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Abstract: On 10 August 2016 China launched the GF-3, its first C-band polarimetric synthetic aperture
radar (SAR) satellite, which was put into operation at the end of January, 2017. GF-3 polarimetric
SAR has many advantages such as high resolution and multi-polarization imaging capabilities.
Polarimetric SAR can fully characterize the backscatter property of targets, and thus it is of great
interest to explore the physical scattering mechanisms of terrain types, which is very important
in interpreting polarimetric SAR imagery and for its further usages in Earth observations. In this
paper, focusing on target scattering characterization and feature extraction, we generalize the ∆αB/αB

method, which was proposed under the reflection symmetric assumption, for the general backscatter
process to account for both the reflection symmetry and asymmetry cases. Then, we evaluate
the performances of physical scattering mechanism analysis methods for GF-3 polarimetric SAR
imagery. Radarsat-2 data acquired over the same area is used for cross validation. Results show
that GF-3 polarimetric SAR data has great potential for target characterization, especially for ocean
area observation.

Keywords: GF-3 satellite; radar polarimetry; synthetic aperture radar (SAR); physical
scattering mechanism

1. Introduction

Synthetic aperture radar (SAR) has all-weather, day and night imaging capabilities. In the
past twenty years, a number of space-borne SAR systems designed for various Earth observation
missions have been launched into Earth orbit. Typical polarimetric SAR systems include C-band
RADARSAT-2, C-band Sentinel-1, L-band ALOS-2/PALSAR, X-band TerraSAR-X/TanDem-X, and the
X-band COSMO-SkyMed satellite constellation. In August 2016, China launched the GF-3 satellite,
its first polarimetric SAR satellite, which was in operation since January 2017. The GF-3 satellite
has on-board a C-band high resolution SAR. It can work in twelve different imaging modes, in
which the highest resolution is up to 1 m. It can provide fully polarimetric measurements with
incidence angle ranging from 20◦ to 41◦, and the antenna look direction can be either right or left.
Nowadays, more and more polarimetric SAR satellites are going to be launched and planed. Efficient
usage of these polarimetric SAR images is becoming a crucial problem.

Only a few studies on the use of GF-3 polarimetric SAR data for Earth observation applications
can be found in the open literature. Wang et al. [1] used the rational polynomial coefficient model to
study the geometric accuracy of GF-3 imagery. Yang et al. [2] investigated the application of GF-3 data
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for extracting information of ocean internal waves. Pan et al. [3] showed that GF-3 data is effective for
fast vessel detection. Wang et al. [4] combined the parameters from Cloude-Pottier’s decomposition
with the convolutional network for GF-3 image classification. The application performance of GF-3
polarimetric SAR data still needs to be fully assesses.

Polarimetric SAR can fully characterize the backscattering property of targets by using two
orthogonal polarization channels, which allows development of different scattering models for different
kinds of scatterers. Polarimetric feature extraction is fundamental for polarimetric target interpretation.
Many parameter retrieval techniques and target decomposition methods [5–12] in terms of both
coherent and incoherent categories have been developed for target feature extraction. Among the
decomposition methods, the Cloude-Pottier decomposition provides a simple but effective method
to identify the target scattering mechanisms. This method has been investigated and used widely
in many applications. Yamaguchi’s four component decomposition [10] divides the backscattered
energy into four different scattering mechanisms based on four scattering models and is widely used
for polarimetric SAR image interpretation. In [13], based on the co-polarization ratio, we proposed a
new physical scattering mechanism classification method to explore the intrinsic relationship between
a single scattering mechanism and the stochastic backscattering process. This method was proposed
based on the assumption of reflection symmetry, which is usually valid for natural scatterers, while
for urban areas, backscatter can be both reflection symmetric and asymmetric due to the complexity
of urban structures and alignments. In this paper, we further analyze the method presented in [13]
under the reflection asymmetry condition. Then, together with Cloude-Pottier’s decomposition [6,14],
this method is applied to analyze the performance of GF-3 polarimetric SAR data for representing
target physical scattering mechanisms and terrain type classification capability.

The study is organized as follows: in Section 2, the method is introduced and analyzed for both
reflection symmetry and asymmetry cases. In Section 3, by using both GF-3 polarimetric SAR data and
Radarsat-2 polarimetric data collected over San Francisco area in the USA, several experiments are
carried out. Conclusions are drawn in Section 4.

