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Abstract: Near-infrared (NIR) spectroscopy was applied for the determination of total soluble
solid contents (SSC) of single Ruby Seedless grape berries using both benchtop Fourier transform
(VECTOR 22/N) and portable grating scanning (SupNIR-1500) spectrometers in this study. The results
showed that the best SSC prediction was obtained by VECTOR 22/N in the range of 12,000 to
4000 cm−1 (833–2500 nm) for Ruby Seedless with determination coefficient of prediction (Rp

2) of
0.918, root mean squares error of prediction (RMSEP) of 0.758% based on least squares support vector
machine (LS-SVM). Calibration transfer was conducted on the same spectral range of two instruments
(1000–1800 nm) based on the LS-SVM model. By conducting Kennard-Stone (KS) to divide sample sets,
selecting the optimal number of standardization samples and applying Passing-Bablok regression
to choose the optimal instrument as the master instrument, a modified calibration transfer method
between two spectrometers was developed. When 45 samples were selected for the standardization
set, the linear interpolation-piecewise direct standardization (linear interpolation-PDS) performed
well for calibration transfer with Rp

2 of 0.857 and RMSEP of 1.099% in the spectral region of
1000–1800 nm. And it was proved that re-calculating the standardization samples into master
model could improve the performance of calibration transfer in this study. This work indicated
that NIR could be used as a rapid and non-destructive method for SSC prediction, and provided
a feasibility to solve the transfer difficulty between totally different NIR spectrometers.

Keywords: near-infrared spectroscopy; total soluble solid contents; calibration transfer;
standardization samples selection; linear interpolation-piecewise direct standardization

1. Introduction

Grape berry (Vitis vinifera L.) is one of the oldest and most widely cultivated plants. In recent
decades, the production of grapes has continued to increase globally, making it one of the important
species of fruit. There are several reasons behind the increasing popularity of the table grape in the
summer season, including its great taste and abundance of nutritional ingredients. Total soluble solids
contents (SSC) is one of the main indicators of the internal quality of grape berry and it also has
a very important influence on the grape taste. The appropriate harvesting time of grape should be
defined according to the SSC. Also, due to the different sugar contents of the grapes, different brewing
processes have to be performed accordingly. It is necessary to strictly control the soluble solids content
of the grape berries during wine-making [1].
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Near-infrared spectroscopy (NIRS) is a recently popular nondestructive analytical method which
does not require any reagents or sample preparation. NIR covers the spectral range from 780 nm to
2500 nm. The vibration behavior of molecules such as stretch-bend combination modes and overtone
bands can be found in this spectral range [2]. As reported in the literatures, NIR technology has been
successfully implemented for the determination and quantitative analysis of chemical components
and physical properties of various samples [3–10]. NIR, by virtue of its speed and non-destructive
nature, is advantageous over the traditional method of manual selection performed by experienced
winemakers [11].

Chemometric methods are essential tools that can help account for the overlapping of absorption
peaks of diverse functional groups. A considerable number of models would be generated at
the conclusion of regression. And a key concern in application of NIR and other non-destructive
technologies is that the prediction results are influenced by the types of instruments which could cause
baseline drift, wavelength drift, and absorbance fluctuation [12], and it makes the model based on one
instrument could not be used in other instruments. Thus, it is the key problem when NIR technology
comes to industry. To solve this specialized problem, many researchers have raised several calibration
transfer methods including slope and bias correction (SBC) [13], Shenk’s Algorithm [14], and piecewise
direct standardization (PDS) [15]. The PDS is perhaps the most successful calibration transfer technique
and is widely used on commercial portable NIR devices to solve instruments’ drift. However, it is
more complex when facing the instruments with diverse types of monochromators and detectors,
especially when these instruments have different wavelength resolutions. Several studies have been
focused on preprocessing methods and sample selection before transfer to optimize the accuracies
of transfer methods, but few research have optimized the method of wavelength correction before
transfer. Here, we proposed a simple but practical wavelength correction method before PDS called
linear interpolation-PDS by regarding the relationship between two nearest-neighbor wavelengths
as line.

