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Abstract: Assistance during sit-to-stand (SiSt) transitions for frail elderly may be provided by
powered orthotic devices. The control of the powered orthosis may be performed by the means
of electromyography (EMG), which requires direct contact of measurement electrodes to the skin.
The purpose of this study was to determine if a non-EMG-based method that uses inertial sensors
placed at different positions on the orthosis, and a lightweight pattern recognition algorithm may
accurately identify SiSt transitions without false positives. A novel method is proposed to eliminate
false positives based on a two-stage design: stage one detects the sitting posture; stage two recognizes
the initiation of a SiSt transition from a sitting position. The method was validated using data
from 10 participants who performed 34 different activities and posture transitions. Features were
obtained from the sensor signals and then combined into lagged epochs. A reduced number of
features was selected using a minimum-redundancy-maximum-relevance (mRMR) algorithm and
forward feature selection. To obtain a recognition model with low computational complexity, we
compared the use of an extreme learning machine (ELM) and multilayer perceptron (MLP) for both
stages of the recognition algorithm. Both classifiers were able to accurately identify all posture
transitions with no false positives. The average detection time was 0.19 ± 0.33 s for ELM and
0.13 ± 0.32 s for MLP. The MLP classifier exhibited less time complexity in the recognition phase
compared to ELM. However, the ELM classifier presented lower computational demands in the
training phase. Results demonstrated that the proposed algorithm could potentially be adopted to
control a powered orthosis.

Keywords: orthosis; extreme learning machine; physical activity; posture recognition;
sit-to-stand transition

1. Introduction

Sit to stand (SiSt) posture transition is a key component of mechanically demanding functional
tasks in daily activities. The quality of life and functional independence highly depends on the
ability to perform the SiSt posture transition. Many elderly people face difficulties in performing
the SiSt transition successfully due to weakness in muscles. The failed transitions lead to a high
occurrence of falls. In the US alone, each year, 2.5 million older people are admitted to emergency
departments for fall injuries like head injury, broken bones and hip fracture [1]. Therefore, for the
last two decades, many researchers have analyzed the detection and characterization of postural
transitions, including the SiSt transition, in a variety of different powered orthoses. In particular,
to provide movement assistance in SiSt transitions to elderly people, a potential solution is a lower
limb orthosis, which is an external device/brace that can be attached to the lower part of the body.
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With the advances in actuation technologies and high-performance materials (e.g., carbon fiber),
compact and lightweight orthoses are becoming more common. Commercial powered lower-limb
orthoses, such as AlterG Bionic Leg [2], are beginning to be used clinically for rehabilitation training.
As such, it is reasonable to assume that powered lower-limb orthoses for older adults’ daily use
would be available in the not-so-distant future. Recently, several orthoses have been developed for the
treatment and rehabilitation of patients with lower-extremity problems [3–5], gait event detection [6–8]
and assistance with locomotive activities of daily living [9–15]. Methods such as electromyography
(EMG) [4,9–17], measurement of wearable sensors [6,18–20], and pressure platforms [21] have been
used to recognize posture transitions.

Amongst all methods, surface EMG provides the most natural way to estimate the torque
needed to perform a movement. An EMG interface to control a two-degrees-of-freedom orthosis
to provide assistance for the shoulder joint while performing predefined movements was proposed
in [9]. The studies of [4,11] proposed joint models for wearable powered orthosis with artificial
pneumatic muscles at the ankle and the knee. The pneumatic muscles were controlled using surface
EMG. The pattern of activation of leg muscles during SiSt transitions was reported by [16] to follow a
predetermined order. A wearable robot Hybrid Assistive Limb was developed to provide physical
support to patients in their daily tasks utilizing EMG signal [13]. To detect the intention of the
sit-to-stand and stand-to-sit movements (StSi), features from different numbers of EMG channels
(e.g., 2, 8 or 16 channels) were used with a range of classifiers (e.g., LDA, neuro-fuzzy, radial basis
neural network) in [10,12,14,15,17].

