity of the AMR sensor to temperature
changes as deployed in these tests was performed using a hot air gun and a K-type thermocouple.
The hot air gun was used to raise the temperature of a deployed AMR sensor #2 approximately
10 °C above the ambient room temperature, while the amplified voltage output of the sensor was
monitored. A small quantity of heat conducting paste on the top surface of the AMR sensor was used
to facilitate the thermal contact between the thermocouple and the AMR sensor. Over this limited
range of temperature change, the AMR sensor appears to show a sensitivity of about 2 microns of
apparent fault slip per degree C of temperature change.

3.2. Dynamic Fault Slip Measurements

The performance of the AMR sensor measuring dynamic fault slip is determined at several
locations along the 2-m fault by comparing fault displacement measured directly by the AMR
sensor/magnet pair glued to the samples, and the differential displacement (time integrated velocity)
of the same AMR sensor/magnet pair simultaneously determined by the laser vibrometers. The fault
slip displacement obtained from AMR sensor #2 mounted near one end of the 2-m fault compares
favorably to the fault slip determined by the laser vibrometers (Figure 6a). Dynamic fault slip at
the end of the fault is complex and characterized by an impulsive onset of fault motion followed by
a series of short episodes of rapid slip over a background of slower slip. The slip record from the
AMR sensor clearly tracks the episodic slip, and reveals bursts of higher frequency signal throughout
the slip event. The simultaneously acquired differential velocity of the AMR sensor/magnet pair
integrated to fault slip displacement correlates closely with the fault slip displacement measured
directly by the AMR sensor, though the vibrometer data does reveal additional slip after dynamic slip
ends at 0.2645 s, and does not appear to detect the higher frequency oscillations detected by the AMR
sensor. Subtracting the laser vibrometer displacement record from the AMR slip record reveals the
distribution and magnitude of the higher frequency signals detected by the AMR sensor, as well as the
post dynamic slip fault motion.
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Figure 6. Detail of dynamic fault slip near one end of the 2-m fault revealing a complex pattern of
episodic slip. Differential fault slip velocity and comparison between fault slip measured directly by
AMR fault slip sensor #2 and fault slip determined by integrating differential fault slip velocity from
laser vibrometer measurements. Short periods of higher frequency oscillations in the AMR fault slip
record are easily identified when the AMR fault slip record is compared to the laser vibrometer fault
slip record (a). Details of the two laser vibrometer measurements, one tracking the AMR #2 sensor and
the other tracking the motion of its target magnet across the fault, and the difference between those
two signals (b).

A closer examination of the vibrometer velocity data for the AMR sensor and its magnet (Figure 6b)
shows approximately symmetrical velocities across the fault as expected. However, near the end of the
dynamic slip, around 0.2645 s, the previously tracking velocity signals become out of phase which
is coincident with the separation of the AMR sensor fault slip record and the laser vibrometer fault
slip record. Differencing those two vibrometer records reveals the asymmetry of sample block slip
velocity near the end of the fault, with peak to peak differences in velocity across the fault approaching
100 mm/s. Much of the difference between the two velocity records appears as short period variations
in relative block velocities, likely representing very small changes in fault displacement. However,
as dynamic slip ends, the period of the velocity difference signal increases, and could account for the
additional apparent fault slip following the dynamic fault slip, detected by the laser vibrometers.

The magnitude of fault slip displacement at the end of the fault determined by the AMR sensor
also compares favorably to the fault slip displacement data from both the capacitive and eddy current
position sensors (Figure 7). The eddy current signal tracks the episodic slip and total slip, though
with what appears to be slower rise times compared to either the AMR sensor or the capacitive
position sensors. The cause for what may be a sluggish response of that sensor is unknown, though
may be related to nylon components incorporated into the eddy current sensor mount and requiring
diagnostics beyond the scope of this report. Neither the capacitive nor the eddy current position
sensors appear to detect the high frequency signals seen in the AMR record. The capacitive sensors
should not be capable of detecting motion at frequencies much beyond 3.1 kHz, but the eddy current
sensors should be responsive to motion at frequencies as high as about 50 kHz. Figure 7 also illustrates
the unfortunate effects of sensor mount resonance seen in both capacitive slip sensor records, though
both capacitive sensors do accurately capture the total amount of slip during the event. The sensor
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mounts currently used with the capacitive position sensors have a measured resonance frequency of
about 3.2 kHz which is consistent with observed oscillations in those slip records. The eddy current
fault slip sensor mount also employs a cantilever design, however, it has stiffening elements that
appear to mitigate negative resonance effects. The strain gage pair, measuring local shear stress on the
fault, shows a complex relationship with the close by slip and velocity records. The abrupt increase in
fault slip rate as slip initiates at the end of the fault appears to correlate with an abrupt drop shear
stress at the end of the fault where strain pair 15 is located. Neither the episodic fault slip nor the
bursts of high frequency signal seen in AMR fault slip #2 record are readily apparent in the shear stress
record from strain gage pair #15.
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Figure 7. Details of dynamic fault slip near one end of the fault including nearby fault slip, shear strain,
and laser vibrometer measurements. In this example, fault slip accumulates via a series of episodic
impulsive slip events, clearly illustrated by the AMR and laser vibrometer fault slip signals, and to a
lesser degree by the eddy current fault slip sensor. The oscillations in the capacitive fault slip sensor
signals reflect those sensor mounts resonating at approximately 3 kHz. The shear stress record reveals
an abrupt drop in shear stress as dynamic slip initiates.