Therefore, this study aims to: (1) compare the performances of the instruments with different NIR
detectors for the determination of total soluble solid contents of single grape berry; (2) investigate
the influence of the number of standardization samples to model transfer and select optimal number
of samples for calibration transfer; and (3) study the feasibility using a modified calibration transfer
method (linear interpolation-PDS) between a benchtop Fourier transform (FT) spectral spectrometer
and a portable grating scanning spectrometer.

2. Materials and Methods

2.1. Intact Berry Samples

In this study, 70 clusters of Vitis vinifera L. cv. “Ruby Seedless” (the generation variety of
Vitis vinifera L. cv. “Emperor” and Vitis vinifera L. cv. “pirovan075”) were manually harvested in
October 2015 from three different vineyards (32◦5′ N, 118◦8′ E, NanJing, China). Then, a total of
10 berries were randomly picked from the top, middle and bottom of each cluster, so 700 grape
berries of “Ruby Seedless” were employed for the study. To eliminate temperature effects, all samples
were allowed to equilibrate at ambient temperature (20 ± 0.5 ◦C) for 30 min before performing
the experiment.

2.2. Spectral Collection and Reference Methods of SSC

The intact grape berries were put into sample cell of each instrument one by one. The reflectance
spectrum of each sample was obtained with 32 scans. Each sample was scanned three times, and the
average spectrum was used for chemometric analysis. The two instruments used for the spectral data
collection were:
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(i) A benchtop Fourier transform (FT) spectrometer (VECTOR 22/N, Bruker Optics, Germany),
equipped with a deuterated triglycine sulfate detector (DTGS) detector covering the spectral
range from 12000 to 4000 cm−1 (833–2500 nm), and the spectral resolution of this spectrometer is
3.858 cm−1.

(ii) A portable grating scanning spectrometer (SupNIR-1500, Focused Photonics Inc., Hangzhou,
China) equipped with an InGaAs detector and a 3.4 cm diameter clear aperture, with the spectral
range between 1000 to 1800 nm and 1 nm wavelength increments.

The reference value of SSC was measured by a digital hand-held “Pocket” refractometer (PAL-1,
ATAGO, Minato-ku, Japan), and was expressed in Brix (%), with accuracy of 0.1% unit. Each sample
was determined in triplicate, and the mean of three measurements was utilized for subsequent analysis.
The standard error of laboratory (SEL) was calculated as follow:

SEL =

√
∑(y1 − y)2 + (y2 − y)2 + (y3 − y)2

N
.

y1, y2, and y3 being the values obtained for a sample and its repetition, and y being the mean of
three measurements. N, the number of samples used to calculate the SEL.

The reference values were analyzed by IBM SPSS statistic 22 software (IBM Inc., New York,
NY, USA).

2.3. PLS, LS-SVM Regression

The spectra were preprocessed by moving-average smoothing (MS) and standard normal variate
(SNV) to reduce the noise and the interferences of scatter and particle size [16]. Then the Kennard-Stone
(KS) [17] algorithm was utilized to select calibration set (550 samples) and prediction set (150 samples).
The KS algorithm calculates the Euclidean distances of every two spectra and selected two spectra
with the furthest distance as starting pair, then calculates the Euclidean distances of the rest spectra
with the starting pairs, which made the samples were representative in both sets and could prevent
over-fitting or less-fitting to some extent.

