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Abstract: In view of a dynamic obstacle environment with motion uncertainty, we present a 
dynamic collision avoidance method based on the collision risk assessment and improved velocity 
obstacle method. First, through the fusion optimization of forward-looking sonar data, the 
redundancy of the data is reduced and the position, size and velocity information of the obstacles 
are obtained, which can provide an accurate decision-making basis for next-step collision 
avoidance. Second, according to minimum meeting time and the minimum distance between the 
obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk 
assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective 
function is established based on the improved velocity obstacle method, and a UUV motion 
characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is 
searched in velocity space. The corresponding heading and speed commands are calculated, and 
outputted to the motion control module. The above is the complete dynamic obstacle avoidance 
process. The simulation results show that the proposed method can obtain a better collision 
avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic 
environment. 

Keywords: unmanned underwater vehicle; velocity obstacle method; dynamic collision avoidance; 
forward-looking sonar 

 

1. Introduction 

The unmanned underwater vehicle (UUV), as an intelligent device for long-term remote 
underwater navigation, must carry a variety of sensors and special equipment for performing 
particular missions and tasks [1–3]. Among them, the forward-looking sonar in the UUV search and 
obstacle avoidance process has an unparalleled importance. How to effectively use the front view 
sonar to obtain information and achieve rapid obstacle avoidance has become a focus of attention [4–
6]. 

In the ocean environment, apart from static obstacles, UUV also faces the threat of dynamic 
obstacles such as underwater floating objects and the other underwater vehicles. The state of known 
dynamic obstacles can be predicted easily; however, dynamic obstacles in the underwater 
environment are sudden and unpredictable. For the safety of navigation, the collision avoidance of 
unknown dynamic obstacles is gaining more and more attention. 

The common collision avoidance methods include artificial aperture method (APF) [7–9], 
dynamic window method (DWA) [10] and behavior method [11]. They have strong adaptability to 
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local environments and rely on limited sensor information to avoid collisions and have high 
efficiency. As the external environment information and its own state has uncertain and partially 
unknown characteristics, people also often use the intelligent control algorithm in the collision 
avoidance process, including the fuzzy system, the expert system and deep reinforcement learning 
and so on. Conti [7] proposes an innovative decentralized approach for cooperative mobile 
manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs) based on a different use 
of potential field method. Navigation and control problems are reduced to the evaluation of the 
distance vector among the vehicles, object and obstacles. Subramanian [8] proposes a multi-point 
potential field (MPPF) Autonomous Underwater Vehicle (AUV) three-dimensional path-planning 
method that introduces the direction of search in the potential field, and does not need to calculate 
the potential gradient. In the paper [9], the proposal makes use of the Artificial Potential Field (APF) 
method with a Bacterial Evolutionary Algorithm (BEA) to obtain an enhanced flexible path planner 
method in environments with static and dynamic obstacles, taking all the advantages of using the 
APF method. Inara [10] applies DWA to autonomous navigation of AUV in a three-dimensional 
environment. The paper [11] proposes a technique for avoiding obstacles based on the behavioral 
structure. In this technique, when a mobile robot gets close to an obstacle, while moving toward its 
target, a rotational potential field is applied to lead the mobile robot to avoid the obstacle, without 
locating local minimum positions. Aim [12] presents type-2 fuzzy ontology-based semantic 
knowledge (T2FOBSK). The distance to closest point of approach (DCPA), time to closest point of 
approach (TCPA) and variation of compass degree (VCD) are used to calculate the degree of collision 
risk between AUVs and obstacles. A concise deep reinforcement learning obstacle avoidance 
(CDRLOA) algorithm is proposed with the powerful deep Q-network architecture to overcome the 
usability issue caused by the complicated control law in the traditional analytic approach [13]. In 
order to avoid dynamic obstacles in a timely manner during manufacturing tasks performed by 
manipulators, D. Han [14] proposes a novel method based on distance calculation and discrete 
detection. The paper [15] presents the design and implementation of sampling-based path-planning 
methods for a AUV to avoid collision with commercial aircraft and other moving obstacles. The 
velocity obstacle (VO) is a conical space that is generated in the robot’s velocity space, and also is a 
set of velocity vectors. As long as the current velocity vector is outside of the VO, the robot will not 
collide with an obstacle at any time in the future. Based on this feature, we can conduct real-time 
motion planning by combining the technology of graphics and the method of optimal control [16]. 
Ivan R. Bertaska [17] designed a planner that combines a local search based on the VO concept with 
a global, lattice-based search for a dynamically feasible trajectory. In the paper [18], the proposed 
approach is based on velocity obstacles (VO) method, which generated a cone-shaped obstacle in the 
velocity space. However, one of the important premises of VO is to assume that the moving obstacle 
only does the uniform linear motion; it cannot apply to the situation that the motion path of 
obstructions is arbitrary. Shiller presents the nonlinear velocity obstacle (NLVO) method, which will 
consider the shape, size and path curvature of an obstacle [19]. Based the above results, the article 
[20] introduces the time of avoiding the collision in order to estimate the distance among obstacles, 
and uses the A* algorithm to search the optimal velocity. On account of the shape, size and velocity 
uncertainty of obstacles, Kluge raises the probability velocity obstacle (PVO), which takes into 
account the error of barrier shape and speed. Jamie [21] describes a method of mixed reciprocal 
velocity obstacle, and it is used for coordinated avoidance of multiple sports. In the paper [22], a 
safety collision avoidance method is depicted for unmanned surface vehicles (USV) in a dynamic 
situation. It combines VO with the International Regulations for Preventing Collisions at Sea 
(COLREGS) and based on the maritime rules of crossover, transcendence and encounter, and sets up 
search rules for the best speed of collision avoidance. 