Body-fixed sensors were introduced to movement analysis research in the early 1990s [16] and
offered an alternative to EMG for the identification of SiSt transitions. The study referenced in [20]
proposed a classifier (accuracy 96% in the healthy group and 92% in the chronic pain group) for SiSt and
StSi detection in daily activity by placing a single inertial sensor on the trunk. A method using motion
sensors to differentiate between the SiSt and the StSi transitions was presented in [21]. The authors
observed that high-fall-risk elderly fallers experienced a lower and more variable transition duration.
The accelerometers were also used in [22,23] to estimate the SiSt transition duration. The method
proposed in [24] applied dynamic time warping to assess transitions during functional activities by
gyroscope signals. The study of [25] investigated entropy as a metric to detect SiSt transitions using
motion sensors. A sensor system containing a seismic accelerometer and gyroscopes was proposed
in [26] to detect SiSt transitions. The study also investigated the transition duration and angular
velocities to quantify SiSt transitions among young and older adults. An inertial sensor in [27] was
located at the waist to analyze SiSt and StSi transitions. Recently, the authors in [28] proposed a method
of detecting transitions (sensitivity 92% and specificity 88%) in Parkinson’s disease patients by placing
a three dimensional accelerometer at the waist.

Getting ready for the standing-up motion is a process that is nontrivial for frail older adults.
To reduce the load for the older users (both cognitive and physical), it is desirable to have an
algorithm that automatically detects the user’s intention and initiates the motion assistance from
the orthosis. While various methods have been proposed for the development and control of
orthosis along with the detection of posture transition, significant challenges still exist for real-time
implementation. In our previous work, we presented a multi-sensor based system to detect SiSt
transitions without relying on complex EMG signals [29]. The recognition model was proposed
using a support vector machine trained on features extracted from sensors placed on the orthosis.
However, the algorithm presented in [29] resulted in a relatively low, but nevertheless significant
amount of false positives. These false positives could force a seated person to receive unexpected
motion which could lead to trauma or falls in the worst case scenario. Despite immense advances in the
development of orthosis, less attention has been given to the issue of false positives in the SiSt detection.
Therefore, the specific contributions of the current work are (1) the elimination of false positives for
the reliable operation of the orthosis, (2) the early detection of the initiation of the SiSt transition
and (3) the development of a computationally lightweight algorithm for early detection. A novel
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two-stage recognition algorithm is proposed to eliminate false positives and provide early detection of
the transition. Neural networks classifiers (extreme learning machine and multilayer perceptron) were
explored to develop a lightweight and computationally efficient SiSt detection algorithm.

2. Methods

2.1. Sensor System

A metal-frame knee-ankle-foot orthosis [8] was instrumented with 14 sensors embedded in the
frame of the orthosis. The chosen sensors were selected to monitor the kinematic segments and joints of
the orthosis. Two inertial measurement units (IMUs; IDG500, Sparkfun Electronics, Niwot, CO, USA)
each having a three dimensional accelerometer (ADXL335, Sparkfun Electronics, Niwot, CO, USA)
and a two dimensional gyroscope (IDG500, Sparkfun Electronics, Niwot, CO, USA) were installed on
the thigh and shank segments. The knee and ankle joints contained a rotary potentiometer to measure
the angles. Force sensors in the shoe insole (Interlink Inc., Westlake Village, CA, USA) measured the
contact force between the foot and ground. Figure 1 shows the sensors installed on the orthosis frame.

Figure 1. Sensors installed on the orthosis frame.

2.2. Data Collection Protocol

Ten healthy participants, 6 males and 4 females (mean age of 22 ± 3 years; mean height of
1.82 ± 0.02 m, mean body weight of 65.77 ± 10 kg) participated in the study. All the participants were
confirmed to not have any motor impairments. Before the start of the experiment, the participants
were informed of the purpose of the study and gave their written informed consent. The human
study described herein was approved by the Institutional Review Board of the University of
Alabama. The participants performed a set of 10 activities (Table 1) while wearing the orthosis
on the right leg. The activities included posture transitions associated with daily activities such
as sitting in different positions, standing, sit-to-stand and stand-to-sit transitions, and walking at slow,
normal and fast speeds. To account for the variability of leg postures during sitting, all of the SiSt
transitions were repeated with five different initial leg positions (Table 2). A data acquisition software
(LJStream (LabJack Corporation, Lakewood, CO, USA) was utilized to record the data at the sample
rate of 500 Hz. Each participant performed a total of 34 trials, with the duration of each trial being 60 s,
resulting in a dataset of approximately 5.7 h of transition and activity data.
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Table 1. Data collection protocol—activities list.