In this study, partial least squares (PLS) [18] and the least-squares support vector machine
(LS-SVM) [19] regression were conducted to predict the SSC of grape berries. Partial least squares
regression is a shared, simple linear method for the investigation of spectral and reference values.
Using the cross-validation approach, the optimum PLS model was determined by selecting the
first minimum value from the prediction residual error sum of squares (PRESS) curve, and it
could be determined whether there was any over-fitting or not. The least-squares support vector
machine (LS-SVM) handles both linear and nonlinear relationships between the spectra and chemical
components, and radial basis function (RBF) was used, and the parameters gam (γ) and sig2 (σ2) were
selected by leave-one-out-cross validation (LOOCV).

2.4. Passing-Bablok Regression

To verify the differences between prediction values of each instrument and reference values are
statistically significant, Passing-Bablok regression [20] was conducted on the prediction set over the
common range of 1000–1800 nm, and based on the values of slopes and intercepts, optimal instrument
will be chosen as master instrument. The slope and intercept are calculated with their 95% confidence
interval. The slope is a measure of the proportional differences, and when the confidence interval for
slope contains the value 1, then it is concluded that the hypothesis (slope = 1) is accepted; The intercept
is a measure of the systematic differences, and when the confidence interval for intercept contains the
value 0, then the hypothesis (intercept = 0) is accepted. In conclusion, H0 is accepted when slope = 1
and intercept = 0 are both accepted at a 95% confidence level.
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2.5. Mean Normalization and Standardization Samples Selection

Mean normalization was performed to reduce the differences between two different instruments
before conducting model transfer. Mean normalization is useful for several groups of data at different
order of magnitude to be compared by getting all data in approximately the same scaling.

Before model transfer, the spectra of a few, representative samples should be selected to establish
the relationship between master and slave instruments. Feudale [21] pointed out the importance of
selecting optimal standardization samples and appropriate quantity of standardization samples in his
review. However, few papers had taken the number of standardization samples into consideration
when applying calibration transfer. In this study, the KS algorithm was also utilized to select
standardization samples. In order to investigate the influence of the number of standardization
samples to calibration transfer, the different quantity of standardization samples were selected from
calibration set and the optimal quantity of standardization samples were determined by the lowest
root mean squares error of prediction set. Besides, whether or not the standardization samples should
be taken into calibration set was also discussed here by recalculating the model performances without
standardization samples in calibration set.

2.6. Linear Interpolation-PDS for Model Transfer

The theory of piecewise direct standardization (PDS) is as follows:
The response matrix dimensioned samples by wavelengths of standard set are chosen at

wavelength index i on the master instrument, called Rm,i.
The response matrix dimensioned samples by wavelengths of standard set at wavelength index

i − j to i + k on slave instrument are chosen, called Rs,i.

Rm,i = Rs,i × bi (1)

The regression vector bi can be calculated via PLS. Then the transformation matrix F can be
calculated by setting the off-diagonal elements to zero. That is:

F = diag
(

bT
1 , bT

2 , · · · , bT
i , · · · , bT

n

)
. (2)

Here, n is the number of wavelengths.
The PDS performed well in the application of model transfer between different instruments

of the same type or between instruments of different types with same number of wavelengths.
However, when facing different instruments of different types as well as with different number
of wavelengths, this method may be unsuitable. Traditional method to solve this problem is to:
reserve the common wavelengths of both instruments which depressed the wavelengths and resulted
in information missing from spectra; or using DS to take place of PDS by standardizing a range
of frequencies to the response of master instrument at the entire spectrum which would result in
enormous computation. Thus, we proposed a modified PDS to solve this problem, and this linear
interpolation-PDS can solve wavelength correction problems. We added a process of wavelength
correct combined photometric correction before PDS. In the approximately same spectral range of
master instrument and slave instrument, the spectra matrix of slave instrument is converted to match
that of master instrument by computing the spectral values at nearby wavelengths for each sample via
first linear equation:

Slopec =
ys,j − ys,i

j− i
(3)

bc = ys,j − Slopec (4)

ys,c = Slopec × c + bc. (5)
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Here, c is a wavelength of master instrument; i and j are the nearest wavelength to wavelength c
on the slave instrument; ys,j is the response values of each sample at wavelength j, and ys,i is response
values of each sample at wavelength i; the response values of slave instrument at wavelength c is
generated, called ys,c.