In contrast, the initiation of dynamic fault slip near the middle of the fault measured by AMR
sensor ‘D’, Figure 8a, is emergent, with higher frequency oscillations superimposed in both the AMR
slip displacement and the differenced laser vibrometer velocity records. Fault slip displacement
determined by the laser vibrometers, is an excellent match to fault slip displacement determined
directly by the AMR sensor. Consistent with measurements shown in Figure 8, fault slip displacement
determined by the vibrometers at this location also appears to lack the high frequency content detected
by the AMR position sensors. Subtracting the laser vibrometer slip record from the AMR slip record
highlights the higher frequency signals the AMR sensor detected, though with no additional post
dynamic slip fault motion detected by vibrometer measurements at the end of the fault, (Figure 6a).
Examination of the individual velocity records, monitoring the motion of AMR sensor ‘D’ and its
target magnet, Figure 8b, shows synchronous velocity records for the sensor and the magnet during
and following dynamic slip, in contrast to similar measurements near the end of the fault, Figure 6b.
The difference between the two velocity signals near the middle of the fault show short period peak to
peak differences between the two velocity records to be less than 50 mm/s, and no apparent fault slip
following dynamic fault slip after 0.2658 s.
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Figure 8. Detail of dynamic fault slip near the middle of the 2-m fault revealing a less complex pattern
of continuous fault slip. Differential fault slip velocity and comparison between fault slip measured
directly by AMR fault slip sensor #D and fault slip determined by integrating differential fault slip
velocity from laser vibrometer measurements. Short periods of higher frequency oscillations in the
AMR fault slip record are easily identified when the AMR fault slip record is compared to the laser
vibrometer fault slip record (a). Details of the two laser vibrometer measurements, one tracking
the AMR #D sensor and the other tracking the motion of its target magnet across the fault, and the
difference between those two signals (b).

Slip records from AMR sensor ‘D’, as well as close by capacitive and eddy current position sensors
(Figure 9), closely track each other in both shape and magnitude. The lack of an impulsive onset of
dynamic slip at this location likely inhibits resonance of the capacitive sensor mounts improving the
quality records of those fault slip displacement records. Strain gage pairs #07 and #08 located on
either side of AMR sensor D both show a gradual decline in fault shear stress as fault slip accumulates
consistent with observations of the gradual evolution of fault slip and fault slip velocity at that location
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along the fault. The higher frequency oscillations seen in the AMR sensor fault slip displacement
record may correlate to high frequency oscillations seen on both strain gage pair records.
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Figure 9. Details of dynamic fault slip near the middle of the fault including nearby fault slip, shear
strain, and laser vibrometer measurements. The lack of an impulsive onset of fault slip near the center
of the fault is reflected in all of the slip, stress and velocity records. The lack of resonance in the
capacitive slip sensor records is additional evidence of the gradual evolution of fault slip accumulation
near the center of the fault. Periods of higher frequency oscillations in the AMR fault slip record stand
out, and appear to correlate with higher frequency oscillations observed in the shear stress records.

The time-series presentation of laboratory stick-slip data is especially helpful for determining
earthquake source parameters analogous to those observed seismically including; rise-time and event
duration, peak and average fault slip rates, the identification of rupture propagation speeds, and the
relative timing of specific details of slip, stress, acoustic emission, etc. However, other earthquake
source parameters are best identified and (or) visualized when laboratory stick-slip data are referenced
to wide-band measurements fault slip displacement. Some of those parameters include; fault unloading
stiffness and machine unloading stiffness, the slip weakening or critical slip distance, peak stress,
average stress, final stress, apparent stress, overshoot, and the graphical representation of the energy
budget of an earthquake (friction energy, fracture energy, and radiated energy), etc. An analysis of
these parameters is beyond the scope of this report, however, for more information about how these
parameters are relevant to earthquake processes, see [1-11].

