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Abstract: In order to find a common approach to plan the turning of a bio-inspired hexapod robot,
a locomotion strategy for turning and deviation correction of a hexapod walking robot based on the
biological behavior and sensory strategy of ants. A series of experiments using ants were carried out
where the gait and the movement form of ants was studied. Taking the results of the ant experiments
as inspiration by imitating the behavior of ants during turning, an extended turning algorithm based
on arbitrary gait was proposed. Furthermore, after the observation of the radius adjustment of ants
during turning, a radius correction algorithm based on the arbitrary gait of the hexapod robot was
raised. The radius correction surface function was generated by fitting the correction data, which made
it possible for the robot to move in an outdoor environment without the positioning system and
environment model. The proposed algorithm was verified on the hexapod robot experimental
platform. The turning and radius correction experiment of the robot with several gaits were carried
out. The results indicated that the robot could follow the ideal radius and maintain stability, and the
proposed ant-inspired turning strategy could easily make free turns with an arbitrary gait.
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1. Introduction

Compared with wheeled robots [1] and tracked robots [2], the movement of multi-legged robots
is achieved by the alternating motion of each leg where the contact between the robot and ground
is a series of discrete points. These unique advantages can allow them to cross small obstacles and
give them the ability to move across uneven terrains [3]. It also has the ability of fault tolerance [4].
When one leg is broken or has failed, the rest of the legs will complete the operation of the robot
continuously. Furthermore, a multi-legged robot has the same running or galloping potential as
animals [5], which greatly expands its application range. Therefore, at present, the advantages of
multi-legged robots have attracted many scholars to this field.

For a legged robot, one key point is to reasonably plan the desired movement of each leg to
achieve smooth locomotion. The turning gait has strong expansibility, and can produce abundant
movement forms. When the radius is sufficiently large, the turning path can be regarded as a straight
line [6]. Fortunately, any possible path can be supposed as arcs and lines. Hence, the study of turning
is an important part of legged robots. Some scholars have proposed a turning algorithm based on a
single gait [7,8] and precise motion control [9,10]. According to the relative motion between foot tip
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and body, the function of foot tip was obtained to make the robot follow the desired path. However,
this algorithm only can make the robot turn with a specific gait and does not contribute to the adaption
of different terrains.

Some scholars have also planned robot movements based on biological inspiration [11–13].
Through evolution, creatures have formed skillful mechanism structures and nimble movement
patterns. They are rational, scientific, and progressive in structure, performance, information
processing, and autonomic learning. The study of bio-inspired robots includes the imitation of
structure [14], motion principle [15], and behavior pattern [16]. Currently, the structure of bio-inspired
robots imitates the structure of mammals or insects, and most of these structures have a great load
capacity or flexible movement performance. The movement and behavior of creatures have provided
the basis for robot design in areas such as gait planning, motion control, and attitude adjustment.
Inspired by the turning of ants, a turning algorithm of a hexapod robot based on a neural network
was proposed by Iwase et al. [17]. As a result, smooth and stable turning in different curvatures
was achieved. To obtain the motion of each cockroach leg, Jindrich et al. [18,19] used a photoelastic
technique to calculate the force of each cockroach leg during the movement and recorded it via a
high-speed camera. The turning gait was studied according to the distribution of the stress point.
The results indicated that the main power for turning was provided by the outboard legs, and the
inboard legs provided surplus power. This experiment provided a theoretical basis for the dynamic
analysis of hexapod robot turning. Fault-tolerant crab gaits and turning gaits were also raised [20,21].
On this basis, the omnidirectional walking of legged robots with a failed leg was proposed by the
authors at the same time. This strategy improved the adaptability of the legged robot to the harsh
environment to some extent. Similarly, turning can be controlled by a Central Pattern Generator
(CPG) [22–24], and the output signal of the CPG was used to drive the robot, and the movement
forms could be adjusted by the CPG parameters. To be more specific, the trajectory of the foot
tip was a combination of three functions that controlled three directions. The input signal of each
function was provided by three CPG signals. As long as the three CPG signals were controlled,
different trajectories could be generated. This algorithm allowed the robot to turn in different directions.
These methods have many advantages including easy control and multiple movement forms. Furthermore,
some scholars have employed a chaotic neural oscillator as the central pattern generator (CPG) [25–27],
which was considered as input for the inverse kinematic task, which provides particular trajectories.
The coordinates of the foot tip are influenced by the turning radius. Each leg has to move along an
arc of a circle and these arcs have the same center at the turn point, which is located on a line of the
middle legs.

Most research into turning only considers a single gait and foot trajectory generation. However,
the path tracking ability during turning is seldom analyzed. In other words, when the robot deviates
from the desired path, it has no ability to correct and will even lead to errors. In fact, the robot will
deviate from a desired path for a variety of reasons. Moreover, during omnidirectional movement,
the robot needs to transform between various gait patterns and paths, which is adjusted by the motion
parameters. Although the omnidirectional movement of robots has been studied, a detailed transition
strategy among the different movements has not been discussed seriously.

Therefore, the ability to ensure stability in the transition process has become a hot topic.
The main contribution with respect to the state-of-the-art in this paper was to solve the problems
above-mentioned. A linear signal was the signal used as input for the movement of the robot,
which avoided solving the CPG function and improved the efficiency of the program. An ant-inspired
extended turning algorithm for a hexapod robot based on arbitrary gaits was proposed based on
biological behavior. On the basis of the ant movement experiments in path correction, an ant-inspired
radius correction algorithm was proposed, and a correction surface function was established without a
complex environment model and positioning system. Finally, a bio-inspired hexapod robot platform
was established. Furthermore, comparison experiments of radius transition, radius correction,



Sensors 2017, 17, 2710 3 of 24

and turning were conducted. Experimental results showed that the ant-inspired radius correction
strategy and turning control algorithm were effective and had outstanding performance on stability.

