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Abstract: This paper focuses on the problem of estimating and tracking time-varying
direction-of-arrivals (DoAs) with an antenna array. A sequential DoA estimation method is proposed
by extending the capon and sparse iterative covariance-based estimation (C-SPICE) method, which is
an iterative off-grid method for estimating constant DoAs. Then, a moving average initialization
technique is introduced such that the spatial spectrum information estimated in this snapshot
can be utilized in the next one. In uniform linear arrays (ULAs), we replace the uniform grid
in direction domain with that in a “frequency” domain, to improve estimation accuracy without
additional complexity in practical applications. The validity and efficiency of the proposed methods
are demonstrated through numerical experiments.
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1. Introduction

Tracking directions of multiple moving targets by antenna arrays has widely applications in both
military and civilian fields, such as surveillance, air traffic control, and wireless communication [1,2].
In recent two decades, many direction-of-arrival (DoA) tracking algorithms have been proposed.
For example, the subspace-based methods (see [3] and references therein), methods for wideband
signals tracking (see [4] and references therein), and methods for two-dimensional direction tracking
(see [5] and references therein). Comparing with DoA estimation, tracking algorithms need not only to
estimate DoAs repeatedly and sequentially over time, but also to associate DoA estimates to tracks
according to their sources, which is referred to as data association. Hence, many data association
methods for multiple target tracking are also proposed [6–10].

Recently, the research on DoA estimation has been evolved due to the developments in sparse signal
reconstruction (SSR) methods and many algorithms are proposed accordingly (see [11–13] and references
therein). However, the SSR method designed for DoA tracking is rare. Some methods [14,15] can be
used for DoA tracking, but they have a relatively high computational complexity. In [16], an efficient
algorithm named by tracking via low-rank plus sparse recovery (TvLSR) is proposed. Different from
traditional tracking algorithms, where DoAs are estimated and tracked repeatedly and sequentially
over snapshots (or time windows), TvLSR estimates tracks of sources over all snapshots once for all.
Hence, it is actually a block trajectory estimation method. A Bayesian sparse-plus-low-rank matrix
decomposition (BSPLR) method is also proposed to improve the estimation accuracy of TvSLR [17].
These methods are based on on-grid models, whose estimation accuracy is limited by size of the
grid [11]. Although an off-grid model can be incorporated, BSPLR is computationally expensive.
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A capon and sparse iterative covariance-based estimation (C-SPICE) method, which estimates
DoAs of stable sources based on an off-grid model, is proposed in [11] for a better estimation accuracy
and computational complexity tradeoff. In this paper, we extend C-SPICE to track DoAs of moving
targets by exploiting the iterative structures in it. Specifically, an efficient sequential implementation of
C-SPICE is introduced to estimate DoAs in each snapshot. To save number of iterations, a moving
average technique is proposed such that the spatial spectrum information estimated in this snapshot
can be utilized to construct a good initial point for iterations in the next one. In uniform linear
arrays (ULAs), we replace the uniform grid in direction domain by the grid in a “frequency” domain,
whose density adapts automatically to the resolution ability of a ULA and is greater when DoA is
small. Since the effective scanning range of a ULA may be no more than (−60◦, 60◦) in some practical
applications [1], the new grid can improve estimation accuracy without additional complexity.

Notations: The operators (·)T and (·)H denote transpose and conjugate transpose, respectively, and
diag(x) returns a diagonal matrix with main diagonal x. ‖a‖ and ‖A‖ denote the l2-norm and Frobenius
norm of a and A, respectively. CN×1 represents the space of N-dimensional complex column vectors.
For an integer N, [N] is defined as {1, 2, · · · , N}. I represents an identity matrix and 1N an N× 1 vector
with entries 1. Re(·) denotes real part of a complex and tr(·) calculates the trace of a matrix.