2.7. The Model Evaluation

The performances of different models mentioned above were evaluated by the determination
coefficient of calibration (Rc

2), determination coefficient of prediction (Rp
2), the root mean squares of

calibration (RMSEC), prediction (RMSEP), and the ratio of standard deviation to standard error of
prediction (RPD). For a promising model, higher values of Rc

2, Rp
2 and RPD along with lower values

of RMSEC and RMSEP should be achieved simultaneously. In addition, over-fitting should be avoided
during the calibration. Thus, the RMSEC must be lower than RMSEP, yet the difference between the
two values cannot be significant.

All data processing was conducted with MATLAB 2010b (The Mathworks, Natick, MA, USA).

3. Results and Discussion

3.1. Statistics of SSC

The distribution of total soluble solid contents of Ruby Seedless is shown in Figure 1. The statistical
values were between 12.9% and 23.2%, and the average value was 19.1%. The standard deviation of
references (SD) was 2.0%, and the SEL was 0.3%. The one-sample Kolmogorov-Smirnov test showed
that the Skewness values and Kurtosis values of the SSC was lower than 1. The berry samples covered
a broad range of concentrations and the results of one-sample Kolmogorov-Smirnov test indicated that
the statistical values of SSC were roughly in a normal distribution. Also, the wide variability of the
data is helpful for developing a stable and robust calibration model. The results obtained here were
in accordance with those of Parpinello [6] (SSC ranges from 11.8–22.6%) and Urraca [22] (SSC ranges
from 10.3–21.6%).
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3.2. Spectra Preprocessing

The raw spectra (average spectra with standard deviation) of grape berries are shown in Figure 2.
As can be seen, spectral shapes over the same wavelength range (1000–1800 nm) for two instruments
were similar, and prominent absorptions peaks at around 1050 nm, 1185 nm, 1450 nm, and 1770 nm
are probably assigned to 3 × O-H stretching vibration of water and sugars, 2 × C-H stretching
vibration combined with 2 × C-H deformation vibration, C-H overtone in sugars and organic acids,
C-O stretching vibration or overtone band in sugars or organic acids, 2 × C-H stretching vibration of
sugars, acids, and water, respectively [23].Sensors 2017, 17, 2693  6 of 14 
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The performances of pretreatments were evaluated by cross-validation using PLS regression.
Considering the optimized RMSECV and highest RPD, it was found after several trials that the best
pretreatments were: standard normal variate (SNV) and 18 points of moving-average smoothing
(MS) for spectra acquired from VECTOR 22/N; SNV and three points of MS for spectra acquired
from SupNIR-1500. All regression models were developed after conducting pretreatments of
moving-average smoothing (MS) and the standard normal variate (SNV) to reduce noise and potential
interferences of scatter and particle size.

3.3. SSC Prediction of Grape Berries

Statistics of PLS and LS-SVM regressions after pretreatments are shown in Table 1. The results
obtained showed that the LS-SVM models with Rp

2 of 0.889–0.918 and RPD of 2.191–2.536 performed
better than the PLS models with 0.874–0.907 and 2.062–2.396 for Rp

2 and RPD, respectively, and the
RMSEC as well as RMSEP greatly decreasing. All of the RMSEC and RMSEP values of regression
models were slightly higher than SEL, but did not show large differences, indicated that the error of
NIR prediction was acceptable in this work [24]. Furthermore, the RPD values of LS-SVM model were
higher which indicated that the regression was more reliable. And these results were in accordance
with the results predicted by Paroinello [6] who determined the SSC of table grape by a Fourier
Transform instrument with the lowest RMSECV of 1.35% and the highest Rp

2 of 0.93.
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Table 1. Statistics of partial least squares (PLS) and least-squares support vector machine (LS-SVM)
regressions for total soluble solid contents of Ruby Seedless.