2. Methods

2.1. Locomotion of Ant and Bio-Inspiration

Insects are a group of animals with a large number and type of species. Among all creatures
(including bacteria, fungi, and viruses), insect species account for more than 50% of the total.
The distribution of insects is so wide that no other creature can compare to them. Furthermore,
the structural diversity and physiology of insects enables them to adapt and survive under a variety of
environmental conditions, which has allowed them to prosper and remain powerfully competitive [28].
One of the most important reasons that insects have survived for millions of years is that they
have flexible movement abilities [29], which have provided inspiration to the exploration of legged
robots [30,31]. Most insects have a large number of legs which are symmetrically distributed on both
sides of body, therefore, arranging each of leg allows them to cross all kinds of terrains [32].

The movement of an ant is closely related to the coordination of its legs. It can choose various
gaits according to different conditions, which improves their adaptability [33]. Through observation,
in most cases, the movement of an ant is realized by swinging two group legs (Group I: right front
leg (RF), left middle leg (LM), right hind leg (RH); Group II: left front leg (LF), right middle leg (RM),
left hind leg (LH).) alternately. This tripod gait is very efficient. In some special occasions such as
uneven ground, an ant will swing its six legs in an orderly way to remain stable. Sometimes, the movement
of an ant will be irregular, however, we found that regardless of gait, the trajectories of each foot tip
was the same, but the phases were different. These abundant gait patterns of ants have been of great
help in studying the locomotion of legged robots [34].

An ant experiment platform was carefully established and experiments planned for studying
ant movement. The platform is shown in Figure 1a, and consisted of a high-speed camera, camera
shelf, experiment box, and PVC board. Both the experiment box and camera shelf were made of
transparent acrylic board so that it had little influence on the photography. The PVC board was placed
in the experiment box and divided into four parts (“I” path for straight gait, “U” path for switching
between straight and turning, “S” path for always turning and switching direction of turn, and free
movement area). The ant moved in these paths and the gait and trajectory observed. To obtain a
clear photograph, the high-speed camera was set at 240 fps. A Camponotus japonica ant [35] was
chosen for the experiments, and is shown in Figure 1b. This type of ant has a big trunk and long
legs. The whole body is nearly 10 mm long, and the leg more than 5 mm. This made it convenient to
observe, and this structure has a wide movement space and high athletic performance [36]. The results
of the experiments are described in detail below.

2.1.1. ‘I’ Path for Straight Gait

The ant in the “I” path is shown in Figure 1c. The shooting time was 0.5 s. According to the
marks, the ant adapted a tripod gait in straight motion [37]. At 0 s, the Group I legs were in the swing
phase, and the Group II were in the stance phase. At 0.0625 s, the states of these two group legs were
reversed. At 0.125 s, they returned to their original state. According to this rule, the legs of the two
Groups swung alternately and supported the body to move forward until 0.5 s.

2.1.2. ‘U’ Path for Switching between Straight and Turning

The movement of ant in the “U” path is shown in Figure 1d. In the beginning, the ant kept moving
in a straight line. At 0.25 s, the tentacle of the ant detected an obstacle and started to turn. Then,
it changed to straight motion again at 0.5 s. This phenomenon was really interesting, so we slowed
down the video between 0.25 s and 0.5 s to observe the trajectory of the foot tip during the moment,
and captured six pictures, which are shown in Figure 1e. At 0.25 s, the legs of Group I were in the
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supporting state and turned to the swing state at the next moment. In contrast, the legs of Group II
began to support the body. During 0.25–0.375 s, the legs of Group I began to change to the satisfied
trajectory for turning, and this process ended before touching down. After transition, these legs began
to support the body to make the trunk turn. During 0.375–0.5 s, like with the Group I legs, the legs
of the Group II completed the transition in the swing state and drove the ant to turn after touching
down. At this moment, the conversion process of the ant from straight to the turn was completed.
The ant performed good stability through the short process since the trajectory always changed in the
air. This is because only the leg in the support state affects movement, which why the locomotion of
an insect can change smoothly.
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Figure 1. Ant experiments. (a) Experiment tools; (b) Camponotus japonica ants; (c) “I” path: The leg with
the solid point represents the stance phase and the hollow circle represents the swing phase; (d) “U” path:
dashed lines represent the path of movement; (e) Foot tip trajectory during turning: the curves represent
the trajectory of the foot tip, and the point represents the supporting leg; (f) “S” path: the dashed curves
with arrows indicate the advance direction; (g) Tripod gait: the leg with the solid point represents the
stance phase and the hollow circle represents the swing phase; (h) Quadruped gait: the leg with the
solid point represents the stance phase and the hollow circle represents the swing phase.
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2.1.3. ‘S’ Path for Always Turning and Switching Direction of Turn

The movement of an ant in the “S” path is shown in Figure 1f. The whole running time was 4 s.
The dashed line with the arrow represents the path and direction of the ant. In this process,
the trajectory of the center of gravity (COG) coincided with the ideal path. In one gait period, the trunk
of the ant will turn in a small angle. Therefore, the turning of an ant can be viewed as a superposition
of multiple arcs and a repetition of a single gait.

2.1.4. Free Movement

In the free movement area, the gait pattern of an ant is very manifold. The tripod gait is shown in
Figure 1g. At 0.1 s, six legs were in the support state; at 0.2 s, the Group I legs were in the swing phase,
and the Group II legs were in the stance phase; at 0.3 s, the movement form of the legs from both
Groups began to interchange; at 0.4 s, the Group I legs were in the stance phase, and the Group II legs
were in the swing phase; at 0.5 s, the legs returned to their initial state. Usually, ants move forward
with a tripod gait, especially in fast motion. For six-legged insects, this gait is the most efficient and
stable. Sometimes, an ant will choose a quadruped gait [38], which is shown in Figure 1h. At all times,
at least four legs are in the support state, which provides great stability. Aside from their typical gaits,
ants will use irregular gaits in special circumstances. These irregular gaits also play an important role
in ant movement.