2. Problem Formulation

2.1. Signal Model

Consider the problem of estimating DoAs of M far-field narrow-band sources based on the
outputs of an N-element array. A nonparametric model of the array output can be expressed by [14]:

y(t) =
K

∑
k=1

a(θ̃k)xk(t) + n(t), t ∈ [Nt], (1)

where y(t) ∈ CN×1 and n(t) denote the snapshot and the noise at time t, respectively, {θ̃k}K
k=1 is a

uniform and discrete grid covering the possible range of DoAs, a(θ̃k) ∈ CN×1 is the steering vector
of θ̃k, xk(t) ∈ C is the unknown signal waveform of a possible source at θ̃k, and M < N � K.
Obviously, the vector x(t) = [x1(t), · · · , xK(t)]T is M-sparse where a nonzero entry corresponds to
a source.

In a tracking scenario, suppose that DoAs of sources vary continuously and slowly over
neighbouring snapshots. Then the actual DoA of m-th source at time t, i.e., θm(t), may not locate
on but close to some grid point θ̃mk , and thus θm(t) = θ̃mk + εmk (t). With this modeling mismatch,
the signal model (1) can be modified into [18,19]

y(t) =
K

∑
k=1

[a(θ̃k) + e(θ̃k)εk(t)]xk(t) + n(t), (2)

where e(θ̃k) is the first order derivative of a(θ) at θ = θ̃k, εk(t) ∈ [−lε, lε], and 2lε denotes the distance
between neighbouring grid points. Equation (2) can be expressed in a matrix form

y(t) = (A + EΦ(t))x(t) + n(t), (3)

where

A = [a(θ̃1), a(θ̃2), . . . , a(θ̃K)], (4)

E = [e(θ̃1), e(θ̃2), . . . , e(θ̃K)], (5)

Φ(t) = diag(ε(t)), ε(t) = [ε1(t), ε2(t), . . . , εK(t)]T . (6)
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2.2. The C-SPICE Algorithm

C-SPICE is a grid-based off-grid sparse estimation method for constant DoA estimation [11].
It enjoys an effective tradeoff between modeling accuracy and computational complexity.
Here, we introduce it briefly with the time index “(t)” omitted for simplicity. First, the following
assumptions are required in deriving the method:

1. The noise is spatially and temporally white Gaussian with covariance σI;
2. the noise is uncorrelated with the signals;
3. the signals are uncorrelated with each other.

Note that the third assumption is not essential, but only required during the derivation [11,14].
With these assumptions, there is

R = E[yyH ]

=
K

∑
k=1

pk(a(θ̃k) + e(θ̃k)εk)(a(θ̃k) + e(θ̃k)εk)
H + σI

=BH DHPDB, (7)

where pk = E[|xk|2] and

B = [A, E, I]H , D =

[
I Φ 0
0 0 I

]
, (8)

P = diag([pT , σ1T
N ]), p = [p1, p2, . . . , pK]

T . (9)

Define R̂ = ∑T
t=1 y(t)yH(t)/T. When T > N such that R̂−1 exists, the following optimization

problem can be constructed under covariance fitting criterion [11]

min
p,σ,ε

f (p, σ, ε) (10a)

s.t. f (p, σ, ε) = tr(R̂R−1) + tr(R̂−1R), (10b)

pk ≥ 0, |εk| ≤ lε, ∀k ∈ [K], (10c)

σ ≥ 0. (10d)

Problem (10) is in general nonlinear and nonconvex (see Proposition 1 in [11]) and C-SPICE is a
method to approach its optimal solution. In order to make the paper self-contained, below we provide
a different and new derivation of C-SPICE.

First, it is obvious that the grid size K is usually large and thus |εk| ≤ lε � 1, ∀k ∈ [K].
Hence, the objective function f (p, σ, ε) can be simplified by letting ε = 0 in the first term, i.e.,
tr(R̂R−1). Then substituting (7) into (10) and omitting the terms independent of ε, we obtain

min
p,ε

K

∑
k=1

pk‖ãk + ẽkεk‖2, s.t. pk ≥ 0, |εk| ≤ lε, ∀k ∈ [K], (11a)

where ãk = R̂−1/2a(θ̃k) and ẽk = R̂−1/2e(θ̃k). If pk is given, problem (11) is convex and εk can be
estimated by the closed-form solution

ε̂k =


ε̂k0, if |ε̂k0| ≤ lε,
−lε, if ε̂k0 ≤ −lε,
lε, if ε̂k0 ≥ lε,

(12)
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where ε̂k0 = −Re{ãH
k ẽk}

‖ẽk‖2 . In (12), it is seen that ε can be determined without the information of the tuple
(p, σ).