Plots of shear stress vs measured fault slip (Figure 10), from data collected at the end of the fault
and near the middle of the fault, illustrate some of the slip dependent characteristics of stick-slip fault
motion. The upper curves show the abrupt initiation of stick-slip fault motion at the end of the fault.
The end of the fault has remained locked, no fault slip, throughout most of the earthquake nucleation
process. Rapid stick-slip fault motion initiates along the fault when the accelerating stable slip in the
expanding nucleation zone reaches the end of the fault. The peak stress, the critical slip displacement
(measuring less than 20 microns), and high frequency oscillations in both the shear stress and the
AMR fault slip records, are all readily apparent. In contrast, the lower curves show shear stress vs.
fault slip near the middle of the fault. The nucleation process has been active near the middle of the
fault for some time prior to the initiation of stick-slip fault motion. During the nucleation process,
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the middle section of the fault has experienced stable accelerating fault slip which causes the local
shear stress to gradually reduce. When rapid stick-slip fault motion reaches the center portion of the
fault, the transition in fault slip velocity is gradual (Figure 9) compared to the abrupt fault slip velocity
transition at the end of the fault (Figure 7).

When comparing the curves of shear stress vs. fault slip in Figure 10, the reference measurements
from the laser vibrometers produce a superior low-noise wide-band fault slip displacement record
which allows the details of the shear stress records, including high frequency oscillations, to be easily
identified. In contrast, the wide-band AMR fault slip displacement records contain several microns of
background noise which obscure some record details. The AMR fault slip records also contain high
frequency oscillations themselves (Figures 6-9) that are coincident with oscillations in the shear stress
records, resulting in loops in the data plots. Low pass filtering and other processes can be applied to
the AMR fault slip data to reduce noise, though at the possible expense of higher frequency signal
content. Signal filtering decisions are likely to be made on a case-by-case basis with the aid of spectral
analysis of the data and a review of the goals of the project.
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Figure 10. Fault shear stress during stick-slip fault motion derived from strain gage pair records
located at the end of the fault and near the middle of the fault, plotted against fault slip displacement
determined by both the closest AMR fault slip position sensor (about 2.5 cm separation in both
cases, see Figure 5), and by the laser vibrometer pair tracking those same AMR sensors and their
matching magnets.

To put the data collected in the immediate vicinity of the AMR sensors into perspective, data
collected along the entire length of the 2-m fault from all the fault slip and shear strain sensors, as well
as the acoustic emission signals from the ultrasonic transducers, are shown in Figure 11a,b, separated
into two plots for clarity. In this test apparatus, the nucleation process typically begins near the center of
the fault many 10’s to 1,000’s of seconds preceding earthquake initiation determined by the shear stress
loading rate imposed on the fault. As the earthquake initiation approaches, fault creep accelerates
near the center of the fault and shear stress simultaneously degrades. Eventually the width of the
nucleation zone expands to the length of the fault. Dynamic fault rupture initiates at approximately
0.262 s when the expanding nucleation zone reaches one end of the fault, and dynamic slip appears
to initiate at the other end of the fault when the expanding nucleation zone reaches the other end of
the fault at approximately 0.2625 s. Once fault rupture is initiated, the rupture traverses the fault at
approximately 2.5 km/s, slower than the shear wave speed of the sample, vs = 3.0 km/s [67], and
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typically reflects back along the length of the fault one or more times before the energy dissipates.
As dynamic slip initiates, rapid fluctuations in the strain gage pair shear stress, AMR fault slip, and
ultrasonic AE records can be seen propagating the length of the fault, and reflecting at the opposite
end of the fault. These high frequency fluctuations are consistent with slip-pulses previously reported

from the same test apparatus [13].

a

Position Along The Fault (m)

b

Position Along The Fault (m)

Figure 11. Data collected from all the sensors deployed along the 2-m fault during one stick-slip event.
Each signal trace is plotted so that its position along the y-axis approximately corresponds to that
sensors location along the fault trace to facilitate spatial and temporal comparisons. Shear stress and
acoustic emissions, (a), show fault rupture initiate at about 0.262 s near strain gage #15 and propagate
(manifested as higher frequency oscillations in the sensor records) to strain gage #01. Fault rupture
also appears to initiate near strain gage #01 about 300 micro-seconds later, resulting in a complex
pattern of rupture propagation and reflections along the length of the fault. Fault slip signals, (b),
capture rupture initiation near capacitive fault slip sensor #16 and propagating to capacitive fault slip
sensor #01. Fault rupture propagation appears to be detected by the AMR fault slip sensors as higher
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frequency oscillations in the signals.
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3.3. Spectral Analysis of Sensor Signals