In short, ants use different movement patterns to cope with different environments. Especially in
turning, ants can go through all kinds of crooked paths and will adjust their direction when an obstacle
is detected. However, the key to the change of movement is the change of foot tip trajectory. That is to
say, the movement of an ant is determined totally by the trajectory of the foot tip. According to the
state of the foot, the trajectory can be divided into the stance phase and the swing phase. When the
ant walks in a straight line, the swing trajectory is approximately an arc. This arc is linked with the
trajectory of the stance phase and forms a closed loop. The support trajectory is approximately a
straight-line relative to the body, or can be considered as an arc with a large radius. The turning
movement of an ant is also very flexible. The swinging trajectory is an arc, but the support trajectory
becomes a curve in the horizontal plane [39]. In the supporting trajectory, the inner side of the turn has
a larger curvature than that of the outside. The legs in the stance phase provide power for moving and
control the direction of the ant. As for robots, the foot trajectory for straight and turning can also be
planned as per the path of the ant. As long as the curvature of the trajectory is regulated according to
requirement, the robot can perform different movements.

2.2. Material and Platform

The SmartHex experimental robot platform is shown in Figure 2a. The robot adopts a bionic
structure and lightweight design principle. The six legs were divided into two groups and were
distributed to the side of the robot trunk, respectively [40]. The total weight was 5.4 Kg. The shank,
foot, and connector of the digital motor were all made with an aluminum alloy. The trunk was made
out of hollowed-out carbon fiber. Each leg had three rotator joints. The parameters of each leg are
shown in Figure 2b. The torque of each joint was provided by a smart motor. The rotation axis of
the root joint was parallel to the forward direction of the robot, which provided lateral support force.
The rotation axis of the hip joint and knee joint were perpendicular to the root joint, which provided
power for moving forward [41]. The robot was equipped with a Kinect camera (Microsoft, Redmond,
WA, USA), a power module, a control panel, and a sensor system [42]. Kinect cameras were used
to detect obstacles and terrain recognition. The power module provided power for the entire robot.
The control board was used for communication between the host computer and the digital servo
system. The sensor system was used to acquire attitude signals and current signals. The hardware
architecture of the robot is shown in Figure 2c. It was mainly composed of the host computer, lower
computer, and digital servo motors. The computation of the algorithm was done in the host computer
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and obtained the motion data of each leg. Then, these data were transmitted to the Cortex-M4
control board (ARM, Cambridge, UK). After processing, the data were used for driving the motions.
The signal acquisition was mainly dependent on the current detection units and the attitude sensor.
These feedback signals were sent back to the host computer for detecting the movement condition of
the robot.
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Figure 2. (a) Biomimetic hexapod robot; (b) Leg structure parameters; (c) Control diagram;
(d) Algorithm framework.

The framework of the control strategy is shown in Figure 2d. The whole system was composed
of a command and parameter setting, gait planning, path generation, foot trajectory generation,
experimental prototype, feedback signal, and a radius correction algorithm. The command provided
the input for the control system. Gait planning was controlled by the gait parameters and turning
angle in a period. Additionally, path generation was controlled by the reference radius, system radius,
and turning angle velocity. At the beginning of correction, the system radius equaled the reference
radius. The robot then adjusted the system radius to eliminate the deviation. When the deviation
was 0, the system radius converged to a value. It was regarded that the system radius was a parameter
that drove the robot to obtain the desired real radius. Together, the gait planning module and the path
generation module generated the trajectory of the foot tip. Through the inverse kinematics, the control
signals of each leg were obtained to drive the robot. The feedback signals of the yaw angle and
COG coordinates were transmitted to the radius correction algorithm module and system radius was
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calculated. The whole algorithm architecture was in closed loop control and could achieve different
movement forms according to the parameters.

2.3. Extended Turning Strategy

During turning, the trajectory of the COG must coincide with the desired trajectory. Regardless
of the kind of gait used, the trajectory of the COG is made up of many small arcs of a gait cycle [43].
The center angle of an arc was defined as gait angle θ. The turning process was regarded as a repeat of
a single gait cycle. Therefore, taking a gait cycle as an example, the strategy of turning was analyzed.

The gait pattern of turning can be described by Figure 3 where the abscissa represents the gait
angle, and the ordinate represents the number of legs. The colored rectangle represents the position of
the swing phase in a gait cycle. The blank represents the leg in the stance phase. We assumed that
the swing phases of each leg were all in the last section of a gait cycle at the beginning of planning,
which is shown in Figure 3(a1). The angle θswing and the starting point M of the swing phase can be
expressed as:

θswing = (1− β)θ (1)

M = θ − θswing (2)

where β is the duty factor. When the robot turns in tripod gait, the gait chart is shown in Figure 3b.
The change from Figure 3(a1,a2) can be considered as the phase of swing moved to a special position.
In this way, the planning of wave gait can be represented by Figure 3b. After moving, the start angle
Mi’ and end angle Mi” of the swing phase of each leg are as follows:

Mi
′ =

{
θswing(i− 1)− f ix[θswing(i− 1)]

}
θ (3)

Mi
′′ = Mi

′ + θswing = {i(1− β)− f ix[(i− 1)(1− β)]}θ (4)

where i represents the number of legs, θ represents gait angle; and fix[] represents the integer
operation. It is known that regardless of gait, the phase of swing state of any leg can be described by
Equations (3) and (4).
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Figure 3. Gait pattern of turning (a) Tripod gait; (b) Wave gait.