Activity Description

1 Sit comfortably on a chair for 60 s
2 20 s sit, 20 s stand, 20 s sit
3 20 s sit, short distance walking and stand for 20 s, 20 s sit
4 20 s sit, 20 s stand, short distance walking and sit for 20 s
5 60 s walking on a treadmill at normal speed
6 Repetition of activity 2 with fast transitions
7 Repetition of activity 3 with fast transitions and walking
8 20 s stand, short distance walking and sit for 20 s
9 60 s walking on a treadmill at 2–3 mph

10 60 s walking on a treadmill at 3–4 mph

Table 2. Initial seated positions.

Position Description

0 Fully extended legs
1 Legs bent under the chair
2 Knees bent at 90-degree angle
3 Crossed ankles (left over right ankle)
4 Leg crossed (left leg over right knee)

2.3. Signal Preprocessing

Before performing the annotation, the sensor signals were filtered using the translation-invariant
wavelet transform to remove unwanted noise and then divided into consecutive non-overlapping
frames of 100 samples (epochs) corresponding to 0.2 s of the sensor signal.

2.4. Data Annotation

The data annotation was performed to mark the SiSt transitions and the periods of sitting in the
sensor signals. The signal from the knee potentiometer corresponding to 45◦ joint angle was used to
label the midpoint of SiSt transitions (Figure 2). During the annotation of the SiSt transitions, all the
data samples from the transition region were annotated as “1” and the samples outside of this region
were annotated as “0”. Each 0.2 s epoch was labeled the same as the majority of signal samples in
that epoch.

Figure 2. Signal waveform of knee potentiometer during a sit-to-stand activity; dashed and solid lines
represent non-transition and the sit-to-stand transition period respectively.

Periods of sitting were annotated in a similar manner. Epochs were labeled as “1” for the sitting
posture and “0” for other activities. Since the annotation was carried out by three human raters,
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the reliability of manual annotation was assessed with Intra Class Correlation (ICC) coefficient. A high
degree of agreement of 0.98 among the raters suggested a reliable annotation.

2.5. Feature Extraction

A set of 11 features was derived from each of the non-overlapping epochs (0.2 s time window)
for each sensor signal. This time resolution was chosen using consideration of biomechanics
of human movement [30]. The proposed resolution of 0.2 s is an order of magnitude less
than a fast SiSt transition [30], therefore, guaranteeing that multiple epochs were present in
any measured SiSt transition. The dimensionality of a feature vector describing an epoch was
154 (14 sensors × 11 features). Table 3 presents a list of features used. To eliminate potential
dimensional inconsistencies, the feature vectors were normalized to the range [−1, 1] using Equation (1)
where x represents features from original feature vectors and x′ represents normalized features.
The features from the neighbouring lagged epochs were concatenated to investigate the SiSt transition
progression over time. Ten different numbers of lagged epochs (1 to 10) were tested.

x′ = 2
x−minx

maxx−minx
− 1 (1)

Table 3. Features extracted from sensor signals.

Feature No. Description Feature No. Description

1 Standard deviation 7 Median
2 Entropy 8 Slope
3 Coefficient of variation 9 Maximum to root mean square (RMS ratio)
4 Mean 10 RMS to mean ratio
5 Maximum 11 Fractal dimension
6 Minimum

2.6. Feature Selection: Minimum-Redundancy-Maximum-Relevance (mRMR)

The minimum Redundancy Maximum Relevance (mRMR) [31], which is a feature selection
approach based on mutual information, followed by Forward Feature Selection (FFS) was used to
reduce the number of features used in SiSt detection. The relevance in the mRMR method is described
in terms of mutual information as in Equation (2). In the case of maximum relevance of a feature set S
with m features {xi, i = 1, . . . , m}, the selected features xi and target class c are necessary to determine
the mutual information I(xi; c). The largest mutual information implies the largest dependency on
the target class. During a sequential search, the top m best individual features were then selected as
Equation (3), based on the descent ordering of mutual information I(xi; c).