The frequency content of the sensor signals used in these tests was examined using Power
Spectral Density (PSD) analysis. The same PSD analysis was applied to data from each sensor type;
8500 sample waveforms collected at 1 MS/s, a 4096 sample Hanning window, and the DC component
of the sample waveform was removed. Each 8500-sample waveform included approximately equal
amounts of pre-slip, dynamic slip, and post-slip data. The 8500-sample waveform length and the
4096 Hanning window dimension were also chosen so the PSD analysis would include frequencies
below the approximately 0.002 s to 0.003 s event duration, so each PSD spectra might better represent
the signal of the entire stick-slip process, not just the higher frequency dynamic slip aspects of fault
slip. A second 8500-sample length segment of data from each sensor type, which significantly precedes
the dynamic slip, was also subjected to the same PSD analysis to provide a background signal or
noise spectra for comparison. Results of those analysis are presented in Figure 12. The PSD spectra
for the AMR sensor fault slip displacement shows that these sensors as deployed have a response
to about 100-kHz where the signal and background spectra merge. The PSD spectra for the laser
vibrometer fault slip displacement reveals a signal response to about 200-kHz, though with less over
all power but a higher signal to noise ratio when compared to the AMR sensors. The capacitive fault
slip displacement signals appear to show signal to about 20-kHz, but the signal and noise spectra
of that sensor both decline significantly above 3-kHz, as expected. The spectra for the eddy current
fault slip displacement signal appears to decline significantly at about 20-kHz, well below the 50-kHz
specified performance of that sensor. The shear stress spectra reveal signal response to about 100-kHz,
which likely reflects the performance of the signal conditioning used with those semiconductor strain
gage pairs, rather than the strain gages themselves which have a frequency response well beyond
the ability of this lab to quantify. Finally, while the spectra for the ultrasonic transducer is shown
for completeness, that sensors response is designed to be centered around 1 MHz, which is also the
sampling rate for data analyzed in these tests. That the sensors expected peak response frequency is
also the sampling rate for the data used for PSD analysis is an unfortunate coincidence.

To better illustrate the high frequency fluctuations seen in the shear stress, AMR fault slip and
ultrasonic AE records, all of the data records from the dynamic slip event shown in Figure 11 were
passed through a 40-kHz high pass filter to highlight the higher frequency content of each signal,
Figure 13. A detailed analysis of each sensors spectral content to identify an optimum high pass
filter cut off frequency was beyond the scope of this report; however, 40-kHz appears to be an
effective threshold. High pass filtered sensor signals are plotted such that their position along the
y-axis of the plot corresponds to their position along the fault, and reveal clear patterns of energy
traversing the length of the fault at approximately 2.5 km /s, likely coinciding with a passing rupture
front. It is important to note that the scales for each sensor vary considerably. In particular, note
that while the laser vibrometer fault slip displacement records seen in Figures 6-9 do not appear
to show any high frequency content, the PSD analysis of those records, Figure 12, shows that the
laser vibrometer fault slip displacement records do contain signal at frequencies beyond 40-kHz.
When passed through a high pass filter, high frequency oscillations in the laser vibrometer fault slip
displacement record become visible and appears to correlate with other nearby sensors. The amplitude
of the high frequency component of the vibrometer fault slip displacement record is only a fraction of
a micron, and about 40 x to 50 less than the amplitude of the high frequency fault slip displacement
oscillations detected by the AMR sensor. The vibrometers were tracking the motion of that AMR sensor
directly and in principal, the vibrometer and AMR position records should match. Atlower frequencies,
the vibrometer and AMR fault slip displacement records show good agreement, at higher frequencies
(>40 kHz) they show differences approaching two orders of magnitude in signal amplitude. The large
difference in the amplitudes of the high frequency (>40 kHz) components of the laser vibrometer and
AMR sensor fault slip displacement records appears to be consistent with the approximately 40 dB
difference in power between the AMR sensor and laser vibrometer fault slip displacement spectra
at 40-kHz.
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Figure 12. Power Spectral Density (PSD) analysis of signals collected by all of the sensors used in
this study. Comparisons between each sensor signal and background spectra highlight the frequency

response of each sensor. Frequency thresholds of interest include; 244 Hz is the lower bound of the
PSD sensitivity, 400 Hz is approximately the (event duration (s))~! of stick-slip in these tests, 1.2 kHz
is approximately the (rupture propagation transit time)~!. Each plot is scaled identically to facilitate

comparisons, with the exception of which has an enlarged y-axis to accommodate both laser fault slip

and laser fault velocity PSD spectra. Spectra of signal and background noise from; one AMR fault

slip displacement sensor (a), laser vibrometers measuring fault slip displacement and velocity (b),

one capacitive sensor measuring fault slip displacement (c), one eddy current sensor measuring fault

slip displacement (d), one pair of semiconductor strain gages measuring shear stress (e), one ultrasonic

transducer measuring acoustic emissions emanating from the fault (f).
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Figure 13. Sensor data that has been passed through a 40-kHz high pass filter to highlight its higher
frequency content. Only sensors with signal content at or above 40-kHz are included on the plot, and
signals are plotted along the y-axis as they are deployed along the fault trace to facilitate spatial and
temporal comparison. Note that the laser vibrometer fault slip signal does contain high frequency
oscillations, though with significantly smaller amplitudes when compared to the AMR fault slip

sensor signals.