As is well-known, the turning of a robot is realized during the stance phase. When the leg
lifts off the ground, it does not have any impact on the movement of the robot. Only when the leg
touches the ground, can the movement of robot be realized via by the moving of the leg. When the
leg is in the stance phase during the movement, the foot is stationary relative to the earth coordinate
system, and it is mobile in the COG coordinate system. The stance trajectories of each leg for turning
are calculated by the relative motion between the COG and foot as it is not an arc of a cycle, but
curves. The world coordinate is established at the center of the turning path, and uses it as a reference
coordinate. When the robot moves, the path of COG coordinate is an arc with a radius of R in the world
coordinate, and the positive direction of the X axis always points to the center of the arc. When the body
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moves into a random middle position Bδ of a gait period, according to the coordinate transformation,
the coordinates of the foot tip Bδ PAi

in the coordinate system Bδ are as follows:

Bδ PAi
= Bδ

BI
RBI PAi

+ Bδ PBIORG =


BI XAi

cos ωt + BI YAi
sin ωt− R[1− cos ωt]

−BI XAi
sin ωt + BI YAi

cos ωt− R sin ωt
BI ZAi

 (5)

where Bδ
BI

R is the rotation operator from initial coordinate BI to initial coordinate Bδ of a gait
period; Bδ PBIORG is the translation operator from BI to Bδ; ω is the turning angular velocity;
(BI XAi

, BI YAi
, BI ZAi

) is the coordinate of the foot tip in the BI coordinate; T is the gait period; and the
range of t is [0 ≤ t ≤ (1-β)T].

To ensure that there is no impact and smooth transition can be maintained between the foot tip
and ground when they come into contact or separation, the quartic polynomial is adopted to plan the
trajectory of the swing phase [44]. The function of the swing trajectory is:

x = a0x + a1xt + a2xt2 + a3xt3 + a4xt4

y = a0y + a1yt + a2yt2 + a3yt3 + a4yt4

z = a0z + a1zt + a2zt2 + a3zt3 + a4zt4
(6)

The coefficients of each component are:

A = [T]−1 · [X] (7)

where [T] is the time matrix; and [X] is the coordinate matrix.
When the radius parameter R in the turning algorithm is large, the turning can be extended to

the straight line. However, when R is too large, the arc length of a gait angle θ will become larger,
that is, the path of the robot’s COG in a gait cycle will be longer. Nevertheless, due to the constraints
of leg geometry, the robot may not be able to reach when R is very large. Therefore, it is necessary to
calculate the maximum turning angle of the robot in a gait period.

When the robot turns to the end point of the stance phase θi
s, the position of the foot tip in the

COG coordinate is:

BS PAi
=


BS XAi
BS YAi
BS ZAi

 =


BI XAi

cos θs
i +

BI YAi
sin θs

i − R[1− cos θs
i ]

−BI XAi
sin θs

i +
BI YAi

cos θs
i − R sin θs

i
BI ZAi

 (8)

where R is the turning radius. When the root joint, knee joint, and foot tip can form a triangle,
that means that the leg satisfies the geometric constraint. The geometric constraint equations of each
leg can be expressed as:

‖BS PAi
− BPO1,i

‖ ≤ L2 + L3 (9)

where BPOi
is the position of the root joint under the COG coordinate. L2 and L3 represent the length

of thigh and shank, respectively. Maximum turning angle in one gait cycle is:

θmax = max{
θs

i
β
}(i = 1, 2, 3, 4, 5, 6) (10)

According to the analysis above, as long as the radius is changed, the transition between the
turning and straight can be achieved. However, it will cause irregularity in the signal of each joint
when the motion parameters are changed suddenly. At the same time, that will lead to discontinuity
in the foot trajectory and reduce stability. If the strategy of the transition radius is adopted slowly,
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although the influence on stability is reduced, the transition time is too long, which is not good for
the robot’s speed of response. Therefore, a transition strategy that satisfies rapidity and stability was
proposed. By imitating the switch method of an ant, as long as the moment of switch is controlled in
the swing phase and finished before touching down, the switch could be achieved instantaneously
and guarantee stability.

Each leg of the robot was designed to be controlled independently. After receiving the turn signal,
the movements of each leg were detected respectively. If the foot was in the stance phase at that
moment, the radius remained unchanged. It changed instantaneously until it entered the swing phase
and reached the highest point of the trajectory. In another case, if the foot was in the swing phase at
that moment, similarly, the radius remained unchanged. It changed instantaneously until it entered
the swing phase again and reached the highest point. Each leg was controlled according to the method
above, and they did not affect each other. The pseudo code of the extended turning algorithm is shown
in Algorithm 1.

Algorithm 1: Extended turning algorithm.

Initialize: the length of thigh L1, the length of shank L2, gait coefficient β, radius of turning R, angle velocity ω,
Flagchange = 0, Flagswing = 0.
Initial movement form:

(1) Movement form change detection
If (Flagchange = 1)

(2) Calculating the maximum turning angle in one gait cycle θmax

(3) Planning the gait of robot. Generating start angle Mi’ and end angle Mi” in swing phase of each leg
(4) Generating the trajectory function of foot tip based on quartic polynomial
(5) Generating the control signal of each joint according to inverse kinematics

(6) Leg state detection
If (Flagswing = 1)

(7) Change the corresponding parameters of the leg
else

(8) Jump to (6)
end

else
Repeat the initial movement form and jump to (1)

end
Until: The change of parameters is completed and new movement is formed.

2.4. Radius Correction Algorithm

Straight motion is the simplest and most efficient form of movement for ants. Through our
experiments, we found that regardless of the situation, an ant will first choose straight motion. The ant
in the “U” path is shown in Figure 4a. Initially, the ant moved straight, which can be regarded as
a turning with infinite radius. The yellow circle indicated that the tentacle of the ant had detected
an obstacle and had momentarily deviated from the desired trajectory. Then, the ant began to adjust
its turning radius. The radius adjustment of the ant in the “S” path is shown in Figure 4b where the
dashed line represents the path and the yellow lines represent the body direction. It can be concluded
that the ant was constantly adjusting its yaw angle during turning. In other words, it kept adjusting its
radius as much as possible for the body to move along its trajectory. Therefore, the path correction of
an ant is completed by adjusting the radius.