Methods Devices Rc
2 RMSEC (%) Rp

2 RMSEP (%) RPD

PLS VECTOR 22/N 0.963 0.515 0.888 0.889 2.168
VECTOR 22/N-P 0.928 0.714 0.874 0.935 2.062

SupNIR-1500 0.941 0.645 0.907 0.811 2.396

LS-SVM VECTOR 22/N 0.985 0.340 0.918 0.758 2.536
VECTOR 22/N-P 0.959 0.557 0.889 0.878 2.191

SupNIR-1500 0.969 0.477 0.910 0.801 2.420

Rc
2: Determination coefficient of calibration; Rp

2: Determination coefficient of prediction; RMSEC: Root mean
squares error of calibration; RMSEP: Root mean squares error of prediction; RPD: Ratio of standard deviation to
standard error of prediction; VECTOR 22/N-P: The spectra in the range of 1000–1800 nm on VECTOR 22/N.

PLS is one of the commonly used chemometric methods in the prediction of quality parameters
including ergosterol [25], total phenolic compounds [26], titratable acidity [27] in grapes, and all the
established PLS models presented fairly good results in these studies. Fernández-Novales [28] applied
PLS for the prediction of reducing sugar contents at different stages of grape ripening, winemaking,
and aging of red and white wines with an excellent Rp

2 of 0.988. Chauchard [29] found that LS-SVM
performed better than PLS for the prediction of acidity of grapes. LS-SVM also performed better than
PLS regression in the prediction of chemical parameters of acerola [30]. The LS-SVM regression took
all the linear and nonlinear relationships into consideration while PLS could only solve liner problems,
however, there does not seem to be convincing evidence to prove that the non-liner method offers
more advantages than the liner method [23]. Here, considering the LS-SVM models performed better
than PLS in this work, LS-SVM models were used for the follow-up discussion.

The models with data in the 830–2500 nm region obtained by VECTOR 22/N were found to
be the best with Rc

2 of 0.985, Rp
2 of 0.918, and highest RPD of 2.536 which can be considered as

excellent. The spectral range of 830–2500 nm performed better than the range of 1000–1800 nm on
VECTOR 22/N with higher Rp

2 and RPD, along with lower RMSEP, which probably due to the wider
NIR range contains more information related to the soluble solid contents of grapes. Fragoso [31]
compared the full-range spectra (979–2989 nm), fingerprint spectra (979–1477 nm), main phenolic
region (1133–1457 nm), and selected region (1168–1457) for the prediction of phenolic compounds in
grapes, found that in most cases, full-range spectra acquired the best prediction results.

However, when comparing the performances of two instruments in the same wavelength range
(1000–1800 nm), SupNIR-1500 did better in the evaluation of SSC. The big differences between the
models can probably be explained by the differences between the devices, due to the different
instrumental parameters such as resolution, type of monochromator and detector. Even though
the preprocessing methods decreased the noise, some noise and redundancy information still exists.
It is noteworthy that all of the RPD values of LS-SVM models were higher than 2.0, confirming that the
LS-SVM models were very efficient in generating the predictions for the SSC of grape.

The results of Passing-Bablok regression for LS-SVM are shown in Table 2. The null hypothesis
(H0) accepted means that based on a 95% confidence level, the slope between the two compared groups
is not significantly different from 1 and that the intercept between the two groups is not different
from 0. The results indicated that there exists difference between the predicted values of VECTOR
22/N and reference values for Ruby Seedless, and the prediction by SupNIR-1500 is more reliable.
Thus, SupNIR-1500 was regarded as master instrument in the calibration transfer analysis. And the
calibration transfer were conducted on the LS-SVM models.
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Table 2. Passing-Bablok regression results for least-squares support vector machine of total soluble
solid contents prediction at 95% confidence level.