I(xi; c) =
x

p(xi, c) log
p(xi, c)

p(xi)p(c)
dxidc (2)

where, xi and c are selected features and target class respectively and p(xi), p(c) and p(xi, c) are their
probabilistic density functions.

maxRelv(S, c), Relv =
1
|S| ∑

xi∈S
I(xi; c) (3)
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Two highly dependent features were considered redundant when they contribute the same
class-discriminative power if any one of them was considered alone. The following Equation (4) was
used to select mutually exclusive features with minimal redundancy condition.

minRedn(S), Redn =
1

|S|2 ∑
xi , xj∈S

I
(
xi; xj

)
(4)

By measuring the relevancy and redundancy of computed features, a small set of significant
features was achieved for both the continuous and discrete data sets. The mRMR can be either directly
used or combined with other wrapper-based approaches as a two-stage feature selector. In order
to achieve improved accuracy, the two-stage mode has been widely used for practical applications.
Therefore, the present study used the two-stage approach, combining the mRMR with FFS.

2.7. Classifiers

Different classifiers perform differently, based on the application and data sets. In order to obtain
a lightweight and computationally inexpensive classification algorithm, Artificial Neural Network
(ANN) classifiers were explored. The ANN [32] is a biologically inspired computational model formed
from artificial neurons that can optimize its performance by adjusting the weights of its neurons,
based on the output errors. In this paper, two different types of ANNs were evaluated and compared.

2.7.1. Extreme Learning Machine (ELM)

The extreme learning machine (ELM) [33] is a single-hidden layer feedforward ANN that offers
a low training error and good generalization performance. For an extreme learning machine with n
input neurons, L number of neurons on the hidden layer and N number of training cases trained on a
feature set (xi, ti), the mathematical model can be represented as:

L

∑
i=1

βig(aixi + bi) = oi , j = 1, . . . , N L ≤ N (5)

where xi = [xi1, xi2, . . . , xin]
T ∈ Rn; is the input feature vectors, ti = [ti1, ti2, . . . , tim]

T ∈ Rm; is the
transition/non-transition labels; βi = [βi1, βi2, . . . , βiL]

T is the weight vectors of hidden to output
layers; g(.) is the hidden layer activation function; ai = [ai1, ai2, . . . , ain]

T is the weight vectors of
input to hidden layers; bi are the biases in the ith hidden layer neurons; and oj is the output of jth input
training sample. When L = N, the above model can approximate all the training samples with zero
error, ∑N

j=1 ‖ oj − tj ‖ = 0 thus ∑L
i=1 βig

(
aixj + bi

)
= tj

Hβ = T (6)

As our training sample was large, in order to reduce the computation complexity, the selection
of L was less than N. In that case, the ELM assigned random parameters and calculated the output
weights to the hidden nodes with a small error. The output weights were evaluated as:

β = H+T (7)

where H+ is the generalized inverse (Moore–Penrose) of the hidden layer output matrix H.
Because of the random assignment and the linear least squares estimation of weights, the training

of the ELM is extremely fast. The number of hidden neurons varied for different epoch analysis. A cross
validation procedure was performed to find out the optimal number of hidden neurons. The best
number of hidden neurons was selected based on the lowest validation error and then carried out
for classification.
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2.7.2. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) [34] is a class of feedforward ANN. The MLP neural network used
in this work was comprised of three layers, namely (1) the input layer, where xi = [xi1, xi2, . . . , xin]

T ∈ Rn

were the input feature vectors; (2) the output layer, where Y = (Y1, Y2, . . . , Yn)
T ∈ Rn were the outputs;

and (3) the hidden or intermediate layer, where Z = (Z1, Z2, . . . , Zn)
T was the output of q neurons.

The output of each neuron in the output and hidden layers can be represented by

Zj = f (
n

∑
i=1

wijxi − θj) (8)

Yk = f (
q

∑
j=1

wkjZj − θk) (9)

where f is a sigmoid transfer function; wij is the weight; θj is the onset between hidden/input layers;
and θk and wkj is the weight between the output/hidden layers. Similar to ELM, cross-validation was
carried out to find out the optimal numbers of hidden neurons.