Due to foot tip slippage, the real turning trajectory of a robot will deviate from the desired
trajectory just like an ant. Thus, the trajectory of a robot can be corrected much like an ant. Therefore,
the path correction of the robot in this paper was implemented by modifying the radius in real-time.
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A sketch of the radius calculation is shown in Figure 5. Supposing that the robot goes to the Ci
point at the time of ti, and reaches the Ci+1 point at the time of ti+1. The feedback signals at the time of
ti and ti+1 are the yaw angle (γi, γi+1) and COG coordinate (Ci = (xi,yi), Ci+1 = (xi+1,yi+1)), respectively.
An isosceles triangle was developed by constructing auxiliary lines through the two points Ci Ci+1 and
was perpendicular to their direction of yaw. The two auxiliary lines intersected at the O point. The line
OCi was the real radius in this period. According to the cosine theorem, the real turning radius R(i)

r is:

R(i)
r =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2

2[1− cos(γi+1 − γi)]
(11)
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Figure 5. The solution of real radius correction.

There is a proportional relationship between the system radius and the real radius, that is:

Rs ∝ Rr (12)

The system radius is a parameter in the program. Therefore, the corrected system radius is:

R(i)
s =

R(i−1)
s Rre f

R(i)
r

(i = 1, 2, 3 . . .) (13)

where R(i)
r is the real radius in the ith feedback; R(i)

s is the system radius in the ith feedback; Rre f is the

reference radius of our expectation; and initialization of system radius is R(0)
s = Rre f .
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Correction error of the system radius in ith feedback is:

Ei = R(i)
s − R(i−1)

s (14)

This algorithm requires the robot to acquire the COG coordinate and the yaw angle parameter
during the movement. It needs to establish a running environment map model and positioning system,
therefore, it is impractical for a robot in a strange environment and will reduce the generality. When the
error is stable at zero, the system radius will converge to be a constant. We can take the converged
system radius directly as the system radius of the robot motion. Hence, a simplified algorithm for
radius correction was proposed based on this. Since there is a certain relationship between the reference
radius and system radius, the focus of the simplified algorithm as to find this relationship by fitting in
order to obtain a more accurate system radius.

After k periods, the system radius stabilizes. The system radius from the kth to (k + n)th periods is
collected and the average is:

(Rre f ,β)Rs =

k+n
∑
k

(Rre f ,β)R(i)
s

(k− i)
(15)

where (Rre f ,β)R(i)
s is the system radius under duty factor β and reference radius Rref at the ith moment;

(Rre f ,β)Rs is the average system radius under duty factor β and reference radius Rref. In this way,
the average system radius under different duty factors and reference radiuses can be worked out.

The curves of the system radius under different reference radiuses and duty factors (β = 1/2, β = 3/4,
β = 4/5, and β = 5/6) during the correction are shown in Figure 6.
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Figure 6. The curves of system radius under different theoretical radius and duty factor during the
correction. (a) β = 1/2; (b) β = 3/4; (c) β = 4/5; (d) β = 5/6.

Regardless of the duty factor and the reference radius, after correction, the system radius will
eventually converge at a certain value. Taking the data after stabilization and calculating their average,
the average system radius was obtained. After that, taking the average system radius as the abscissa
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and the corresponding reference radius as the ordinate and fitting them together, the fitting curve is
shown in Figure 7a. The equation is:

Rs = aRre f + b (16)
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The parameters of Equation (16) are shown in Table 1.

Table 1. Parameters of curve fitting.

Coefficient
The Value of β

β = 1/2 β = 3/4 β = 4/5 β = 5/6

a 0.6772 0.8625 0.7577 0.6873
b −49.12 −21.83 −9.204 3.769

In the previous section, only the radius correction curves of several typical gaits were fitted.
As the duty factor and the reference radius both increase linearly, we used the above data to fit the
surface to obtain the system radius under an arbitrary reference radius and gait where the X axis is
duty factor β, the Y axis is the reference radius Rt, and the Z axis is the system radius Rs. When 0.5 <
β < 3/4, the phenomenon that two front legs or two hind legs lift together appeared. This state for a
hexapod robot is likely to cause a COG beyond the support polygon and lead to collapse. Therefore,
a duty factor in the range of 0.5 < β < 3/4 was not recommended and was excluded in the fitting.
To improve the fitting accuracy, polynomial equation fitting was adopted. The fitting surface is shown
in Figure 7b. The parameters of the surface equation are shown in Table 2.

Table 2. Parameters of surface fitting.

Parameters Value Parameters Value Parameters Value

p00 4573 p30 −1.617 × 104 p13 −2.87 × 10−5

p10 −2.15 × 104 p21 −275.8 p04 3.206 × 10−9

p01 −39.86 p12 −0.1154 p32 −0.114
p20 3.26 × 104 p03 6.231 × 10−6 p23 2.834 × 10−5

p11 184.9 p31 136 p14 −3.936 × 10−9

p02 0.02298 p22 0.1976 p05 −5.895 × 10−13



Sensors 2017, 17, 2710 13 of 24

The surface equation is:

Rs = p00 + p10x + p01y + p20x2 + p11xy + p02y2 + p30x3 + p21x2y + p12xy2 + p03y3

+p31x3y + p22x2y2 + p13xy3 + p04y4 + p32x3y2 + p23x2y3 + p14xy4 + p05y5 (17)

The whole radius correction algorithm can be summarized by the pseudo code, which is shown
in Algorithm 2.

Algorithm 2: Radius correction algorithm.

Initialize: coordinate of COG P; yaw angle γ; reference radius Rref; and system radius Rs: Rref = Rs; sample period
T; duty factor β; minimum duty factor βmin; maximum duty factor βmin; minimum reference radius Rref,min;
maximum reference radius Rref,max;
for (β = βmin; β < βmax; β++)

for (Rref = Rref,min; Rref < Rref,max; Rref++)
Repeat:
(1) Input Rs and β

(2) when ith sample period , collect feedback signals Pi and γi
(3) when (i+1)th sample period, collect feedback signals Pi+1 and γi+1

(4) Calculate real radius R(i)
r in ith correction period

(5) Input R(i)
r to the system radius corrector and output corrected system radius R(i)

s

(6) Replace the system radius with the corrected system radius
Until: The radius error are eliminated and record the system radius (Rre f ,β)Rs under the Rref and β of this cycle

end
end

(8) Fitting the (Rre f ,β)Rs under different Rref and β, the radius correction surface equation is obtained
Result: The radius correction surface equation can correct radius error directly.