The method of velocity obstacle also exists all kinds of problems. 

1. The uncertainty of obstacle motion 

There is a variety of uncertainties for a moving obstacle, such as position, size and speed. An 
important prerequisite for the velocity obstacle is that the barrier speed will stay constant in the 
decision cycle, otherwise it will collide. NLVO pays attention to the obstacle of nonlinear motion, but 
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needs to know the trajectory of an obstacle, and it does not apply to unknown obstacles [19]. PVO 
takes the error of obstacle shape and speed into account, but demands to undertake multiple integral 
operations, so that a large computation is necessary [20]. The direct expansion method is the most 
common. Based on the error of the radius, position and speed, it will expand VO in the maximum 
expansion circle [22,23]. Van proposes that obstacles can be expanded in the maximum velocity [24]. 
The worst scenario is considered and the result is relatively conservative. The contribution of the 
paper [25] is that a method was demonstrated to extract the collision cones of circular and non-
circular objects using a laser sensor. 

2. The opportunity uncertainty of collision avoidance 

It is vitally significant for collision avoidance to determine the right opportunities in the course 
of UUV dynamic anti-collision. Through calculating velocity obstacle, we can easily weigh up UUV 
collision with the barriers and UUV safe navigation collision speed, but cannot gain the time and 
distance of obstacle avoidance, so that the opportunities of anti-collision are not clear. Paper [16] only 
takes the distance of collision avoidance into account. Paper [26] thinks over the time of anti-collision. 
In paper [27], the multi-step space that a robot can reach in the time of collision avoidance is 
presented, and the time factor and the distance factor are considered synthetically. Meanwhile, if 
there are numerous obstacles near the UUV, the UUV will have very few velocity candidates. In paper 
[28], a method for choosing optimal velocity components using the concept of pass-time and vertical 
clearance is proposed for the efficient movement of a robot. 

3. Processing of large static obstacles 

When using the velocity obstacle method to make dynamic avoidance decisions, the current 
literatures deal less with large static obstacles. The moving obstacles are only considered in few 
workspaces [16,21]. Although paper [29] pays attention to both static obstacles and moving barriers, 
it is assumed that the position and shape of static obstacles are known or that the size is small. If the 
large static obstacles that present in a dynamic environment are expanded directly, it may be 
overinflated, so that the optimal path cannot be found. In view of this situation, the minimum safe 
distance method is presented in paper [29]. A double-detection window of different size is used in 
article [28], and the static obstacles only are handled in the smaller window. This way may reduce 
the problem of excessive expansion of obstacles, but will lead to obtaining incomplete information 
about barriers. 