2.8. SiSt Transition Detection: Two Stage Recognition

Multistage hierarchical algorithms are well known in the field of machine learning and pattern
recognition [34]. Previous related works [20–28] that primarily consider improving the accuracy of the
transition detection did not, however, necessarily separate out the issue of false positives. In this paper,
a new technique was proposed for both the detection of SiSt transitions and, especially, the elimination
of false positives. The SiSt recognition utilized two stages of classification (Figure 3). In the first stage,
the classifier detected candidate classes of “sitting posture” and in the second stage, the classifier
determined whether a SiSt transition occurred or not.

Figure 3. Flow diagram of the proposed two stage postural transition recognition.
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The feature vectors and associated class labels were used to train the classifiers. For the purpose
of training and validating the model, leave-one-out cross-validation was employed. In this procedure,
the classifier was trained on all trials from 9 participants and tested on all trials from the remaining
participant. This was repeated ten times for ten participants and the performance metrics were
averaged across all validation results. All analysis were carried out in MATLAB (Mathworks Inc.,
Natick, MA, USA).

2.9. Performance Measures

To validate the ability of the proposed method to detect the initiation of a SiSt transition,
the performance was evaluated on the epoch and transition levels. Additionally, to demonstrate the
early detection of initiation, the detection time was computed for a different number of lagged epochs.

2.9.1. Evaluation of Epoch-Level Detection

In the classification results, true positives (TPe) were defined as epochs correctly classified as
SiSt transitions; true negatives (TNe) were defined as correctly classified “non-transition” epochs;
the false positives (FPe) were defined as epochs incorrectly classified as SiSt transition epochs; the false
negatives (FNe) were defined as SiSt transition epochs that were not recognized as such. The total FPe

was counted outside of the transition region.
True positive rate (TPRe), true negative rate (TNRe) and Accuracye as defined below were used to

assess the accuracy of the classification on the epoch level.

Accuracye =
TPe + TNe

TPe + FPe + TNe + FNe
× 100% (10)

TPRe =
TPe

TPe + FNe
× 100% (11)

TNRe =
TNe

TNe + FPe
× 100% (12)

The F1e score was derived as Equation (13).

F1e =
2× TPe

2× TPe + FPe + FNe
(13)

2.9.2. Evaluation of Transition-Level Detection

Due to the short epoch duration, a single SiSt transition typically corresponded to several
transition epochs. For a particular trial, a single correctly detected transition epoch was sufficient to
recognize the trial as a SiSt transition. The accuracy in detecting posture transitions in all the trials
was evaluated as the number true positives (TPt), true negatives (TNt), false positives (FPt) and false
negatives (FNt). In the classification results, TPt was defined as the number of trials correctly classified
as transition trials; TNt was defined as the number of trials correctly classified as non-transition trials;
FPt was defined as the number of trials incorrectly classified as transition trials; and FNt was identified
as SiSt transitions that were not recognized and were defined as Failed to Detect (FTD).

2.9.3. Detection Time (DT)

The detection time was defined as the time span between the first transition point labeled during
the manual annotation and the first detection point labeled by the recognition model.

2.9.4. Statistical Analysis

For both the ELM and MLP classifier-based SiSt recognition algorithms, the means of F1e scores
were calculated for different numbers of lagged epochs. Paired samples t-test was performed to the
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means, assuming equal variances to assess the sensitivity to change of the classifiers in the algorithm.
A difference between means equals zero was used as a null hypothesis, and a non-zero difference was
used as an alternative hypothesis. All analyses were done with Excel version 2013 (Microsoft Inc.,
Redmond, WA, USA), and a level of 0.05 was chosen for significance testing. Across all participants,
a statistical t-test with 95% confidence was performed to compare mean F1e scores obtained from two
classification algorithms.

2.9.5. Computational Complexity

In order to give an estimated time complexity, the execution time was evaluated in both
training and recognition steps. All execution times were computed using MATLAB Profiler 2013
(The MathWorks, Inc., Natick, MA, USA).