3.4. Electromagnetic Radiation

To investigate the source of the high frequency oscillations observed by the AMR sensors, an AMR
sensor and target magnet were attached to single piece of prototype board which was deployed at
different locations along the fault and signal was recorded during stick-slip events. Since neither the
sensor nor the magnet had any physical contact with sample motion, there should be no differential
motion between the sensor and the magnet resulting in a fixed /constant signal output. However,
when this sensor was deployed both resting on, and later suspended above the fault to eliminate any
contact with the samples, high frequency signal during stick-slip was detected. Figure 14 shows an
example of high pass filtered slip and shear stress data from an event with a more complex dynamic
slip pattern than from the event shown in Figure 13. Regardless of the complexity of the slip pattern,
the AMR sensor suspended above the fault shows high frequency signal of roughly the same amplitude
and coincident with other nearby AMR sensors which are responding to a passing dynamic fault
rupture. PSD analysis of the data from several AMR sensors glued to the samples and the AMR sensor
suspended above the fault, Figure 15, reveal that the suspended sensor has a signal spectra that is
above the background noise level of those sensors. Since the source of that signal cannot be fault
slip, and considering that the sensor is sensitive to magnetic fields, the source of the high frequency
signal that the suspended AMR sensor is detecting, is possibly an EM signal related to the passing
fault rupture.
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Figure 15. Comparison of the PSD spectra of AMR fault slip sensors deployed along the fault trace
on the granite sample blocks, to the AMR sensor that was suspended a few mm above the fault trace.
The suspended AMR sensor appears to have signal content above the background signals of all the
AMR sensors, and within the low range of power amplitude of the AMR sensors deployed on the

granite sample blocks measuring fault slip.

Frequency thresholds are included for reference.
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4. Discussion

The AMR sensor described in this report is capable of acquiring detailed, accurate, and resonance
free wideband measurements of dynamic fault slip displacement. Benchtop calibrations and scaling
procedures for the AMR sensor described in this report can produce calibration curves with scaling
errors within or below the performance specifications of other commonly used position sensors.
The ability of the AMR sensor to accurately track rapid stick-slip fault motion and make accurate
measurements of dynamic fault slip displacement in the lab was independently verified by the use of
a pair of laser vibrometers. The laser vibrometers measured the differential fault slip velocity of the
AMR sensor and its matching magnet directly, which was then integrated to fault slip displacement
for a direct comparison to the AMR sensor signal. Side by side comparison of AMR sensor fault
slip displacement signals to signals generated by close by capacitive and eddy current fault slip
displacement sensors, also verify the performance of the AMR sensor with respect to its ability to
accurately measure fault slip displacement.

The small AMR sensor package developed for these tests is a rigid, rugged, low-profile, easy to
build device which facilitates its use in a variety of space sensitive scenarios. Observations in these
tests show that the rigid sensor package eliminates the negative effects of sensor mount resonance,
improving the quality of stick-slip fault slip data. The custom signal conditioning developed for
these tests permits the sensor to be permanently bonded to the samples, and still allow for high
resolution measurements while accommodating accumulating fault slip without manual re-positioning
of the sensor.

The wideband response of the AMR sensor is verified by direct comparison to simultaneous laser
vibrometer measurements and PSD analysis of the fault slip displacement records generated by those
two sensing technologies. PSD analysis, Figure 12, shows that the sensor is sensitive to motion at
frequencies to 100 kHz, which is comparable to the frequency response of the laser vibrometer fault slip
displacement data. The discrepancy in amplitude of the high frequency signals detected by the AMR
fault slip sensor vs the laser vibrometer fault slip displacement record is consistent with the difference
in amplitude of the power spectra of those two sensors. The cause for the fault slip displacement
amplitude discrepancy between the two sensors is unresolved at this time, though may be caused by
the apparent sensitivity of the AMR sensor to fault generated EM signals, discussed later.

The small amount of fault slip detected by the AMR sensor after dynamic fault slip has ended,
Figure 6a, could be apparent slip caused by the frame of reference of the laser vibrometers. Fault
motion in these tests is left lateral, which may facilitate a counter-clockwise rotation of the sample
blocks. The laser vibrometers measure the motion of the AMR sensor and its target magnet relative to
the floor in the lab. In contrast, the AMR sensors measure fault slip directly, referenced to the sample
blocks. Counter-clockwise sample block rotation following stick-slip fault slip motion, could cause
the vibrometers to register block rotation of the sensor and the target as fault motion, resulting in
additional, but apparent, fault slip. Apparent slip caused by block rotation should produce the largest
signals at the corners of the sample blocks, the ends of the fault, presumably locations of maximum
rotation motion. Measurements of fault slip near the middle of the fault in the center of the sample
blocks, shows no post stick-slip fault motion, Figure 8a, presumably where block rotation effects
would be minimized. The test apparatus resonates at approximately 425 Hz after each stick-slip event,
evidenced by audible ringing and oscillations in the shear strain gage pair records, and may facilitate
post slip rotation or other motion of the sample blocks. Additional measurements of the motion of the
sample blocks relative to themselves, the loading frame, and the floor of the lab would be required to
positively identify the source of the apparent fault slip observed in Figure 6a.