In view of the above questions, a dynamic obstacle avoidance system based on improved 
velocity obstacle is proposed in this paper. An outline of the paper is as follows: some background 
on the method of velocity obstacle is presented in Section 2. Section 3 details the dynamic collision 
obstacle method based on improved velocity obstacles, and includes the treatment of obstacles, the 
method of decision and so on. Extensive simulation results and a practical example of this method 
are provided in Section 4. Section 5 raises some discuss. Finally, concluding remarks are made in 
Section 6. 

2. Preliminaries 

2.1. Environmental Modeling 

In Figure 1, R is defined as UUV, and O  is a moving obstacle. The UUV and obstacles are 
expanded into the round moving body, and their radii are rR  and oR  respectively. In the global 
Cartesian coordinate system X-Y, UUV can be expressed as ( ) ( ( ), ( ))r rR t t t X v , and 

2( ) ( ( ), ( ))r r rt x t y t X  is center position of UUV, ( )r tv  is speed vector of UUV. Meanwhile, 
moving obstacles can be expressed as   ( ( ), ( ))o oO t t t X v , and 2( ) ( ( ), ( ))o o ot x t y t X  is obstacle 
center position, ( )o tv  is speed vector of the obstacles. t  sets as the current time, T  sets as the 
decision-making period, and the speed of UUV and all moving obstacles are assumed to be constant 
in the decision-making period. 
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Figure 1. Collision cone and velocity obstacle: (a) The relationship between UUV and an obstacle in 
X-Y coordinate system. (b) The relationship between UUV and an obstacle in speed obstacle 
avoidance system. 

A relative Cartesian coordinate system XR-YR is established by regarding current position of 
UUV as the origin, and its axis direction is same as the global coordinate, shown in Figure 1b. The 
UUV is assumed to be a particle; moving obstacles are expanded to generate correspondingly the set 
of configuration obstacles ( , )or orO RX , whose radius is or o rR R R  . The relative position of an 
obstacle in a local coordinate is ( ) ( ) ( )or o rt t t X X X . If we consider ( , )or orO RX  as the static 
obstacle, the relative speed of between UUV and a dynamic obstacle is ( ) ( ) ( )ro r ot t t v v v . Then 
UUV speed can be expressed as ( )ro tv , and the problem of dynamic collision avoidance can be 
transformed into static collision avoidance. In other words, collision avoidance decision of UUV and 
a moving obstacle O , that the state of motion is, respectively, ( ( ), ( ))r rt tX v  and ( , )or orO RX , is equal 
to collision avoidance decision of UUV with the speed of ( )ro tv  and the static obstacle. 

The condition that UUV collides with the static obstacles ( , )or orO RX  is ( ) ( , )ro or orO R   v X
, and the ray from the origin along the direction of velocity v is expressed by ( ) { 0}t t  v v | . In the 
velocity space, the collision cone (CC) that consists of a set of the velocity vectors is defined by 

{ | ( ) ( , ) }ro ro or orCC O R   v v X  (1) 

At the same time, the velocity obstacle (VO) is represented as 

{ , ( ) }oVO t 0 t CC   v | > v v  (2) 

So (2) can be equivalent to  

oVO CC  v  (3) 

Where denotes the Minkowski vector sum operation, and VO defines the set of the speed rv
that UUV may collide with an obstacle O . 

In conclusion, the condition that UUV collides with a single obstacle O  can be shown by 

( , )r or or rO R VO  X X v  (4) 

Meanwhile, we use the following formula to denote the condition that UUV collides with 
multiple obstacles. 

1
( , )

i i

n

r o r o r r r
i

O R VO


  X X v  (5) 
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2.2. Process Analysis of Speed Collision Avoidance 

As shown in Figure 2, in the relative Cartesian coordinate system, velocity component sV  that 
relative velocity rov  along the sight roX , and velocity component V  that rov  perpendicular to 

roX are expressed, respectively, as 



   

   

   

   

cos( ) cos( )
sin( ) sin( )

s r r ro o o ro

r r ro o o ro

V v v
V v v

 (6) 

Where the intersection angle of rov  and roX  is collision angle  , and the linear distance 
between the obstacle and UUV is roX , and the radius of the obstacle is orR . The safety angle is 

arcsin( )or

ro

R
 

X
. By comparing the relative relationship of collision angle   and safety angle  , 

the condition which UUV collides with the obstacle can be obtained.  