3. Results

After the feature computation, the application of the mRMR algorithm followed by FFS led the
feature dimensions to be reduced to an average of 86% of their original size. Figure 4 illustrates the
percentage of dimensionality reduction after the feature reduction process for different numbers of
lagged epochs. The results of the assessment of the proposed method in terms of overall accuracy,
detection time, false positives, and the number of the failure detection of SiSt transitions for both ELM
and MLP classifiers are summarized in Tables 4 and 5, respectively. Both ELM and MLP classifiers
manifested the best performance in the case of the training feature vector for eight lagged epochs.
The models presented 100% transition detection with no false positives at this lag. In transition level
detection, both TPt and TNt were detected in 100% of the cases. Figure 5 illustrates the detection
of SiSt transitions for two trials, employing the ELM-trained model. Both in Figure 5a,b, the model
successfully detected the transitions without false positives. Figure 6 illustrates boxplots for the
detection times obtained from both the classifiers.

Figure 4. Feature dimension reduction using the mRMR algorithm.
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Table 4. Evaluation of the ELM model.

Epoch TPRe TNRe ACCe F1e FTD DT, s % into the Transition No. of FPe

1 0.1211 0.9994 0.9861 0.1713 14 0.38 ± 0.40 29.3 16
2 0.3255 0.9997 0.9889 0.4327 5 0.32 ± 0.37 24.3 2
3 0.4019 0.9994 0.9898 0.5071 4 0.28 ± 0.37 21.6 4
4 0.2508 0.9987 0.9872 0.3280 10 0.44 ± 0.33 33.6 5
5 0.6553 0.9991 0.9932 0.7240 0 0.19 ± 0.33 14.3 1
6 0.5023 0.9994 0.9913 0.6111 0 0.27 ± 0.32 20.8 0
7 0.6658 0.9990 0.9933 0.7283 0 0.20 ± 0.33 15.1 0
8 0.6510 0.9990 0.9931 0.7187 0 0.19 ± 0.33 14.3 0
9 0.6739 0.9990 0.9933 0.7360 0 0.20 ± 0.32 15.1 1

10 0.6718 0.9989 0.9932 0.7311 1 0.17 ± 0.32 13.0 0

Note: Epoch: Number of Epochs; TPRe: True Positive Rate in epoch; TNRe: True Negative Rate in epoch;
ACCe: Accuracy in epoch; F1e: F1 score in epoch; FTD: Failed to Detect in transition; DT: Detection Time; % into the
Transition: Detection of transition as percentage of total transition time; FPe: False Positives in epoch.

Table 5. Evaluation of MLP model.

Epoch TPRe TNRe ACCe F1e FTD DT, s % into the Transition No. of FPe

1 0.1673 0.9995 0.9869 0.2227 5 0.40 ± 0.40 31.0 6
2 0.5254 0.9995 0.9918 0.6315 2 0.23 ± 0.35 17.6 1
3 0.5262 0.9994 0.9917 0.6299 3 0.25 ± 0.36 19.1 8
4 0.3083 0.9986 0.9882 0.4048 4 0.43 ± 0.34 32.8 8
5 0.7038 0.9988 0.9937 0.7547 1 0.17 ± 0.32 12.8 1
6 0.6952 0.9988 0.9937 0.7518 1 0.15 ± 0.31 11.9 4
7 0.7416 0.9985 0.9942 0.7727 1 0.15 ± 0.31 11.3 0
8 0.7323 0.9987 0.9941 0.7765 0 0.13 ± 0.32 10.0 0
9 0.7381 0.9986 0.9940 0.7752 0 0.15 ± 0.31 11.7 0

10 0.7370 0.9986 0.9941 0.7753 0 0.12 ± 0.30 9.2 2

1 

 

 

(a) 

 

(b) 

 
Figure 5. Activity mode of knee potentiometer of two different activities with different trials. Black solid
lines represent detected transitions (a) activity-2 trial-6; (b) activity-6 trial-22.
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Figure 6. Box plots for detection times obtained from both algorithms: (a) ELM classifier;
(b) MLP classifier.

The average duration of a SiSt transition in the collected dataset was 1.30 ± 0.55 s. On average,
the proposed methods detected the initiation of SiSt posture transitions at 0.19 ± 0.33 s (ELM) and
0.13 ± 0.32 s (MLP) after the beginning of the transition. In terms of the percentage of total time spent
on transition, the method detected the transition at 14.3% and 10.0% into the transition respectively.