The appearance of the high frequency fluctuations in the AMR dynamic slip records present
an unanticipated, and interesting set of observations. These signals appear to be related to the high
frequency, low amplitude slip pulses traveling the length of the fault as a part of the fault rupture
process [13]. If the high frequency oscillations in the AMR records represent traveling slip pulses,
then perhaps they represent actual deformation near the fault. However, the amplitude of those
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high frequency signals in the AMR fault slip records is quite large compared to the total amount of
fault slip. Fault slip displacement signals in Figures 6a and 8a, as well as high pass filtered fault slip
displacement data in Figures 13 and 14, suggest that the magnitude of the high frequency fault slip
signals is tens of microns of fault slip motion. Considering that total fault slip in these events was
about 130 to 140 microns, the amplitude of the high frequency signals represents a significant amount
of forward, and highly unlikely backward, fault motion during strike-slip fault block motion. If the
high frequency fluctuations in the AMR records represent actual fault slip, with tens of microns of
positive and negative fault motion, then the velocity record should show matching high frequency
oscillations reflecting positive and negative velocity, but they do not. However, the laser vibrometer
differential fault slip velocity signals resulting from the simultaneous tracking an AMR sensor and
magnet, then integrated to fault slip displacement, do show high frequency fault motions, though with
amplitudes of only a fraction of a micron, about two orders of magnitude less than the same motion
detected by the AMR sensors.

If the high frequency fault slip displacement oscillations detected by the AMR sensors represent
fault motion or deformation, then the coincident high frequency oscillations seen in the shear stress
records could scale with that motion. Using the shear modulus of the sample rock, as well as the
change in shear stress observed by the shear strain gage pairs, we can use the relation

G = Tuy/Tay = (F/A)/(Ax/1) 1)

where G = the shear modulus of the sample, Ty, and F/A = shear stress, 7y, and Ax/I = shear strain, to
roughly estimate the motion that might be expected for a given magnitude of shear stress fluctuation.
The shear modulus for Sierra White granite is about 25 GPa [67,69], and the high pass filtered signals
in Figure 13 show shear stress oscillations with amplitudes of about 0.25 MPa. The shear stress is
measured over a distance I of about 1 cm on the sample surface, the approximate length dimension of
the strain gage pair. Solving for Ax, 0.1 microns is the approximate amplitude of shear deformation
that would accompany the shear stress oscillations of the magnitude observed in these tests. While
this number is consistent with the amplitude of high frequency fault slip displacement oscillations
detected by the laser vibrometers, it is substantially less than the amplitude of apparent high frequency
fault slip displacement oscillations measured by the AMR sensors. A traveling elastic wave related to
a travelling fault rupture front would be consistent with temporal appearance of these high frequency
oscillations, and the small amplitude of these oscillations determined by the laser vibrometer appears
to be consistent with the modulus of the sample material and the amplitude of shear stress fluctuations
related to the passing rupture front.

One possible mechanism for the high frequency signal oscillations seen in the AMR fault slip
records is the generation of EM signals related to fault rupture or fault rupture propagation. The AMR
sensor is a magnetic sensor, and may be sensitive to EM signals generated by the stick-slip fault
motions generated in these tests. It is important to note that these tests were not designed to look
for EM signals, and as such, appropriate EM sensing equipment was not deployed. The possibility
that EM signals could be generated under these test conditions is not a surprise. Various mechanisms
have been invoked for the generation of earthquake and volcanic EM signals [21-25], including
piezomagnetic and electrokinetic effects, elastic waves propagating through the Earth’s crust, and
others, have been associated with the generation of EM signals. The lack of ferro-crystalline minerals
or fluid saturated pore space in the granite used in these tests disqualifies both piezoresistive and
electokinetic mechanisms in these tests. A propagating elastic rupture front generating triboelectric EM
signals related to microcracking and rock shearing at the rupture front as the rupture front passes [23],
is a plausible mechanism for the generation of EM signals in this test configuration. In addition, these
granite samples are quartz rich, which could also facilitate the generation of transient piezoelectric
charge which the AMR sensors could be sensitive to.