3. Simulations

3.1. Straight-Turning Transition Simulation

In this section, the transition of straight to turning was simulated to verify the performance of the
extended turning algorithm transition and its influence on stability. The virtual prototype is shown in
Figure 8a. Supposing that the robot first moved in a straight line. At the turning point, the robot starts
to turn at radius RT. The diagram is shown in Figure 8b. The simulation parameters are: radius in
straight RL = inf, radius in turning RT = 800 mm, gait period Tgait = 1 s, time consumption in transition
Ttransition = 1 s, body height H = 250 mm, lift height of leg h = 30 mm, duty factor β = 1/2, β = 3/4, and
β = 5/6. The COG path under different gaits during the movement is shown in Figure 8c. It can be
concluded that the extended turning algorithm proposed in this paper could make the robot transform
from straight motion to turning motion in an arbitrary gait, but the robot had poor tracking ability for
path. However, this was improved after the radius correction algorithm was implemented.

The curves of each joint angle and attitude under different gaits are shown in Figure 8d. Before 3 s,
the root joints of each leg remained still, which meant that the robot kept going straight. At the stage
of 3 s to 4 s, the root joints began to rotate in succession and the robot began to switch from straight to
turning. After 4 s, the robot was completely in turning form. The curves of each joint indicated that
the simulation experiment satisfied the expected motion hypothesis.

From the attitude analysis, the yaw angle in the first 3 s was stable around 0, this time, however,
the robot was in straight motion. After 3 s, the yaw angle started to increase linearly. At this stage,
the robot was turning and this result also compounded the expected parameters of the simulation.
There was a larger fluctuation of pitch at 0.3 s before the robot started, which was caused by the initial
pose of the robot. However, when the robot started to move, the pitch angle stabilized around 0.
Furthermore, the second big wave of the robot’s pitch angle occurred at 3 s, which was caused by
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the switch between straight and turn. After about 1 s, the pitch angle at 4 s stabilized and the robot
switched over. Although there was a slight fluctuation in the pitch angle of the robot during the
transition, the maximum fluctuation range was only ±0.002 road, which had no effect on the motion
of the robot. For the roll angle, the change was similar to the pitch angle. It can be concluded that the
extended turning algorithm was effective regardless of the gait of the robot, and could maintain good
stability during the transition.Sensors 2017, 17, 2710  14 of 24 
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Figure 8. Simulations without correction. (a) Visual prototype; (b) Transition from straight line to
turning; (c) The COG Path of different gaits changing duty factor; (d) Joint angle of each leg and
altitude angle.
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3.2. Radius Correction Simulation

On the virtual prototype platform, once the feedback signal was added to the original kinematics
algorithm, a closed-loop control was established. The framework of the simulation is shown in
Figure 9, which was composed of parameter input, kinematics control, virtual prototype, feedback
signal, and the radius correction algorithm. System parameters included clock signal T, gait β, system
radius Rs, reference radius Rref, angular velocity ω, and gait angle θ, which provided the data for
the whole system. Path planning and gait generation were completed in the kinematics model and
coefficient matrix [A] of the foot trajectory curve equation, and foot coordinate [PA] were generated
next. After inverse kinematics, the drive signals [ϑ] of each joint were produced and input to the
prototype. During simulation, the yaw angle θyaw and COG coordinate PCOG were output as the
feedback signal. The radius correction module obtained the feedback signal and then reprogrammed
the system radius. After the simulations, the radius corrected surface equation was generated. For the
experimental platform, the corrected system radius was obtained directly through the correction
equation. The current of the legs and attitude data were collected by the corresponding sensors and
transmitted to the host computer for observation.
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Figure 9. Simulation framework.

The simulation paths of the COG with the radius correction algorithm are shown in Figure 10a
where the reference radius was 800 mm and the duty factors were 1/2, 3/4, and 5/6, respectively.
After introducing the feedback control, the robot had the ability to detect the radius. When the
deviation was detected, the radius was automatically corrected so that the real radius approached
the reference radius gradually. The error curves of the simulation are shown in Figure 10b. The error
of the system radius was corrected constantly and eventually fluctuated around zero. In addition,
the correction algorithm was very fast, and the error was eliminated at the end of the fifth gait period.
The performance of the simplified radius correction algorithm is shown in Figure 10c. The parameter
was the same as before. The radius of COG trajectory was almost 800 mm. Compared with the radius
correction algorithm, the real radius obtained by the simplified correction algorithm was slightly larger
than the reference radius, which was caused by the surface fitting error. However, the radius error did
not much affect the actual motion of the robot. The variation of each joint during the radius correction
is shown in Figure 10d. The COG and yaw angle signals were collected at 0 s and 1 s, so the radius will
not be corrected at this stage. After 1 s, the real radius was calculated according to the data obtained by
the two feedbacks. At this moment, the radius started to correct and the curves of each joint changed.
After 3 s, the joint curve showed a new trend and did not change further, which showed that the radius
error had been eliminated. The variation of the joint curve also satisfied the expected setting of the
radius correction algorithm.
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Figure 10. (a) Simulation path of the robot with radius correction algorithm; (b) Radius error curve
during the correction; (c) Simulation path of the robot with radius correction surface function; (d) Joint
angle of each leg.

4. Experiments

To verify the correctness of the algorithm in this research, a series of experiments was conducted
using the hexapod robot platform. There were three groups of experiments including movement
transition, contrast of radius correction, and turning.

The outstanding feature of the radius correction algorithm is that it can be applied to any possible
gait, so we selected two typical gaits and an arbitrary transition gait for testing. Meanwhile, the attitude
data and current data were collected to judge the performance quantitatively. Experiment parameters
are shown in Table 3.
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Table 3. Experiment parameters.