2. The Co-Polarization Ratio-Based Parameters and the ∆αB/αB Diagram

2.1. Parameters in the Reflection Symmetric Case

For reflection symmetric scatterers, an arbitrary backscattering coherency matrix can be expressed
as follows [14]:

T =
⇀
k p

⇀
k

H

p =

 T11 T12 T13

T∗12 T22 T23

T∗13 T∗23 T33

 = Q(2θ)T

 t11 t12 0
t∗12 t22 0
0 0 t33

Q(2θ), (1)

where: 
t11 = 〈|h + v|2〉

t22 + t33 = 〈|h− v|2〉
t12 = 〈(h + v)(h− v)∗〉

; Q(2θ) =

 1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

.

h and v are the con-diagonalization parameters,
⇀
k p = 1√

2

[
SHH + SVV SHH − SVV 2SHV

]T
is the

Pauli-basis vector; and 〈· · · 〉 denotes ensemble averaging. From (1), a parameter αB can be derived,
which is a rotation invariant [13], as follows.

αB = tan−1
(

T22 + T33

T11

)
= tan−1

(
|ρr − 1|2 + 2|ρr| cos φr(1− |rc|)
|ρr + 1|2 − 2|ρr| cos φr(1− |rc|)

)
, (2)
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where:

ρr = |ρr|ejφr =

√√√√ 〈|Svv|2〉
〈|SHH|2〉

ej(〈φvv−φHH〉);

rc =
〈SHHS∗VV〉√
〈|SHH|2〉〈|SVV|2〉

.

It is observed that αB is determined by two statistical measures, i.e., ρr and rc, which are the ratio
of the averaged co-polarizations and the co-polarization coherence, respectively. In the second-order
coherency matrix, both parameters can be obtained directly. However, it is difficult to use the parameter
αB to describe the scattering coherence. Thus, we introduce a parameter ∆αB to relate the effect of rc,
as follows:

∆αB = αB − αav, (3)

where:

αav = tan−1

(
|ρr − 1|2

|ρr + 1|2

)
. (4)

∆αB can be used to measure the scattering randomness. Its sign is determined by the
co-polarization phase difference (CPD). If all elemental scatterers in a resolution cell are consistent with
one dominant scattering mechanism in both orientation and dielectric properties, where rc is large,
then ∆αB is close to 0◦; if scatterers vary considerably, where rc is small, then ∆αB is far away from
0◦. For targets dominated by double-bounce scattering, since the physical model of double-bounce
scattering is characterized by CPDs approaching to ±π [14], then according to (3), ∆αB should be
smaller than 0◦. In the next section, we analyze ∆αB and αB for the reflection asymmetry case.

2.2. Parameters in the Reflection Asymmetric Case

Scatterers with non-reflection symmetric structures are often characterized by the polarization
helicity τ. Helix scattering often occurs at places with complex man-made structures where
double-bounce scattering is usually strong. In general cases, the existence of target helicity can
add the detection of urban man-made buildings. When assuming that the scatterer has a significant
target helicity, the corresponding coherency matrix can be shown as follows:

T = Q(2θ)T

 t1 cos2 2τ t3 cos 2τ
j
2 t1 sin 4τ

t∗3 cos 2τ t2 jt∗3 sin 2τ

− j
2 t∗1 sin 4τ −jt3 sin 2τ t1 sin2 2τ

Q(2θ), (5)

where t1 = 〈|h + v|2〉/2, t2 = 〈|h− v|2〉/2, and t3 = 〈(h + v)(h− v)∗〉/2. The effect of target
orientation can be compensated by the target de-orientation procedure [15]. We assume the coherency
matrix to be with the position of 0◦ orientation angle. By considering the scattering asymmetric
parameter τ, the two parameters αB and αav in (2) and (3) has the following forms, as shown in (6)
and (7), respectively:

tan(αB) =
T22 + T33

T11
=
〈|h− v|2〉
〈|h + v|2〉

1
cos2 2τ

+ tan2 2τ (6)

tan(αav) =

(
|ρr(τ)− 1|2

|ρr(τ) + 1|2

)
(7)

where:

ρr(τ) =

√√√√ 〈|SVV(τ)|2〉
〈|SHH(τ)|2〉

ej(angle〈SVV(τ)S∗HH(τ)〉),
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{
SVV(τ) = −h sin2 τ + v cos2 τ

SHH(τ) = h cos2 τ − v sin2 τ
.