   (7) 

When the collision angle is bigger than the safety angle, as   , UUV will not collide with 
obstacles, so that UUV navigation with current speed is safe. 

Collision angle   can be expressed as 

tan( )
s

V
V
   (8) 

tan( )  is a function about , , ,r o r ov v   , as tan( ) ( , , , )r r o of v v   , tan( )arc f  . A derivation of 
  is 

2

dd
1
f
f

 


 (9) 

  is the intersection angle of rov  and rv . Further, we can turn the equation (9) into a 
differential equation on the derivation of  . 

sin( ) cos( )r r r

ro

v v
v

  


   
   (10) 

From the collision conditions of equation (10),  can be changed to make sure UUV safety 
collision avoidance by adjusting r  and rv . 

 

Figure 2. Process analysis of speed collision avoidance. 
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3. Dynamic Collision Avoidance Based on Improved Speed Obstacle Method 

In this section, we present a theoretical framework for UUV dynamic collision avoidance based 
on an improved speed obstacle method. It can be separated into obstacle information processing, 
collision risk assessment, key obstruction screening and collision avoidance decision. 

3.1. Obstacle Information Processing 

3.1.1. Obstacle Property Detection and Classification 

The task that UUV must complete is to reach the destination from a given starting position and 
avoid all kinds of unknown obstacles in the course of the movement. Therefore, the received obstacle 
information must be processed. In this paper, this processing can be presented in three steps as 
follows. 

1. Obstacle property detection and classification 

Combined with the forward-looking sonar and working characteristics of UUV, we will employ 
the moving target detection method presented in paper [24]. This method can identify the obstacle 
properties in the UUV working environment and distinguish between static obstacles and dynamic 
obstacles. 

2. The division of ranging points  

Obstacles can be expressed as several isolated sets of ranging points in Scanning charts of the 
forward-looking sonar. The distances between the points in the point set are closer, compared with 
the distance between point sets. The current data of ranging points can be divided based on this 
property. As long as the distance between adjacent points is less than a certain threshold, they are 
considered to belong to the same obstacle set. 

3. Match and classification of obstacle sets 

The division of ranging points is not enough to acquire the movement properties of the obstacles, 
so comparison of the difference between the adjacent time grid maps is necessary, and it can detect 
the movement of obstacles (movement or static). 

For two sets of obstacle points for adjacent moments 
1 2( ) ( 1),m n m n  , we defined the non-

coincidence function 1 2

1 2

( ) ( 1)

( ) ( 1)

1 m m

m m

n n
as

n n

S S
G

S S
  

  


 


, then combined with the centroid distance of the two 

obstacle sets 
1 1 2 2

( , ), ( , )as m m m mF     , and associative estimation function 
1 2

[ ( ), ( 1)]as m mJ n n    is 

built. 

1 2
[ ( ), ( 1)] GF

as m m
as as

ffJ n n
F G

      (11) 

Where Ff  and Gf  are coefficients. S means that the two barrier sets contain the number of 
grid points. The symbol   indicates the common grid number between the two sets, and   
denotes the overlapping grid number. When the distance from the center of mass is closer; the non-
coincidence degree is smaller; the value of the associated function is greater, and the possibility that 
two barriers is the same barrier is bigger. On account of different values of data association functions, 
the type of obstruction can be determined by setting the associated thresholds , ,same move static    
( same move static    ). 

3.1.2. Static Obstacle Clustering Based on K-Means Algorithm 

The static obstacles present some lone grid points 1 2{ , ,..., }no c c c  X X X  in ROGM (Rolling 
Occupancy Grid Map), and the distribution of point sets will not undergo dramatic changes in the 
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adjacent moment. Therefore, using the K-means clustering algorithm [30], the set of static obstacle 
points in ROGM can be partitioned with several smaller static stumbling blocks. These little static 
obstacles can be thought of as moving obstacles at zero speed, which then can avoid barriers by means 
of the speed avoidance method. Besides, we define the maximum clustering radius max

oR ( max 60moR   
in this paper) to prevent large static obstacles from expanding too much. When the radius of the static 
obstacle max

o oR R , we will adopt the secondary K-means clustering method to divide it. 