Comparison of execution times of both classifiers is shown in Table 6. The MLP was faster at
recognition than the ELM. Figure 7 shows the total training time for varying number of neurons.
The total training time for the ELM model was found to be five times faster than for the MLP model.
The statistical analyses were done in each epoch’s analysis. Following the best-performing number of
epochs analyses, there was no significant difference found in F1e scores obtained from the ELM and
the MLP classifiers (p > 0.2027 and p > 0.0910 for seven and eight lagged epochs respectively).

Figure 7. Total training times obtained from both classifiers: (a) ELM; (b) MLP.
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Table 6. Classifier execution times.

Classifier Number of
Neurons Used

Training Time
1st Stage

Training Time
2nd Stage

Recognition
Time 1st Stage

Recognition Time
2nd Stage

ELM 600 8.6570 8.7038 0.0410 0.0371
MLP 70 44.2000 23.4580 0.0110 0.0110

4. Discussion

The main goal of this study was to develop of an algorithm that could provide a user the ability to
perform SiSt transitions in a reliable and safe manner without false positives. In addition, a lightweight
and computationally efficient algorithm was desired.

Contrary to the complex and burdensome EMG-based detection methods, the presented approach
used simple sensors attached to the orthosis frame, rather than to the body. Therefore, the proposed
method has a potential for enabling non-EMG orthosis that could offer reliable and consistent
performance. The study referenced in [20] proposed a classifier for SiSt detection in daily activity and
obtained 0.64 sensitivity and 0.82 specificity in the healthy group and 0.69 sensitivity and 0.74 specificity
in the chronic pain group. Recently, the authors in [28] proposed a SiSt detection method in Parkinson’s
disease patients with 0.92 sensitivity and 0.88 specificity. The specificity reported in these studies
indicates a significant number of false positives. In the present study, the SiSt transitions were detected
from a wide variety of initial postures without false positives. SiSt detection using the eight lagged
epochs achieved 0.99 Accuracye and a 0.72 F1e score in the case of the ELM classifier, and 0.99 Accuracye

and 0.78 F1e score in the case of the MLP classifier.
A range of 89–94% reduction in the size of the feature vectors was achieved utilizing the

mRMR algorithm with FFS, substantially reducing the computational burden. Figure 4 illustrates the
percentage of dimensionality reduction. The decrease in feature dimensionality could be potentially
beneficial for real-time implementation of the algorithm on a microcontroller. Apart from the
dimensionality reduction, it could be possible that not all of the sensors placed in the orthosis frame
would contribute to the recognition of the SiSt transitions, which might allow the omission of some
of the sensors in practical applications. Therefore, further investigation could be done to find out
optimum location and selection of sensors.

One of the major contribution of the paper was the design of the two-stage recognition method.
The proposed two-stage recognition method enabled the elimination of false positives in the detection
of the SiSt transition. Note that every sit to stand transition state was associated with a sitting pattern.
Therefore, during the recognition phase, the first stage classifier dealt with the detection of a sitting
posture prior to the actual transition, which drastically reduced the possibility of incurring false
positives. Given that the first stage classifier detected a sitting posture, the second stage classifier
dealt with whether the SiSt transition had actually occurred or not. The system was able to eliminate
possible false positives that occurred during activities associated with stand to sit transitions and
walking. To the best of our knowledge, this paper is the first to critically study the false positives and
propose an algorithm for the detection and elimination of false positives.

Our previous experiment [29] showed that the support vector machine classifier could potentially
be used to recognize SiSt transitions. However, it is computationally intensive and not well-suited for
real-time implementation on battery powered embedded processors. The extreme learning machine
model has gained popularity in Electroencephalography (EEG) classification, fall detection and activity
recognition. This paper introduced ELM in SiSt transition detection. In addition to the ELM-based
classification model, the MLP model was also explored and compared. Based on the experimental
results in Tables 4 and 5, both MLP and ELM worked equally well in terms of classification accuracy.
Table 6 demonstrates the execution time of both classifiers in the case of the eight lagged epochs.
With regard to recognition time, the MLP model yielded faster recognition performance. The number
of hidden neurons used in the algorithm directly impacted the computation complexity. For the best
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case eight lagged epochs, the number of neurons used in the MLP model (70) was much fewer than in
the ELM model (600), therefore MLP outperformed ELM in recognition time. In terms of training time,
the ELM model was found to be faster than the MLP model. Figure 7 illustrates the cumulative overall
training time for the number of neurons. The ELM model was found to be more linearly proportional to
the number of neurons used compared to the MLP model. Given the fact that both classification models
produced comparable results, and the ELM required less training time, the ELM classifier could be a
good candidate especially in on-line adaptive systems that may retrain or update the classifier on-line.