Then, the difference between (6) and (7) can be used to analyse the effect of helicity τ on the
parameter ∆αB, as follows:

∆αB = αB − αav = atan

(
〈|h− v|2〉
〈|h + v|2〉

1
cos2 2τ

+ tan2 2τ

)
− atan

(
|ρr(τ)− 1|2

|ρr(τ) + 1|2

)
(8)

We can observe that ∆αB increases with τ. When backscatter is contributed by returns from helix
type scatterers (reflection asymmetric scatterers), ∆αB is much closer to zero than those from reflection
symmetric scatterers which are with the property of τ = 0. For the symmetric case where τ = 0,
when r decrease, ∆αB approaches to −45◦.

2.3. The ∆αB/αB Scattering Mechanism Classification Diagram

From the above analysis, it shows that for both helix and double-bounce type scatterers, ∆αB < 0
is always satisfied. We should note that the co-polarization ratio is affected by the target orientation
angle, which would affect the scattering mechanism interpretation [15]. Thus before extracting ρr,
a de-orientation procedure should be applied to rotate the scattering coherency matrix to be with 0◦

orientation angle [15].
αB and ∆αB can be used to interpret the scattering mechanism and the scattering randomness,

respectively, which have similar physical interpretations for target characterization as the polarization
H and alpha. In [13], based on three scattering models and the alpha angle, a scattering segmentation
plane was proposed as shown in Figure 1. By using this diagram, target physical scattering
mechanisms can be classified into 8 classes. This diagram has similar interpretation for targets
as the H/alpha plane. The main difference is that the H/alpha plane could not tell the difference
between high entropy reflections from vegetated areas and urban areas, because both areas can
generate multiple backscatters. The ∆αB/αB diagram integrates the phase difference to represent the
scattering randomness. Two different zones, i.e., Zone 4 and Zone 2, are used to represent the multiple
backscattering processes from the urban area and the vegetated area, respectively.
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indicates tilted boundaries. Zone 1: high entropy Multiple scattering; Zone 2: high entropy 
vegetation scattering; Zone 4: high entropy double-bounce scattering; Zone 5: medium entropy 
vegetation scattering; Zone 6: medium entropy dominant surface scattering; Zone 7: low entropy 
double-bounce scattering; Zone 8: low entropy dipole scattering; Zone 9: low entropy surface 
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several typical terrain types, such as urban areas with different block directions, vegetated areas, 
and sea surface. Both GF-3 polarimetric SAR data and Radarsat-2 polarimetric SAR data acquired 

Figure 1. The ∆αB/αB scattering mechanism classification diagram, where the blue dash line indicates
tilted boundaries. Zone 1: high entropy Multiple scattering; Zone 2: high entropy vegetation scattering;
Zone 4: high entropy double-bounce scattering; Zone 5: medium entropy vegetation scattering; Zone 6:
medium entropy dominant surface scattering; Zone 7: low entropy double-bounce scattering; Zone 8:
low entropy dipole scattering; Zone 9: low entropy surface scattering.

3. Experiments

The San Francisco area in California (USA) was selected as the test site because this region has
several typical terrain types, such as urban areas with different block directions, vegetated areas,



Sensors 2017, 17, 2785 5 of 11

and sea surface. Both GF-3 polarimetric SAR data and Radarsat-2 polarimetric SAR data acquired over
this region are used for analysis. Radarsat-2 data is used as reference here, because the GF-3 sensor and
the Radarsat-2 sensor both operate at C-band and have similar system parameters. Pauli-basis images
and Google Earth images are shown in Figure 2. The GF-3 polarimetric SAR data was acquired on
15 September 2017 on ascending passes with right looking direction. The incidence angle ranges from
19.86 degrees to 22.59 degrees. The pixel space is about 5.37 × 2.25 m2. The image shown in Figure 2a
has 1288 × 3250 pixels. The Radarsat-2 data was acquired on 9 April 2008 on ascending passes with
right looking direction. The incidence angle ranges from 28.02 degrees to 29.82 degrees. The pixel
space is about 4.73 × 4.82 m2. The image shown in Figure 2b has 1441 × 1988 pixels. Both data sets
were filtered by a 7 × 7 sliding window.