3.1.3. Motion Parameters Estimation and Uncertainly Analysis of Dynamic Obstacle 

1. Motion parameters estimation of dynamic obstacle 

The perceptual error of the previewing sonar can cause discontinuity in some of the motor 
parameters, and the obstacle chain, built by the match and classification method, may be broken. In 
order to make up for the missing information of the obstacle, the least-squares method is used to 
predict the location information and the motion parameters in the future. We define the magnitude 

( )ov n  and direction ( )o n  of dynamic obstacles velocity, acceleration ( )oa n  and angular velocity 
( )o n  respectively in n time. Therefore, the prediction velocity and direction of the moving obstacle 

in the 1n   moment. 

( 1) ( ) ( )

( 1) ( ) ( )
o o o

o o o

v n v n a n T

n n n T  

   

   


  (12) 

2. Uncertainly analysis of dynamic obstacle 

The acceleration information of the obstacle reflects the random movement of the obstacle. We 
assume that oa  and o  satisfy the normal distribution, 2~ ( , )o a aa N   , 2~ ( , )o N     , where 

2,  a a   is the mean and variance, respectively, of oa , and 2,      is the mean and variance, 
respectively, of o . ,o ov    is the greatest deviation, respectively, from ( )ov n  and ( )o n . 
According of the literature [31], the radius of the uncertainty circle is oR . 

2 2[ ( ) ] ( ) 2[ ( ) ] ( ) cos( )o o o o o o o oR T v n v v n v n v v n            (13) 

where max( 3 , 3 ) max( 3 , 3 )o a a a a ov T T                     ， . 
Therefore, the expansion circle with radius o oR R   is the largest area of the barrier at the next 

moment. 

3.2. Hazard Assessment of Collision 

UUV and obstacles are considered to be particle as shown in Figure 3. UUV is the point rX  
with speed rv , and moving obstacle is the point oX  with speed ov . rov  is the relative speed of the 
moving obstacle and the UUV. Drawing parallel line o aX X  parallel to rov  through the oX  point, 
and r aX X  perpendicular to o aX X  at aX  through the rX  point. Then aX  is the meeting point 
CPA [32]. 

According to closest encounter pointCPA , the minimum encounter time CPAT  of obstacles and 
UUV is as follows [24] 

2

0 ( ) ( )
( ( ) ( )).( ( ) ( )) else

( ) ( )

o r

o r r oCPA

o r

t t
t t t tT

t t

  
  
 

v v
X X v v=

v v
 (14) 

After calculating minimum encounter time, the minimum encounter distance of UUV and 
obstacles can be expressed as 

( ( ) ( ). ) ( ( ) ( ). )CPA o o CPA r r CPAD t t T t t T  = X v X v  (15) 
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Figure 3. The sketch map of DCPA and TCPA. 
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t1 and t2 are the time interval of arriving at closest encounter point; d1 and d2 are the distance 
range of arriving at closest encounter point. Each indicator has a different impact on the collision risk. 
With regard to UUV coarse-grained, which is acquired by weighting each indicator of collision risk, 
evaluation set is 

r d d CPA t t CPA= (D ) (T )    +  (18) 

, ( 1)d t d t      are the respective weighting coefficients, which can be given as 
0.35, 0.65d t   . 

3.3. Screening of Key Obstacles 

We introduce the concept of key obstacle for decrease the time of avoidance barriers. The key 
obstacle needs to satisfy three conditions. First, obstacles are within the UUV round decision range. 
Moreover, obstacles must be high-risk barriers (risk threshold 0.5riskT  , r riskT  ). In addition, UUV 
velocity vectors are located in the velocity barriers that be made up of obstacles. Therefore, the 
screening condition of key obstacles can be described as following. 

     ( , )i
o r s r risk r iD R T VO    X X v  (19) 

After screening, as long as one obstacle can accord with this condition, UUV must begin to 
prepare for avoiding obstacles. 

3.4. The Avoidance Decision Based on the Improved Speed Barrier Method 

3.4.1. The Risk of Speed 

O

oX

rv

ov

rov

ov
rX

R
aX
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In order to prevent collision avoidance conservative, we will associate the impact of motion 
uncertainty with different risk degree. As shown in Figure 4, we can gain two radius orR  and orR  
after turning obstacle motion uncertainty into position uncertainty, and form two collision zones. 
orR  and orR  respectively are lower and upper estimate radius of obstacle iO . orR  is determined 

by its location, size, speed error and other factors, here it is 

or o r p

or o r p o safe

R R R

R R R R R





  

     
 (20) 

Where p  is the estimation error of the radius of the obstacle in the obstacle classification, and 

safeR  is the safe distance. 