Parameters Symbol Value

Duty factor β 1/2, 4/5, 5/6
Turning radius Rturning 600 mm, 800 mm, 1000 mm
Straight radius RStraight Inf
Running time T 30 s
The moment of straight to turning TS-T 10 s
The moment of turning to straight TT-S 20 s
Gait period Tperiod 1 s

The graphs of straight-turning-straight under three gaits (tripod gait β = 1/2, transition gait
β = 4/5, and wave gait [45] β = 5/6) are shown in Figure 11a. In the image, the floor tile is square
and its edge length is 800 mm. Using the size of the floor tile as a reference, the robot could keep its
direction in the straight line well. The transition between the straight and turning was smooth and
the turning radius was about 800 mm, which satisfied the preset parameter condition. Figure 11b
shows the corresponding attitude data and current data. The range of the pitch angle and roll angle
were all less than ±0.2 rad. There was no obvious fluctuation during the transition at 10 s and 20 s.
According to the curves of the yaw angle, from 0–10 s, the yaw angle was approximately horizontal and
the robot moved straight. From 10–20 s, the yaw angle was a slash and the robot turned. From 20–30 s,
the robot moved straight again. This fit perfectly with the preset motion parameters. Therefore,
the extended turning algorithm could achieve a fast transition in different motion states and had good
stability. The period of the current curve was 1s, and each period had a peak value that was equal to
the gait period.

Sensors 2017, 17, 2710  17 of 24 

The outstanding feature of the radius correction algorithm is that it can be applied to any 

possible gait, so we selected two typical gaits and an arbitrary transition gait for testing. Meanwhile, 

the attitude data and current data were collected to judge the performance quantitatively. 

Experiment parameters are shown in Table 3. 

The graphs of straight-turning-straight under three gaits (tripod gait β = 1/2, transition gait β = 

4/5, and wave gait [45] β = 5/6) are shown in Figure 11a. In the image, the floor tile is square and its 

edge length is 800 mm. Using the size of the floor tile as a reference, the robot could keep its direction 

in the straight line well. The transition between the straight and turning was smooth and the turning 

radius was about 800 mm, which satisfied the preset parameter condition. Figure 11b shows the 

corresponding attitude data and current data. The range of the pitch angle and roll angle were all 

less than ±0.2 rad. There was no obvious fluctuation during the transition at 10 s and 20 s. According 

to the curves of the yaw angle, from 0–10 s, the yaw angle was approximately horizontal and the 

robot moved straight. From 10–20 s, the yaw angle was a slash and the robot turned. From 20–30 s, 

the robot moved straight again. This fit perfectly with the preset motion parameters. Therefore, the 

extended turning algorithm could achieve a fast transition in different motion states and had good 

stability. The period of the current curve was 1s, and each period had a peak value that was equal to 

the gait period. 

0 10 20 30
-0.5

0

0.5

1

 

 

0 10 20 30
-0.1

0

0.1

 

 

=1/2

=4/5

=5/6

800

800

0 10 20 30
0

1000

2000

 

 

P
it

c
h

/r
a

d
Y

a
w

/r
a

d
C

u
r
r
e
n

t/
m

A

Time/s

(a) (b)

 β=1/2

 β=5/6

0 10 20 30
-0.1

0

0.1

 

 

R
o

ll
/r

a
d

Straight Turing Straight

800

 β=4/5

Line-Turn

Turn-Line

Line-Turn

Turn-Line

Line-Turn

Turn-Line

 

Figure 11. Straight-turning-straight experiment. (a) Image of different gait; (b) Attitude data and 

current data. 

A comparison test of the radius correction algorithm was carried out where the reference radius 

was Rref = 600 mm and duty factors were 1/2, 4/5, and 5/6, respectively. The graphs showing turning 

with the radius correction algorithm are presented in Figure 12a. Using the floor tile as a reference, it 

was concluded that the real radius was approximately the same as the reference radius. Figure 12c is 

the stack graph without the correction algorithm under the same conditions as Figure 12a, where it 

was obvious that there was a large error of the real radius and the reference radius. The 

corresponding attitude data and current data are shown in Figure 12b,d. The range of pitch angle 

and roll angle were less than ±0.1 rad. The variation of yaw angle was an oblique line. The robot 

roughly turned 4 rad in 30 s. This showed that the stability of the robot was not greatly affected by 

the radius correction algorithm. The period of the current curve was 1 s, which was identical to the 

period of gait. According to these curves, the radius correction algorithm could effectively correct 

the turning radius error, and had almost no influence on the stability and energy consumption of the 

robot. 
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current data.

A comparison test of the radius correction algorithm was carried out where the reference radius
was Rref = 600 mm and duty factors were 1/2, 4/5, and 5/6, respectively. The graphs showing turning
with the radius correction algorithm are presented in Figure 12a. Using the floor tile as a reference,
it was concluded that the real radius was approximately the same as the reference radius. Figure 12c is
the stack graph without the correction algorithm under the same conditions as Figure 12a, where it
was obvious that there was a large error of the real radius and the reference radius. The corresponding
attitude data and current data are shown in Figure 12b,d. The range of pitch angle and roll angle



Sensors 2017, 17, 2710 18 of 24

were less than ±0.1 rad. The variation of yaw angle was an oblique line. The robot roughly turned
4 rad in 30 s. This showed that the stability of the robot was not greatly affected by the radius
correction algorithm. The period of the current curve was 1 s, which was identical to the period of gait.
According to these curves, the radius correction algorithm could effectively correct the turning radius
error, and had almost no influence on the stability and energy consumption of the robot.Sensors 2017, 17, 2710  18 of 24 
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Figure 12. Comparison experiments on radius correction algorithm (reference radius Rref = 600 mm).
(a) Images of different gaits (radius correction); (b) Attitude data and current data (radius correction);
(c) Images of different gaits (without radius correction); (d) Attitude data and current data (without
radius correction).