Two kinds of experiments are carried out. First, the H/alpha method [6] and the ∆αB/αB method
are used to analyze and evaluate the capability of GF-3 data for representing typical scattering
mechanisms. Since the H/alpha method and the ∆αB/αB method have no relation with the total
backscattered energy, in the second part of the experiments, the iterative Wishart classifier [16] is
applied for further assessment based on the initial classified results obtained by the H/alpha and
the ∆αB/αB diagrams. The outlined themes in Figure 2a,b is typical terrain types representing the
urban, tilted urban, forest and ocean surface areas, which are used for quantitative assessment in the
following experiments. In Figure 2, it is observed that there are two kinds of city blocks. The city block
with buildings aligned along the azimuth direction is named as the urban area, and the city block with
buildings/streets aligned approximately at 45 degrees off the azimuth direction is named as the tilted
urban area. The tilted urban area often has specific orientation angles. We compared the Google Earth
images of this area obtained in 2008 and 2017, and found that by visual inspection the terrain types in
the selected areas were barely changed.

The physical scattering mechanism classification results by the H/alpha and ∆αB/αB methods
are shown in Figure 3. It is observed that by using the GF-3 data, both methods tends to classify
less pixels to the classes dominated by double-bounce scattering, i.e., the red pixels in Figure 3a,b
are less than those in Figure 3c,d. Compared with results of the Radarsat-2 data, results of the GF-3
data by using the H/alpha classification plane show little difference between the urban area and the
forest area. This implies that the H/alpha classification plane may not be suitable for GF-3 image
classification. By using the ∆αB/αB method, the capability of the GF-3 data for distinguishing different
scattering types is improved.In the Radarsat-2 image, the ocean surface is classified into two scattering
mechanisms, which is because the ocean surface area outlined in Figure 3 is highly affected by the
adjacent double-bounce scattering, while in the GF-3 image, this area is not affected by the adjacent
strong double-bounce backscatter. This may be due to the smaller incidence angle and the suppressing
method used for sidelobes or ambiguities in GF-3 imaging.
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Figure 2. The Pauli-basis images of (a) GF-3 data collected on 15 September 2017, and (b) Radarsat-2
data collected on 9 April 2008. The outlined areas by white polygons are typical terrain types
representing the ocean surface (1), forest (2), urban (3), and tilted urban (4) areas. (c) Google Earth
image obtained on 25 September 2008, (d) Google Earth image obtained on 17 June 2017.

We randomly selected 500 samples from each typical themes and Figure 4 gives the H/alpha
and the ∆αB/αB scatter plots. It is observed that by using the GF-3 data, samples from the ocean
surface distributed more concentratedly than those of the Radarsat-2 data, and are more easily
distinguished from the other theme pixels. This shows that the GF-3 data performs better in analyzing
the physical scattering mechanism of ocean surface compared with the Radarsat-2 data. In both the
H/alpha and ∆αB/αB diagrams, results of the Rasarsat-2 data shows that more pixels distribute in the
zones with higher alpha and ∆αB values in comparison with the results of the GF-3 data. By using
the outlined four typical terrain themes, Table 1 gives the percentages of the classified scattering
mechanisms of each area. zi (i = 1 · · · 9) denotes classification zone i (refer to Figure 1 for more details).
The classification accuracy (CA) is calculated based on the physical interpretation of the predominant
scattering mechanisms in each area. The CA for ocean is evaluated from the surface scattering, and thus
pixels fall in zone 9 are used for the calculation of CA. Similarly, pixels in zone 5 and zone 2 are used
to calculate the CA of forest, which is represented by the multiple vegetation scattering. Pixels in
zone 7 and zone 4 are used to calculate the CA of the urban area, which is represented by the multiple
even-bounce scattering. It is observed that the ∆αB/αB method provide higher overall classification
accuracies for both data sets compared with the H/alpha method in identifying the predominant
scattering types. By using the same method, the overall classification accuracy of the GF-3 data is
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not as good as that of the Radarsat-2 data. This implies that only the H/alpha plane or the ∆αB/αB

diagram is not sufficient for GF-3 image classification.
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Table 1. Classification accuracies (in percentage) of the H/alpha method and the ∆αB/αB method for
four typical regions. The four areas were outlined in Figure 2. z1− z9 are the segmentation zones in
both the H/alpha and ∆αB/αB planes [13].