R
rov

RX

roL

RY

roX

orR

2


1

orR

 

Figure 4. The calculation of VR. 

We can base on the minimum estimated radius orR  to calculate the minimum safety angle 

1 arcsin( )or

ro

R
 

X
, and then the maximum safety angle 2 arcsin( )or

ro

R
 

X
. Hence, the risk of speed 

(VR) can be presented. 

1

2
1 2

2 1

2

1

( )

0

i roVR

 

 
  

 

 

 



  


 

v  (21) 

Where   is the collision angle. 
When the multi-obstacles 1 2{ }nO ,O ,...,O  exist, they will produce several different speed 

hazards to rv . So that the combined risk of speed for UUV can be depicted as VR . 

1
( ) 1 (1 )

n

r i
i

VR VR


  v  (22) 

3.4.2. Velocity Space 

Because the speed change of UUV is limited to one decision-making cycle, it cannot reflect the 
maximum speed space before collision of an obstacle and UUV. If collision avoidance planning is 
carried out in the space of single-step speed change, it is bound to cause shortsighted behavior of 
UUV. Predicting the velocity space can be up to within the multiple decision cycle ( )f ft t T    . 
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Considering kinematic constraints of UUV on the velocity space, the velocity space can be up to of 
UUV is 

cos( )
,

sin( )
x r r

r r r r r r r
y r r

v V
V V V

v V


  


     
          

    
 (23) 

where min max
max maxmax( , ), max( , )f f

r r r r r r

t t
V V v v V v v V

T T
 

    
 

, 

max max,f f
r r r r

t t
w w

T T
   

 
    

 
, maxv  is the maximum change in linear velocity, and maxw  is 

the maximum change in yaw angular velocity in period T . max
rV  is the maximum forward 

velocity, and min
rV  is the minimum forward velocity. 

In order to reduce the complexity of calculating, its kinematic constraints can be approximately 
shown with maximum amplitude changes of UUV linear speed and course changes in the decision-
making cycle T . For prediction time of speed can be up to, the paper takes 4ft T   . 

3.4.3. Time to Collision 

Time to collision (TTC) is the minimum time of collision between UUV and obstacles. When the 
relative speed of UUV and obstacles keeps unchanging, it is a common measure of collision risk 
evaluation, and the collision time also reflects the time limit of UUV safety. Thus, we should consider 
characteristics of UUV and motion characteristics of obstacles when calculating the collision time. 

After expanding obstacles, considering the maximum operational range of obstacles, the 
obstacle velocity obstacle iVO  is generated by the obstacle ( , )i or orO RX  which radius is orR . When 

r iVOv , the collision time  represents the shortest time of reaching the edge of the obstacle 
( , )i or orO RX  with the relative speed rov ,   satisfies the following equation 

( ( , ))ro i or orO R v X  (24) 

Where ( ( , ))i or orO R X  represents the edge of ( , )i or orO RX . If there are many solutions about the 
upper formula, we can take the minimum time solution as the collision time of rov . 

3.4.4. Optimization Objective Function 

Assuming that position rX  and target position GX  of UUV are known in any time, UUV 
collision avoidance in decision-making process satisfies the kinematic constraints. In view of 
minimum objective function of collision velocity in the decision-making cycle and speed space, 
dynamic collision avoidance based on the velocity obstacle method can be attributed to an 
optimization problem, and can be expressed as 

* arg min( ( )),  ,  d r G rJ  v v X X v  (25) 

To make UUV navigation tend to target, the target speed is defined as 

maxref G r
r

G r

V 




X Xv
X X

 (26) 

Selection of collision avoidance speed needs to consider two factors of security and reaching the 
target. Therefore, optimization object function of collision avoidance decisions is defined as 
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max

( ) 1

( )
( ) else

( )

ref
d t

p v
colr

VR

J
VR

tV


 

 
      

v

v vv
v

v
 (27) 

The optimization object function consists of the risk of speed, the target speed deviation and the 
collision time. ,  ,  p v t    are the weight coefficients, and we can define 1p v   . It should be 
noted that when ( ) 1VR v , UUV sailing at v  must collide with an obstacle. So v  is not desirable, 
and ( )dJ v  is given the maximum value as a punishment. 