The second step estimates (p, σ). Let εk = ε̂k and define gk = a(θ̃k) + ε̂ke(θ̃k), ∀k.
Then problem (10) is simplified to

min
pk≥0,∀k∈[K],σ≥0

tr(R̂R−1
ε̂ ) + tr(R̂−1Rε̂), (13)

where Rε̂ = ∑K
k=1 pkgkgH

k + σI. Problem (13) can be solved by SPICE. For self-containedness,
a derivation of SPICE, which is different from that of [14], is provided in the appendix.

Finally, with the estimates of ε and p, DoA estimates can be obtain by

θ̂m = θ̃km + ε̂km , m ∈ [M], (14)

where km denotes the index of the m-th highest peak in p.

3. A Sequential Implementation of C-SPICE

In this section, we extend C-SPICE to the scenario of estimating moving targets in the hope of
deriving a fast and accurate tracking algorithm.

3.1. Sequential Implementation of C-SPICE

First, we introduce a sequential implementation of C-SPICE. Suppose that DoA estimation at time
t is based on the most recent W(≥ 1) snapshots. Denote Y(t) = [y(t−W + 1), · · · , y(t)] and data
correlation R̂(t) = Y(t)Y H(t)/W. Based on the stochastic maximization likelihood (SML) criterion [20],
DoAs at time t can be estimated by minimizing the following objective function

fL(p, σ, ε) = ln |R|+ tr(R−1R̂(t)). (15)

Since ln |R| is nonconvex in (p, σ, ε), we approximate it by the first-order Taylor expansion at
some point R0 (which is a positive definite matrix close to the true R) and then fL(p, σ, ε) by

fR0(p, σ, ε) = tr(R−1
0 R) + tr(R−1R̂(t)). (16)

If W > N, then R0 = R̂(t) is a good approximation of R and fR0(p, σ, ε) becomes f (p, σ, ε)

in (10b). So DoAs can be estimated directly by using C-SPICE. Otherwise, when W < N or source
signals are highly correlated, R̂(t) does not coincide with the definition of R in (7). In this case, we can
minimize fR0(p, σ, ε) to estimate (p, σ, ε) with a given R0 and then update R0 with the estimated
(p, σ, ε), iteratively. This iteration is referred to as outer iteration, where R0 can be initialized by I.
In each outer iteration, fR0(p, σ, ε) can be minimized by a modification of C-SPICE, in which ãk =

R−1/2
0 a(θ̃k) and ẽk = R−1/2

0 e(θ̃k) in Equation (12) and the iterations updating (p, σ), i.e., Equation (A5),
are modified to

pk = p̂k‖R̂
0.5R−1

ε̂ gk‖/‖R
−0.5
0 gk‖, k ∈ [K], σ = σ̂

∥∥∥R̂0.5R−1
ε̂

∥∥∥/
√

tr(R−1
0 ). (17)

We call the iterations updating (p, σ) by (17) inner iteration. When outer iteration converges,
DoAs can be obtained by (14). We summarize the sequential implementation of C-SPICE (SIC-SPICE)
in Algorithm 1, where I2 denotes number of outer iterations in each snapshot and I1 the number
of inner iterations. If W � N, Step 12 can be simplified by replacing R̂0.5

(t) with Y H(t)/
√

W in
Equation (17), which can be readily derived by modifying R̂0.5

(t) to Y H(t)/
√

W in the constraint
of (A1).
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Algorithm 1 A Sequential Implementation of C-SPICE (SIC-SPICE)