Why some sensors deployed in these tests detect the apparent EM signals and some don’t, pose
some interesting questions. For example, the AMR sensor is designed to be sensitive to magnetic
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fields. However, it was operated in a ‘saturating’ magnetic field of approximately 80 Gauss to in
part, reduce the effects of stray magnetic fields, which might suggest that EM signals generated by
faulting could be of a sufficient magnitude to be readily detectable by other means. The strain gage
pairs, as well as the eddy current and capacitive position sensors all generate signal fluctuations
when a hand-held magnet is passed close by those sensors, suggesting that their signals may all be
influenced by transient EM signals. The semiconductor strain gages themselves apparently show no
magnetostriction and very little magnetoresistive effect [70], though their lead wirers could act as
small antenna receptive to EM signals. Indeed, lead wire weaving techniques and non-inductive foil
strain gages exist that are designed specifically to minimize noise pick-up from EM signals. The use
of non-inductive strain gages and better shielded lead wires in future tests could help better identify
the source of higher frequency oscillations observed in the strain gage pairs in these tests. The use
of AC excitation (vs. DC excitation as in these tests) with the existing strain gage pairs to reduce EM
sensitivity, or the deployment of optical strain gages which are insensitive to EM signals, may offer
insights, though these technologies are both bandwidth limited and best suited for quasi-static strain
measurements. The relatively low bandwidth of the capacitive position sensors appears to render them
incapable of generating signals related to any higher frequency EM signals. The eddy current sensors
which should have a 50-kHz signal bandwidth, and appear to be sensitive to a close by magnet, do
not detect these apparent EM signals. The PSD spectral analysis of the eddy current sensors suggest
that their actual frequency response is much less than 50-kHz, possibly rendering then insensitive to
EM signals generated during these tests. The ultrasonic transducers did not appear to be sensitive to
the presence of a close by magnet and suggests that those sensors are only responding to ultrasonic
acoustic emissions generated during dynamic rupture. Testing currently beyond the capabilities of
this lab would be required to accurately characterize the nature of any EM emissions generated in this
testing apparatus, and its effect on the sensors used in these tests.

The stick-slip data collected using the AMR sensor/magnet pair that was suspended above the
sample blocks (Figure 14), show high frequency oscillating signals comparable to AMR sensor/magnet
pairs that were attached to the sample blocks during stick-slip events. Spectral analysis of the
suspended AMR sensor vs glued down AMR sensors, Figure 15, also shows that the two signals
are comparable, though the suspended sensors spectral amplitude is a bit less than that of the glued
down sensors, it is still above the noise level of both sensors and suggests that at least some of the high
frequency AMR fault slip displacement signal is derived from possible EM emissions from the sample
blocks during dynamic stick-slip motion. High pass filtered laser vibrometer fault slip displacement
data detect the high frequency motion of the glued down AMR sensors, but about two orders of
magnitude less than what the AMR sensors detect, suggests that the while AMR sensors are clearly
responding accurately to fault slip displacement, they also have some sensitivity to possible EM signals
related to fault slip processes.

To fully understand the source physics of EM signals observed in tests like these, appropriate
sensors, experimental techniques, and shielding from extraneous sources of EM energy are all required.
Future experiments should employ sensors to quantify any quasi-static or wideband transient EM
signals that may be generated during the generation of small strike-slip earthquakes in the lab. The use
of sensors insensitive to EM signals to measure fault slip, fault slip velocity, strain patterns and
accelerations along the fault, would all contribute to the understanding of the source of the apparent
EM signals reported here. Specific to the AMR sensor, using more powerful target magnets may
improve the AMR sensors ability to reject extraneous signals, though, how stronger magnets might
adversely affect other close by sensors would need to be considered. Small scale tests using samples
with varying amounts of quartz and silica, and similarly varying piezoelectric effects, may be insightful
as well. While granite is one of the more silica rich igneous rock types, experiments using diorite,
gabbro or peridotite with progressively less silica content, may provide helpful insights into coseismic
EM emissions.
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5. Conclusions

The AMR magnetoresistive sensor as deployed in these tests has been shown to be a simple,
and rugged sensor that could facilitate the acquisition of wideband, accurate, and resonance free
measurements of dynamic stick-slip fault motions in laboratory geophysical experiments. The small
size facilitates its use on smaller samples or permits the installation of additional sensors on larger
well instrumented samples. Signal conditioning electronics permit the sensor to be used at gains
high enough to capture fine fault slip motion detail, in addition to accommodating accumulating
fault slip without repositioning the sensor. Simple spectral analysis techniques revealed significant
insights into the performance of each sensor used in these tests. The observations of what appear to be
EM emissions related to fault rupture propagation detected by this sensor, could, with appropriate
sensors and experimental techniques, offer insights into the source physics of EM emissions, and their
relationship to earthquake physics.
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Appendix

(1) Signal conditioning:

The signal conditioning used to excite, and amplify the signal generated by the AMR sensor needs
to accomplish two tasks. One task is to amplify the signal to a sufficient level such that high resolution
digital signals can be obtained. The other task is to electronically accommodate accumulating slip
along the fault after each stick-slip event, since the sensor and magnet are permanently attached to the
samples, and not adjustable themselves. To accomplish this, a two-gain stage amplifier is developed,
with the capability for output offset incorporated into the design (Appendix Figure A1).

To power the AMR sensor, a low noise precision +5 V reference voltage (Analog Devices ADR4550)
is employed to provide the excitation voltage directly to the AMR sensor. The input bridge resistance
of AMR (4 k() minimum) is high enough that the current draw on the ADR4550 voltage reference is
within its specifications, eliminates the need for a current buffer amplifier to provide adequate power
to the sensor, and simplifies the circuit design.