From what has discussed above, the collision process based on the improved speed obstacle 
method can be presented with the flow chart of the dynamic obstacle avoidance, as shown Figure 5. 
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Figure 5. Flow chart of the dynamic obstacle avoidance. 

4. Simulations and Experimental Results 
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Simulations and Results are conducted to verify the effectiveness of the dynamic obstacle 
avoidance. As the front view sonar detection range and distance is limited, the algorithm does not 
recognize the moving obstacles from the rear of the UUV. In this paper, we assume that there is no 
obstacle coming from behind UUV. The shape of static obstacle is multi-deformation. The dynamic 
obstructions are considered as rectangles, wherein the diameter of the smallest circumscribed circle 
of the obstacle is equal to the diagonal length of the rectangle. 

4.1. Simulation Results and Analysis 

To verify the validity and accuracy of the dynamic collision avoidance method, the cases of 
dynamic simulation for collision avoidance are designed. Obstacle position and motion information 
are unknown. The motion parameters are defined as min 0.2 m sv  , max 3m srV  , min 0.2m srV   
and o

max 5 sw  . Estimation parameters of collision risk take 2 90md  , 1 40md  , 2 50st  , 

1 30st  . Number of static obstacle clustering settings K  is six. Optimization object function 
coefficients take 0.3p  , 0.7v  , 25t  . Rate risk model parameters take 0.3p  , 0.7v  , 
 25t  . 

Given the initial direction and speed of dynamic obstacles, the direction and velocity of dynamic 
obstacles are added to the white gauss noise to simulate the random motion of dynamic obstacles. It 
sailed from the starting point (0, 0) to the end (450, 450). The starting heading is 45°. 

We design two polygonal static obstacles 1,S 2S  and four dynamic obstacles 1 2 3 4, , ,M M M M  in 
environment to simulate the environment of UUV voyage. The total time of the collision avoidance 
is 253 s, and the UUV safely arrives at the destination. Figure 6 is the environmental map and the 
final dynamic collision avoidance results, the figure of the circular static configuration obstacles 
generated by the cluster. The blue points are the obstacle information detected by the front viewer. 
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Figure 6. The dynamic avoidance results. 

Figure 6 and Figure 7 are based on the same environment map, which shows the process of 
dynamic obstacle avoidance. The distribution of obstacles and the effect of avoidance can be found 
from this figure. The blue circle represents the UUV detection range. In Figure 7a, UUV finds the 
dynamic obstacle 1M , turns left and avoids successfully. Then it found six static obstacles, turned 
slightly left, and through that small space safely in Figure 7b. Obviously, the six smaller static 
obstacles are produced by clustering two large static obstacles. Similarly, Figure 7c shows that the 
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dynamic obstacle 2M  is successfully discovered and avoided. In Figure 7d, UUV find the obstacles 

3 4,M M  at the same time, and the 4M  is considered to be the key obstacle after the decision. Finally, 
UUV reaches the target point. Figure 8 shows the UUV heading, speed and the shortest distance with 
obstructions in this process. Throughout the process, UUV heading and speed changes are smaller, 
we can see that the proposed method was conducted well. The minimum distance between UUV and 
obstacles is 38.51 m, which can fully guarantee the safety of UUV. 
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Figure 7. The dynamic avoidance results in different phase: (a) The first phase of dynamic avoidance; 
(b) The second phase of dynamic avoidance; (c) The third phase of dynamic avoidance; (d) The fourth 
phase of dynamic avoidance. 
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Figure 8. The heading, velocity and the shortest distance. 

4.2. Experimental Results and Analysis 

In order to test the adaptability of the method in the unknown dynamic environment, we design 
the following experiment. To get the data to detect obstacles, the sensing device uses the multi-beam 
forward-looking sonar, as shown in Figure 9a. The multi-beam forward-looking sonar has 60 ceramic 
receivers, the open angle is 90°, vertical open angle is 6°or 12°, angular resolution of sonar is 1.69°, 
the maximum detection range is 200 m. 