1: Fix K, W, I1, and I2, and set t = W;
2: repeat Input Y(t);
3: if W < N and source signals are uncorrelated then
4: R0 = I and ε̂ = 0;
5: else
6: R0 = R̂(t) and estimate ε by (12);
7: end if
8: for i2 = 1 to I2 do
9: Initialize (p, σ) by PER;

10: for i1 = 1 to I1 do
11: Construct R by (7);
12: Update (p, σ) by (17);
13: end for
14: Construct R0 by (7);
15: Estimate ε by (12);
16: end for
17: Obtain DoA estimates by (14) ;
18: Let t = t + 1;
19: until t = Nt.

Since SIC-SPICE is an iterative method, its convergence behavior needs further discussion. In each
snapshot, there are two types of iterations. In inner iterations, the tuple (p, σ) is estimated with ε = ε̂.
According to the derivation in appendix, inner iterations can converge to a global optimal point (which
depends on ε̂) from any initial value in the interior of feasible set. On the other hand, if function (16)
can be minimized in each outer iteration, then the obtained optimal solutions reduce the value of
fL(p, σ, ε) monotonically (see (28)–(31) in [11]). However, C-SPICE is not guaranteed to provide a
point minimizing (16). In this case, we use the solution of outer iterations that minimizes fL(p, σ, ε)

for DoA estimation.
The complexity of SIC-SPICE in each snapshot is O(N3KI1 I2) [11]. When N is given, we may

pursuit an accuracy and complexity trade-off by choosing K, I1, and I2 intelligently.

3.2. A Moving-Average Initialization Technique

To obtain an accurate estimation of (p, ε), the required number of inner iterations in SIC-SPICE,
i.e., I1, will be large, which means that a large processing time is required for each snapshot. This is
undesirable, especially when the processing time is larger than the snapshot interval.

On the other hand, in the tracking scenario, one can assume that the variations of actual DoAs
between neighbouring snapshots are small such that |θm(t)− θm(t− 1)| ≤ 2Blε, ∀m, t, where B is an
integer. This assumption is reasonable since time interval between neighbouring snapshots is usually
tiny. Therefore, the optimal (p, σ) of this snapshot is close to that of the next one, which means that
outputs of this outer iteration can be a good initial point for the next. Unfortunately, these outputs
cannot be used directly to initialize (p, σ), which can be readily observed by setting pk = 0 for some k.
Then, according to (17), pk still equals zero even if a target has moved to θ̃k. To overcome this problem,
we propose a moving-average (MA) technique for initializing p and σ in each outer iteration, which is,

pk =
1

2B + 1

k+B

∑
l=k−B

p̂l + εc, ∀k ∈ [K], (18a)

σ = σ̂ + εc, (18b)
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where εc is a small number preventing pk and σ being zeros and B controls the size of the block
dispersing amplitude of pk. Then the information obtained in previous iteration can be used and the
algorithm will not converge to a trivial solution.

3.3. SIC-SPICE for ULAs

In a ULA, a steering vector can be expressed by a(θ) =
[
1, ej 2π

λ d sin(θ), . . . , ej 2π
λ (N−1)d sin(θ)

]T
,

where λ and d denote wavelength and element spacing, respectively. Then, instead of using the
uniform grid in θ-domain, i.e., {θ̃k}K

k=1, we use a uniform grid in the “frequency” domain, i.e., { fk}K
k=1,

where f = 2d
λ sin(θ). Without loss of generality, let us assume d = λ/2. Thus the domains of θ and

f are (−π
2 , π

2 ) and (−1, 1), respectively. By mapping { fk}K
k=1 into the θ-domain, the resulting grid

is more fine around θ = 0 and more coarse as θ approaching ±π
2 . Since the resolution ability of a

ULA decreases monotonically as the DoA θ approaching ±π
2 [1], the density of grid in “frequency”

domain adapts to resolution of the ULA automatically. Moreover, in practical applications, the effective
working scope of a ULA is usually less than (−π

2 , π
2 ) [1]. Hence, for a given grid size K, { fk}K

k=1 enjoys
a more fine grid and thus higher estimation accuracy for DoAs close to 0.