(A) Results by Using the GF-3 Data

The H/alpha Method

% z9 z6 z5 z2 z1 z8 z7 z4 CA Overall Accuracy

Ocean 100 0 0 0 0 0 0 0 100

59.47
Forest 1.00 46.33 40.86 8.90 0.11 0.03 0.26 2.51 49.76
Urban 12.32 27.93 38.20 0.04 0 5.07 4.96 11.48 16.44

Tilted Urban 2.35 17.23 44.30 8.89 1.40 0.35 1.45 24.03 25.48

The ∆αB/αB Method

% z9 z6 z5 z2 z1 z8 z7 z4 CA Overall Accuracy

Ocean 100 0 0 0 0 0 0 0 100

62.58
Forest 1.74 44.50 35.81 12.54 1.09 0.54 2.21 1.58 48.35
Urban 8.06 30.85 22.54 0.95 0.02 13.03 5.71 18.84 24.55

Tilted Urban 2.96 16.78 32.10 11.29 2.77 2.39 17.32 14.40 31.72

(B) Results by Using the Radarsat-2 Data

The H/alpha Method

% z9 z6 z5 z2 z1 z8 z7 z4 CA Overall Accuracy

Ocean 99.87 0.13 0 0 0 0 0 0 99.87

69.90
Forest 0.17 29.28 49.95 14.94 0.35 0.08 0.30 4.93 64.89
Urban 1.62 10.67 35.65 0.22 0.04 1.03 14.30 36.45 50.76

Tilted Urban 0.83 4.81 26.70 16.54 7.18 0.23 3.19 40.51 43.71

The ∆αB/αB Method

% z9 z6 z5 z2 z1 z8 z7 z4 CA Overall Accuracy

Ocean 99.93 0.07 0 0 0 0 0 0 99.93

75.22
Forest 0.31 28.40 42.38 19.20 1.93 0.67 3.88 3.24 61.59
Urban 2.04 10.15 14.92 1.59 0.07 9.74 18.90 42.59 61.49

Tilted Urban 1.06 4.66 18.45 11.62 5.83 1.32 32.49 24.59 57.07

Table 2 gives the statistical values of the physical parameters for the four typical areas. The mean
value and the standard deviation are useful indicators for evaluating the between-class distance
and with-in class deviation. For the purpose of classification, generally it is better to have a large
between-class distance and a small with-in class deviation. We can observe that for the four themes,
the discrimination abilities of parameter H of the GF-3 data and the Radarsat-2 data behave very
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similar. On the aspect of alpha images, the Radarsat-2 data shows a larger center difference between
the forest area and the urban area in comparison with the GF-3 data, but both data sets have similar
standard deviations in alpha. On the aspect of ∆αB and αB. parameters, the GF-3 data gives smaller
standard deviations for the four themes than the Radarsat-2 data. However, it also bears a smaller
distance between the forest and the urban theme centers. For the ocean area, the GF-3 data shows that
the ocean theme is far away from the other theme centers with small standard deviations in all the
four polarimetric parameters, further indicating that GF-3 data has a great potential for monitoring
targets on the ocean surface.

Table 2. The averaged values of different parameters of the four selected typical theme areas, where u
denotes the averaged value and σ denotes the standard deviation.

u± σ Ocean Forest Urban Tilted Urban

H
The GF-3 data 0.22 ± 0.00 0.80 ± 0.01 0.57 ± 0.02 0.78 ± 0.02

The Radarsat-2 data 0.23 ± 0.00 0.83 ± 0.01 0.62 ± 0.02 0.81 ± 0.02

alpha(◦) The GF-3 data 8.77 ± 1.94 40.07 ± 6.78 42.25 ± 8.37 46.46 ± 8.40
The Radarsat-2 data 9.93 ± 3.06 42.94 ± 5.87 50.00 ± 9.43 51.87 ± 7.67

∆αB(
◦)

The GF-3 data 3.95 ± 0.93 29.60 ± 11.36 9.82 ± 20.55 16.72 ± 22.28
The Radarsat-2 data 4.00 ± 1.84 30.56 ± 14.20 -3.82 ± 22.00 7.06 ± 24.42

αB(
◦)

The GF-3 data 4.19 ± 0.97 36.22 ± 8.84 41.20 ± 12.25 46.60 ± 12.41
The Radarsat-2 data 4.39 ± 1.93 40.41 ± 9.32 52.77 ± 14.39 55.75 ± 12.29