The results in Tables 4 and 5 also show that the number of lagged epochs had an impact on the
number of false positives. Over all tested lagged epochs, the ELM classifier was found to be less prone
to false positives as compared to the MLP classifier. Regarding the TPRe, both the classifiers displayed
lower accuracy at one lagged epoch and improved as the number of lagged epochs increased. It was
observed that the TNRe and Accuracye showed excellent performance in the cases of all lagged epochs.
One potential reason of exhibiting such values could be the imbalanced dataset where the majority
of the data belonged to non-transition labels. Therefore, the F1e score was reported as a measure
that did not take the true negatives into account. Note that the F1e scores for different numbers of
lagged epochs were greater than the TPRe because false positives, one of the contributing factors in the
computation of the F1e scores, were virtually absent in the results. Also note that since the computed
values were averaged across multiple trials, the mean values of TPRe do not directly translate to the
mean values of the F1e scores.

The detection time was reported as a percentage of the transition period duration. Both the ELM
and MLP classification algorithms were comparable in detection times. In Figure 6, the detection times
obtained from both classification models are represented as a box plot, with the mean shown as a plus
sign, the median as a central thick line, and the 25th and 75th percentiles as a box. It was observed that
the range of detection times varied with the number of lagged epochs.

For first few lagged epochs (up to 6), the detection times for both models exhibited a varying
time range with a standard deviation of 0.08. However, as the number of lagged epochs increased,
the models tended to exhibit less variation, with a standard deviation of 0.01.

As for the percentage of total transition time, the MLP demonstrated almost 5% earlier detection
as compared to the ELM model.

A statistical two-tailed t-test (p > 0.05) for the F1e score (p > 0.2027 and p > 0.0910 for seven
and eight lagged epochs respectively) indicated that the choice of the classifier did not affect the
recognition performance.

In spite of the fact that the proposed method offers potential use in the assistance of elderly people,
a limitation of this study is that only young healthy individuals were included, elderly people being
excluded due to the potential fall risk from a pilot orthosis device. Consequently, the implemented
algorithms were not verified on elderly people who may perform movement at a slow pace.
Therefore, further studies are needed to test the performance of the proposed system on a wider
population, including frail elderly individuals. Another limitation of this study is that the SiSt
transitions of the participants were detected under the specific protocol. More studies are needed to
carry out research outside of the laboratory and in a free-living environment that encompasses real-life,
everyday activities. Finally, the real-time implementation of the proposed neural network-based
algorithm on low-power embedded processors is a potential extension of this work.

5. Conclusions

In this paper, a two-stage method for the detection of posture transition in lower limb orthosis
was proposed. The findings demonstrated that the method could potentially offer early detection
of the initiation of sit-to-stand transitions. In order to obtain a non EMG-based orthosis system
with a lightweight algorithm, a sensor system comprised of an accelerometer, gyroscope and
IMUs, were utilized in combination with a computationally inexpensive ELM classifier-based
algorithm. Data were collected from 10 participants in order to validate the proposed algorithm.
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Significant features were selected by applying the mRMR algorithm followed by FFS. The performance
of the ELM classifier was compared with the MLP classifier. Experimental results suggested that high
accuracy can be obtained in SiSt transition detection. In terms of execution times, MLP classifier-based
algorithm provided significantly lower computational costs. Overall, the proposed method based on
both of the classifiers exhibited reliable detection of SiSt transitions without false positives, earliness in
detection times, and a high detection rate. These results indication that the method could potentially
be used to provide assistance to frail elderly people. The real-time implementation of the system would
allow for conducting the experiment on elderly people in a free-living environment.
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