In addition, since the correlation matrix R can be constructed based on the result of outer iterations
in SIC-SPICE, subspace methods, such as multiple signal classification algorithm (MUSIC) [21], can be
used to estimate DoAs in Step 17 of Algorithm 1. The advantages of subspace methods are two folds:
first, estimation accuracy of the algorithm is no longer limited by the capacity of grid; second, it may
avoid missing true DoAs at nearby grids, which produce only one peak.

4. Simulations

In this section, we evaluate the performance of the proposed algorithms by comparing them with
existing SSR-based methods. The compared algorithms include SPICE [14], Algorithm 1 (SIC-SPICE),
Algorithm 1 with moving average initialization (SIC-SPICE+), Algorithm 1 with moving average
initialization based on uniform grid in “frequency” domain (SIC-SPICE++), tracking via low-rank plus
sparse matrix decomposition (TvLSR) [16], and Bayesian sparse-plus-low-rank matrix decomposition
method (BSPLR) [17]. For all SPICE kind of methods, we set W = 1 such that DoAs are estimated
based on the latest snapshot, apply MUSIC algorithm to estimate DoAs, and use B = 1 in the moving
average technique (18). In SPICE, the maximum number of iterations is 100 for the first snapshot and
6 for the others. In SIC-SPICE methods, we set I1 = 100 for the first outer iteration in the first snapshot,
I1 = 3 for the others, and I2 = 2. All the parameters in TvLSR and BSPLR are chosen according to
those in [16,17], respectively, and the maximum number of iterations for both is 150.

In all simulations, ULAs with half-wavelength spaced sensors is used, and the number of the
signal sources in space is M = 3. Two kinds of trajectories are considered:

• Case-1: The first two sources move from 35◦ to 5◦ and from 15◦ to −5◦, respectively,
over 100 snapshots. The third one moves following the function θ3(t) = −25◦–8◦ sin(0.05t).

• Case-2: The trajectories of the first two sources are the same as those in Case-1. The third one
moves according to θ3(t) = −5 + 0.25t + 5 sin(0.05t).

In both cases, the signal of the m-th source is generated by xm(t) = ςm exp(−jυm(t)), where υm(t)
is uniformly distributed in [0, 2π) and amplitudes have the relationship ς2

m = 3ς2
m−1. The signal to

noise ratio (SNR) is defined by 10 log10(ς
2
1/σ).

A prerequisite for multiple-target tracking is associating DoA estimates between neighbouring
snapshots. This problem is nontrivial and has been discussed in many literatures (see [6–10]
and literatures there in). Hence, we assume that the estimates are well associated in simulations.
For example, we may assume that powers of different sources are different such that DoA estimates
can be associated according to signal power estimation. Alternatively, in ULAs, DoA estimates
can be updated by using Newton’s method to the MUSIC spectrum with estimates in the previous
snapshot as initial values. Then, the estimates of neighbouring snapshots are associated automatically.
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In simulations, we assume that sources have different powers, i.e., ς2
m = 3ς2

m−1, such that data
association can be easily achieved based on power estimation. This assumption is not necessary when
a more powerful data association method, such as those proposed in [6–10] are used.

In first experiment, the trajectories estimated by proposed methods are illustrated. The parameter
settings are N = 20, K = 10 N, and SNR = 10 dB. Figure 1 shows estimated trajectories of SIC-SPICE+
in both cases. The estimated trajectories of SIC-SPICE and SIC-SPICE++ are similar and omitted here.
In Figure 1a, we can see that SIC-SPICE+ can estimate DoAs correctly. In Figure 1b, fails may happen
at cross points. However, by careful observation, it can be found that these fails are caused by the
naive data association technique, which does not work at the crossing point. Since data association is
out of the scope of this paper, we will focus on Case-1 in the following simulations.
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Figure 1. Tracking performance of SIC-SPICE+ with N = 20, K = 10 N, and SNR = 10 dB. The solid
line and markers without line denote actual tracks of sources and estimated DoAs of SIC-SPICE+,
respectively. (a) Case 1, (b) Case 2.