The first amplifier stage employs a low noise wideband instrumentation amplifier (Analog Devices
ADB8429) with a user defined gain of +200 V/V. At that gain, the output of the AMR sensor, with
a 5 mm gap between it and the magnet, can accommodate approximately 10 mm of lateral motion
(fault slip) of the magnet while keeping the amplified voltage output swing between £10 V. The coarse
resolution of that signal, about 500 pm/volt, is not ideal for making precision position measurements,
however, it is convenient for calibrating the sensor over its entire sensing range. The second amplifier
stage sums the signal from the instrumentation amplifier with a user adjustable, 10 volt offset,
and amplifies the summed signal using a wideband op-amp (Analog Devices AD847) configured
with a user defined gain of —10 V/V. The offset voltage adjustment permits the easy biasing of the
instrumentation amplifier output so the higher gain signal output remains on-scale (within £10 volts)
as slip accumulates during successive tests. The additional gain improves sensor resolution to about
50 um/volt, comparable to the sensitivity of the existing sensors used for these measurements.

The +10 volt voltage offset is designed to be both stable, and low noise. The offset signal
is generated by a circuit employing a +10 volt precision voltage reference (Texas Instruments
REF102), a precision differential amplifier (Texas Instruments INA105), a 10-turn wirewound precision
potentiometer, and is buffered and filtered through a low pass active filter circuit built around a low
noise Texas Instruments OPA27 op-amp.
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The output of the first amplifier stage is passed on to the second amplifier stage unfiltered.
The output of first amplifier stage is also made available for user monitoring and (or) recording using
two user configurable Butterworth low pass active filter /buffer circuits. One active filter /buffer circuit
is configured with a cutoff frequency appropriate for slower long term data recording rates. The other
active filter /buffer circuit is configured with no filtering or as a low pass filter with a cutoff frequency
appropriate for wideband transient signal recording. The output of the second amplifier stage is
also made available for user monitoring and/or data recording using an identical pair of low pass
filter /buffer circuits. A buffered output of the offset voltage is also made available for monitoring
or recording.

Butterworth, 2-Pole,
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Figure A1. Diagram of the wide-band circuit built to amplify and offset the output signal of the AMR
sensor used these tests. The AMR sensor and its target magnet are shown as deployed on the sample
blocks relative to the strike-slip fault, and as connected to the circuit.

Details for circuit layout best practices, and specifications for the resistors, capacitors and other
components incorporated into this circuit are detailed within the data sheets for each integrated
circuit identified above. The circuit boards employed in these tests were handmade using off the shelf
epoxy glass prototyping board, DIP sockets, connectors, potentiometers, enclosures, etc. Metal film
resistors are employed throughout, and a low temperature coefficient spec is identified for all gain
resistors. Details of the op-amps, resistors, and capacitors used to set the response characteristics of
each individual active filter can be quickly identified for specific test requirements using several online
calculators, for example; the Analog Filter Wizard from Analog Devices [71] or the WEBENCH® Filter
Designer from Texas Instruments [72].

(2) Calibration:

The gain of the first instrumentation amplifier in the signal conditioning circuit is set so that the
entire sensing range of the sensor, about 10 mm, produces a full-scale voltage output swing of about
+10 volts, so the entire range of motion can be documented. Scaling the sensor signal from either the
first or second gain stage using a linear scale is a simple matter. Scaling the sensor signal from the first
gain stage using a polynomial calibration is also a simple matter. However, if a polynomial calibration
curve is to be applied to the higher resolution second gain stage output, to better accommodate the
sinusoidal output of the AMR sensor, a procedure is needed so the polynomial scaling is correctly
applied. A polynomial scale is valid only when applied to the same position/output data pairs from
which it was derived.

Scaling sensor signals from the second gain stage of the signal conditioner is a multistep process.
Step 1: both the lower first gain, and the higher second gain sensor signals are recorded. Step 2:
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the higher gain signal is divided by the gain of the second stage amplifier, —10 in this case. The resulting
signal should match in amplitude and sense the output of the first gain stage, but with an offset.
That offset value should be a constant value, and equal to the user adjustable offset voltage summed in
the second gain stage of the signal conditioning circuit. Step 3: subtract the offset from the divided
high gain signal. The scaled down and offset adjusted high gain signal output should now match
the low gain signal in both amplitude and sense, though the high gain signal will show significantly
more detail in the signal. Step 4: a polynomial calibration (or any other calibration curve) determined
from the low gain bench top calibration, can be now applied to the high gain signal to obtain a scaled
displacement record. It is critical that if a polynomial, or any other nonlinear calibration is applied
to the data, that the calibration curve is applied such that the recorded voltage that is converted to
microns is the same range as was used to determine the curve fit. This is particularly relevant in this
study where different short segment calibration curves are applied to the recorded data depending on
the amount of accumulated fault slip.
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