The correction ability of the algorithm for different reference radius was verified in this group
of experiments. The three gaits above-mentioned were also selected here. We randomly chose two
reference radiuses (Rref = 800 mm, Rref = 1000 mm) for the test, which are shown in Figure 13a,c,
respectively. Figure 13b,d are the corresponding attitude angle curve and current curve, respectively.
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The robot still remained steady regardless of the radius. The correction algorithm showed good
performance for both the arbitrary gait and the reference radius.Sensors 2017, 17, 2710  19 of 24 
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Figure 13. Turning experiment. (a) Images of different gaits (Rref = 800); (b) Attitude data and current
data (Rref = 800); (c) Stack images of different gaits (Rref = 1000); (d) Attitude data and current data
(Rref = 1000).

5. Discussion

In this paper, a turning control strategy and a radius correction algorithm for a hexapod
bio-inspired robot were proposed based on the behavior of ants. In Section 1, the movement control of
several typical legged robots [7,9,11,17,18,22] was described. In this section, we collected information
on legged robots from the last ten years for comparison, which is shown in Table 4. The number of leg
and gait patterns, movement form, degree of freedom of a single leg, and driving mode were selected
as the comparison items. Normally, the more legs a robot has, the more difficult it is to control the
gait. However, robots with multiple legs theoretically have better stability and load capacity [46,47]
For robots with fewer legs such as biped robots [48–50], their motion is achieved by swinging one leg
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alternately. In most cases, it is balanced by one supporting leg. This kind of robot pays more attention
to the control of motion stability.

Table 4. Comparison between the recent multi-legged robots.

Robot (Year) Leg Number Gait Form Movement Form DOF/Leg Actuation

Robot-EA308
(Erden et al. 2007) [51] 6 Free Gait Going Straight 3 Servo Motors

BigDog
(Raibert et al. 2008) [52] 4 Crawl Gait

Trot Gait Omnidirectional 4 Hydraulic Drive
Linear Spring

SILO-6
(Estremera et al. 2010) [53] 6 free-crab gait 3 Servo Motors

COMET-IV
(Irawan et al. 2012) [41] 6 Tripod Gait Omnidirectional 4 Hydraulic Drive

HYQ
(Boaventura et al. 2012) [54] 4 Cycle Gait Trot Squat jump 3 Hydraulic Drive

Hexapod Robot
(Jeong et al.‘2013) [55] 6 Tripod Gait Going Straight 3 Servo Motors

Cheetah-cub robot
(Spröwitz et al. 2013) [56] 4 Trot Gait Going Straight 2

Servo Motors with
Cam Linear Spring
Cable Mechanism

RHex-style hexapod robot
(Chou et al. 2015) [57] 6 Leaping

Running Tripod Gait 1 Servo Motors Elastic
Structure

Weaver
(Bjelonic et al. 2016) [58] 6 Tripod Gait Wave Gait 5 Servo Motors

Robot in this paper (2017) 6 Arbitrary gait
(1/2 ≤ β ≤ 5/6) Omnidirectional 3 Servo Motors

From the research of legged robots from the last decade, the gait pattern of a quadruped robot
includes walk [59], trot [60], pace [61], gallop [62], and bound [63], which are used for different
conditions and are limited by the DOF (Degree of Freedom) of the leg and actuation of each joint.
The first three types of gait are used for the slow movement of robots. The robot needs to adjust the
position of its foot tip in real time to maintain its body balance [64–66]. The gallop and bound gaits can
make the robot move quickly, but needs to build a complex kinetic model [67–69]. Hexapod robots also
have a transition gait between typical gaits such as the tripod gait [70], quadruped gait [71], and wave
gait [72]. Due to gait pattern diversity, the motion control of a hexapod robot is very difficult. However,
on the basis of the previous studies, we proposed a simpler motion planning algorithm than previously
described, which gave the robot the ability to achieve an arbitrary gait and greatly simplified the gait
control method.

The movement forms of the robot mainly have a single form [51,55] and omnidirectional
movement [41,52]. The control of the omnidirectional movement is more complex than the signal
form. Most robots adopt different algorithms to achieve different movement forms [73–75]; however,
this is not convenient for the control of the robot and will consume lots of energy. In this paper,
the omnidirectional movement of the robot was achieved by extended the turning algorithm.
The transition process of the different motion states was analyzed, which made it possible to transition
instantaneously. Furthermore, we added the radius correction algorithm to the robot, which gave it
the ability to correct its path and has not been mentioned in other works.

6. Conclusions

A common approach to planning the turning of a bio-inspired hexapod robot was raised,
and inspired by biological behavior, a locomotion strategy for turning and deviation correction
of a hexapod walking robot based on ant behavior was proposed. The movement experiments of
ants under different conditions were studied using a high-speed camera, and the gaits and turning
locomotion of the ants were analyzed. According to ant behavior, a turning strategy was proposed.
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On this basis, an extended turning algorithm and a method of smooth transition between the different
radiuses were raised. Additionally, the most important proposal was that of a radius correction
algorithm using the arbitrary gait of a bio-inspired robot based on bio-inspiration, which provided a
method for robot self-correction. On the visual prototype, by taking the yaw angle and the coordinate
of the COG as feedback signals, a closed-loop control was established. Based on the feedback signal,
the real radius was obtained via geometric calculation and corrected effectively by adjusting the system
radius. After that, a radius correction surface function was obtained, which was necessary for the
robot to move in an outdoor environment without the positioning system and the environment model.
This method simplified the control process greatly and enhanced the adaptability of the robot.

A series of simulations and experiments were carried out and the radius correction algorithm
was verified on a hexapod walking robot prototype. Taking the tripod gait, transition gaits, and the
wave gait as examples, the results of the experiments indicated that the turning algorithm could make
the bio-inspired robot follow the desired turning path, and that the radius correction algorithm could
reduce the error and make the robot follow the ideal path, regardless of gait or radius. Furthermore,
the transition experiments between the turning and the straight indicated that the extended turning
algorithm and the method of transition were correct. According to the data from the attitude sensor,
it was concluded that the robot had good stability performance. Therefore, the ant-inspired turning
strategy for a hexapod walking robot through the study of ant locomotion in this paper was effective.
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