The multi-beam forward-looking sonar uses the occupancy grid to represent the local 
environment. Sonar images of the object are shown in Figure 9b, the object’s color represents the 
strength of the signal. Sonar images are collected to be discretized into the grid in every moment, as 
shown in Figure 9c. In terms of accuracy and calculation, the size/resolution of the grid is selected as 
5 m × 5 m. UUV can easily extract the various parameters of the obstacle to avoid obstacles by using 
the occupancy grid. 

 
(a) 

 
(b) (c) 

Figure 9. Expression sonar image by occupancy grid: (a) Sonar sensor and PC104 processor; (b) Sonar 
images of object; (c) the grid figure. 

Based on sonar information processing capabilities, we designed a static obstacle avoidance 
experiment based on the proposed algorithm. First, the UUV determined that it was a dynamic 
obstacle of zero velocity (static obstacle) by processing the data obtained by sonar and classified the 
static obstacle into several small landmark obstacles by clustering. Then UUV used the improved 
speed obstacle method to avoid obstacles in time. The experimental results are shown in Figure 10. 
In the local NED coordinate system, selecting a point as the origin to establish relative coordinates, 
north sets as Y-axis, east sets as X-axis. It sailed from the starting point (80, −125) to the end (320, 
−575). A static obstacle was located in point (150, −250). The starting heading is 135°. 
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Figure 10. The dynamic avoidance results. 

The blue line represents the shortest path of UUV, the red dotted line is the path in offline 
planning. In Figure 10, UUV sailed according to the direction of the shortest path; when UUV detects 
obstacles, UUV gets accurately around the obstacle to target. Due to the interference of temperature 
gradient, surface ware, sonar carrier motion and so on, there is a certain virtual image rate in sonar, 
which makes collision avoidance decision time greatly prolonged. The entire avoidance decision-
making process takes 1–2 s, and the occupied computer memory is about 2 MB. The introduction of 
risk of speed expansion strategy can eliminate the problem of conservative collision avoidance of 
direct expansion of the dynamic obstacles, and improve the efficiency of collision avoidance. 

5. Discussion 

Through the above simulations and experiment, we can prove the following conclusions: 

1. The introduction of collision risk and screening key obstacles can obtain the right moment to 
avoid collision. 

2. Large-scale static obstacle clustering treatment and common identification of moving and static 
barriers can reduce the complexity of dynamic collision avoidance, and effectively avoid large 
static obstacles. 

3. Based on the speed risk, the puffing strategy can solve the conservative collision avoidance 
problems caused by the direct expansion of obstacles. 

In the future, on the one hand, we will conduct a more comprehensive analysis of the dynamic 
obstacle avoidance process, making it suitable for a variety of complex environments such as waves 
and undercurrent. On the other hand, we will put forward a dynamic obstacle avoidance method 
based on improving speed obstacles in practice. By replacing more accurate multi-beam forward-
looking sonar and faster processors, our algorithm can be used in a real marine environment. 

6. Conclusions 

This paper proposes the dynamic collision avoidance method based on improved velocity 
obstacles, and the real-time collision avoidance problem under the dynamic obstacle environment 
can be solved. Aiming at the existing problem of velocity obstacle method, this method is improved. 
According to DCPA and TCPA requirement, we establish a collision risk evaluation model, and 
combine with the discriminant conditions of velocity obstacle. Then, we can get the right timing of 
collision avoidance, reduce the computing burden of collision avoidance decision-making and 
improve the speed of collision avoidance. The motion uncertainty of obstacles and velocity obstacles 
is considered. The collision impact brought by obstacle motion uncertainty is reduced, and the 
conservative problem of dynamic obstacle collision avoidance brought by direct extrusion can be 
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avoided. The comprehensive optimization objective function of speed risk degree, the target speed 
deviation and the collision time is designed, and it can dramaticly improve the security of collision 
avoidance. Meanwhile, the UUV can reach to the target location as soon as possible. Finally, the 
simulation results show that the proposed method has quick speed of decision-making for collision 
avoidance, it can avoid all kinds of obstacles better under a dynamic environment, and has a good 
adaptability to the unknown dynamic environment. 
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