The second experiment compares DoA estimation performance of the proposed methods and
SPICE in Case-1. The root mean square error (RMSE) versus snapshot index obtained through 50 trials
are shown in Figure 2. The RMSE performance of the second source is similar to that of the first one and
omitted. We can see that SIC-SPICE outperforms SPICE slightly. The reason is that DoA estimations of
both method are not limited by grid points when MUSIC is applied, and off-grid model of SIC-SPICE
is more accurate. Moreover, SIC-SPICE+ and SIC-SPICE++ can reduce RMSE significantly. The reason
is that SPICE and SIC-SPICE cannot converge to the optimal solution with a small number of iterations,
while methods based on moving average have a better initial point and thus converge faster to the
optimal point.

The third experiment evaluates performance of the proposed methods with different grid sizes.
ULAs with N = 20 and N = 30 are considered, respectively. The RMSE curves of different algorithms
are shown in Figure 3, where each point is based on results of 50 trials. Again, RMSE curve of the
second source is omitted. It is seen that TvSLR performs worst. The failure of TvSLR is caused by two
reasons: when the SNR is not high enough, e.g., for the first source, TvSLR may suffer from false DoA
estimates; when the SNR is large, e.g., for the third source, its RMSE is lower bounded by a number on
the same order of 2lε, for the reason that its DoA estimates are restricted by grid points. BSPLR can
overcome false estimation, but its estimates are still restricted by the grid. It is seen in Figure 3a that
the performance improvement caused by moving average initialization becomes larger as the increase
of K. The reason is that moving average can provide a more precise information on spatial spectrum
based on estimates of the previous outer iteration. Furthermore, SIC-SPICE++ is attractive when K is
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small. This is because the grid of SIC-SPICE++ is more fine around zero and more coarse around ±90◦,
and the range of true DoAs is around zero. Although performance loss may be induced if DoAs are
large, the effective working area of a ULA is usually in (−60◦, 60◦) in many practical applications [1].
In Figure 3b, when K is too large such that the assumption |θm(t)− θm(t− 1)| ≤ 2Blε with B = 1 is not
satisfied, moving average leads to performance loss in SIC-SPICE+ and SIC-SPICE++. At this point,
B > 1 is required, such that this assumption can be satisfied.
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Figure 2. RMSE of different algorithms versus snapshot with N = 20, K = 10 N, and SNR = 20 dB.
(a) RMSE of the first source (b) RMSE of the third source.

In addition, the average running times of different algorithms are plotted in Figure 4. It is seen
that BSPLR is time consuming and the average running time of the others are similar. It should be
mentioned that when N and K are both large, e.g., N = 90 and K = 20 N (with 2lε = 0.1◦) as in [16],
TvSLR is faster than SPICE. Luckily, according to Figure 3, the latter does not require such a large
K to achieve an accuracy on the order of 0.1◦ in a ULA. For other kinds of arrays, such as uniform
circular arrays, SIC-SPICE methods, which are based on off-grid models, can achieve a high estimation
accuracy with a relatively small K.
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Figure 3. RMSE versus size of gird K with SNR = 20dB for the first (left) and third (right) sources.
(a) N = 20, (b) N = 30.
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Figure 4. Average running time of different algorithms corresponding to Figure 3. (a) N = 20
(b) N = 30.

The last simulation assesses RMSE of algorithms versus SNR in Case-1 when N = 20 and
K = 10 N. BSPLR is not considered for the heavy workload. RMSE curves of the first and third
sources are illustrated in Figure 5. It is seen that TvSLR is lower bounded, for the reason of error
DoA estimation as well as on grid constraint. SPICE is better than SIC-SPICE at the low SNR region,
the reason is that SIC-SPICE is not converged. Note that the number of inner iterations is I1 = 3 in
SIC-SPICE and 6 in SPICE. As SNR increases, SIC-SPICE outperforms SPICE, since the estimation error
is dominated by modeling errors at the moment. SIC-SPICE+ and SIC-SPICE++ outperform the others,
especially at the high SNR region.
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Figure 5. RMSE of different algorithms versus SNR. (a) RMSE of the first source (b) RMSE of the third source.