The above analysis only considers the physical scattering mechanism of each terrain type.
Next, we analyze the statistical property of the GF-3 polarimetric SAR data. The Wishart classifier [16]
is a very classic classifier, which has been proved to be effective for many imaging scenarios and Earth
observing missions.
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Figure 5. The Wishart classifier results initialized by the H/alpha plane are shown in (a,c), and results
initialized by the ∆αB/αB diagram are shown in (b,d). (a,b) are results of the GF-3 data, and (c,d) are
results of the Radarsat-2 data.
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Before applying the iterative Wishart classifier, initial classification is needed. Both the H/alpha
and ∆αB/αB classification results can be taken as initializations. Iteration of the Wishart classifier is set
to stop when the total number of pixels switching between classes is less than 1% of the total number
of pixels. The final results are shown in Figure 5. It is observed that results of the GF-3 data have a clear
classified ocean surface. Since after the iteration pixels classified into class i(i = 1 . . . 9). No longer
correspond to the i-th zone of the scattering diagrams, we assume that in each typical scattering theme,
the class with the maximum classified pixel number is selected as the correct classification labels for
this area. After analyzing, we found that iterative results from zone 9 accounts for a significant number
of pixels for ocean surface. Iterative results from zone 6 and zone 2 take up majority pixels for the
forested area. Iterative results from zone 8 and zone 4 contribute a large proportion of pixels for the
urban area, and iterative results from zone 1 accounts for majority pixels for the tilted urban area.
By using this classification division, the confusion matrices for both GF-3 and Radarsat-2 data sets are
shown in Table 3. It is observed that when applying the iterative Wishart classifier results of the GF-3
data and the Radarsat-2 data produce similar overall accuracies. This shows that when considering the
statistical property in terrain classification, Radarsat-2 data and GF-3 data have similar performance.
Since the two data sets were collected on different dates, this kind of small difference may be caused by
disturbance of climate effects. For both data sets, the result initialized by the ∆αB/αB. diagram slightly
outperforms that by the H/alpha. initialization when the same convergence condition is applied.

Table 3. Comparison of the GF-3 and the Radarsat-2 data classification results by using the
Wishart classifier.

% Ocean Forest Urban Tilted Urban Others Overall Accuracy

(GF-3 data)
H/alpha-Wishart

Ocean 100 0 0 0 0

84.29
Forest 0.25 96.48 0.90 1.08 1.29
Urban 0.01 7.01 66.92 0.40 25.66

Tilted urban 0 29.33 3.04 58.53 9.11

(GF-3 data)
∆αB/αB-Wishart

Water 100 0 0 0 0

85.23
Field 0.25 96.47 0.91 1.09 1.28
Forest 0.01 7.00 67.10 0.40 25.49
Urban 0 27.27 3.04 60.56 9.13

(Radarsat-2 data)
H/alpha-Wishart

Water 99.16 0 0 0 0.84

84.98
Field 0.07 88.96 1.01 4.31 5.65
Forest 0 2.42 75.96 0.76 20.28
Urban 0 14.06 3.51 66.14 16.29

(Radarsat-2 data)
∆αB/αB-Wishart

Water 99.18 0 0 0 0.82

85.27
Field 0.07 88.65 1.04 4.31 5.92
Forest 0 2.32 76.82 0.76 20.11
Urban 0 13.83 3.54 66.17 16.46

4. Conclusions

In this study, the parameters αB and ∆αB, proposed based on the ratio of the co-polarization
parameters under reflection symmetric case, was analyzed under the reflection asymmetry case.
Then, both the ∆αB/αB diagram and the H/alpha method, together with the statistical Wishart classifier,
are applied to analyze the performances of GF-3 polarimetric SAR data for target physical scattering
mechanism interpretation and terrain classification. The ∆αB/αB diagram intrinsically integrates
the co-polarization phase difference to discriminate between target scattering mechanisms and thus
performs better than the classic H/alpha method. On average, the scattering mechanism identification
accuracy of the ∆αB/αB method is about 3–5% higher than that of the H/alpha method by using
the test data. The polarization entropy H shows similar performance with the GF-3 data and the
Radarsat-2 data. However, the polarization alpha performs poorly with the GF-3 data. Results show
that the ∆αB/αB diagram is effective in interpreting the physical scattering mechanism for GF-3 data.
When using the classic Wishart classifier for terrain type classification, the GF-3 data and the Radarsat-2
data give similar classification accuracies. Further, GF-3 data shows its advantages for ocean surface
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monitoring. In future works, we will focus on the development of the statistical model-based classifier
such that the GF-3 data can be efficiently used.
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