5. Conclusions

In this paper, DoA estimation and tracking algorithms are discussed in the framework of SSR.
The proposed methods are extensions and improvements of C-SPICE, which is an efficient off-grid
method for estimating constant DoAs. Numerical experiments demonstrate the validity and efficiency
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of the proposed methods. An accurate data association algorithm under the framework of SSR can be
investigated in the future.
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Appendix A

First, define vector ck ∈ CN×1 and matrix Cσ ∈ CN and consider the following problem

min
ck ,Cσ

K

∑
k=1

1
pk
‖ck‖2 +

1
σ
‖Cσ‖2, s.t.

K

∑
k=1

gkcH
k + Cσ = R̂0.5. (A1)

Making use of Lagrange multiplier will show that the optimal solution of (A1) is

ck = pkR̂0.5R−1
ε̂ gk, Cσ = σR−1

ε̂ R̂0.5 (A2)

and the corresponding optimal value is tr(R̂R−1
ε̂ ), which is the first term of objective function of

problem (13). As a result, the optimal solution of (13) can be obtained by solving

min
pk≥0,σ≥0,ck ,Cσ

fe(pk, σ, ck, Cσ) (A3a)

s.t. fe(pk, σ, ck, Cσ) =
K

∑
k=1

1
pk
‖ck‖2 +

1
σ
‖Cσ‖2 + tr(R̂−1Rε̂), (A3b)

K

∑
k=1

gkcH
k + Cσ = R̂0.5. (A3c)

In problem (A3), fe(pk, σ, ck, Cσ) can be equivalently cast into fe(pk, σ, ck, Cσ) = ∑K
k=1 tk + tσ +

tr(R̂−1Rε̂) with hyperbolic constraints tk pk ≥ ‖ck‖2 and σtσ ≥ ‖Cσ‖2. Therefore, problem (A3) is
actually a second order cone program [22] and thus convex. Hence, it can be optimally solved by
updating (ck, Cσ) and (pk, σ) iteratively.

When (pk, σ) is given, (ck, Cσ) is updated by (A2). When (ck, Cσ) is given and based on the
inequality of arithmetic and geometric means, we have

fe(pk, σ, ck, Cσ) =
K

∑
k=1

1
pk
‖ck‖2 +

1
σ
‖Cσ‖2 +

K

∑
k=1

pkgH
k R̂−1gk + σtr(R̂−1

)

≥
K

∑
k=1
‖ck‖

√
gH

k R̂−1gk + ‖Cσ‖
√

tr(R̂−1
), (A4)

and equation holds when pk = ‖ck‖/
√

gH
k R̂−1gk and σ = ‖Cσ‖/

√
tr(R̂−1

). Omitting the updating of
(ck, Cσ), we have

pk = p̂k‖R̂
0.5R−1

ε̂ gk‖/‖R̂
−0.5gk‖, k ∈ [K], σ = σ̂

∥∥∥R−1
ε̂ R̂0.5

∥∥∥/
√

tr(R̂−1
), (A5)

where p̂k and σ̂ denote estimates of pk and σ in the previous iteration, respectively, and Rε̂ is calculated
based on p̂k and σ̂.
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Since problem (A3) is convex, its optimal solution can be attained from any initial point in the
interior of feasible set, one of which is provided by the periodogram (PER) method [14], i.e.,

pk =
∥∥∥R̂0.5gk

∥∥∥2
/
∥∥∥R̂−0.5gk

∥∥∥4
, ∀k ∈ [K], σ =

1
N

N

∑
s=1

pks‖gks
‖2, (A6)

where {ks}N
s=1 denotes the index set of N smallest pk.
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