Cultivar Parameters SupNIR-1500 vs. Reference VECTOR 22/N vs. Reference

Ruby Seedless
Intercept −1.7832 to 0.1420 −5.5442 to −1.5561

Slope 0.99953 to 1.0915 −1.0790 to 1.2781
H0 Accepted Rejected

H0: The null hypothesis.

3.4. Calibration Transfer

The average mean-normalized spectra of Rube Seedless are shown in Figure 3. The main
spectral features were retained and the differences between two instruments were more visible. In the
meanwhile, the data of two instruments in the same spectral range of 1000–1800 were in the same
scaling, which is helpful for calibration transfer.
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Figure 4a shows the relationship between the number of standardization samples and RMSEP
based on LS-SVM. It should be noticed that the standardization samples were included in calibration
set (meant that the calibration set was fixed), and the prediction set was fixed. The lowest RMSEP
of 1.099% was found when 45 samples were chosen for standardization, and when the number of
standardization samples over 76, the model transfer could be regarded as unreasonable with Rp

2 lower
than 0. It was difficult to explain the reason why choosing 45 samples is sufficient. Chen [32] discussed
the effects of calibration sample numbers on NIR model of tea, he found that when 85 samples were
calibrated the model was best, and explained it possibly due to the redundant samples gave redundant
background information which was unnecessary for model establishment. So we assumed here that
when more than 45 samples were selected, the redundant information they provided may affect
transfer performance. And this result provided the evidence that the better calibration transfer results
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could not be achieved by simply using more standardization samples. The distributions of total soluble
solid contents in the standardization, calibration, and prediction sets when using 45 standardization
samples are shown in Figure 4b. The concentration distributions looked similar in three sets, and this
result in turn proved that KS selection ran well in this study.

1 

 

 

Figure 4. The plot of the number of standardization verses the root mean squares error of same
prediction set based on least-squares support vector machine regression (a) and the distributions of
total soluble solid contents in the optimal linear interpolation-PDS model (b).

The transfer performances were re-evaluated when standardization samples were removed
from calibration set, and the results are shown in Table 3. The RMSEP showed similar trend with
Figure 4a, and it was interesting that the situation when 45 samples were selected for standardization
set turned out to be the optimal transfer result, which in accordance with the results of Figure 4a.
However, the lowest RMSEP of 1.214% in Table 3 was higher than that of 1.099% in Figure 4a. To the
best of our knowledge, there are limit papers discussed whether or not the standardization samples
should be calculated in master model. In most cases, the standardization samples were chosen
from prediction set, and then they were re-predicted by master model [33]. Our study proved that
re-calculated the standardization into mater model could improve the performances of calibration
transfer to some extent.

Table 3. Re-calibration of total soluble solid content for Ruby Seedless when standardization
samples were removed from calibration set and model transfer performances using linear
interpolation-PDS LS-SVM.

Num Rc
2 RMSEC (%) Rp

2 RMSEP (%) RPD

10 0.952 0.546 0.716 1.478 1.408
15 0.959 0.502 0.745 1.514 1.375
20 0.955 0.525 0.791 1.390 1.497
25 0.964 0.472 0.773 1.421 1.465
30 0.954 0.525 0.802 1.339 1.554
35 0.957 0.508 0.765 1.446 1.439
40 0.951 0.538 0.841 1.231 1.691
42 0.954 0.517 0.841 1.231 1.690
43 0.963 0.467 0.841 1.217 1.710
44 0.956 0.510 0.835 1.259 1.654
45 0.957 0.506 0.856 1.210 1.714
46 0.956 0.508 0.849 1.242 1.676
47 0.955 0.514 0.849 1.254 1.660
50 0.963 0.471 0.836 1.241 1.677
55 0.954 0.521 0.830 1.258 1.655
60 0.961 0.484 0.828 1.300 1.601
65 0.961 0.480 0.797 1.387 1.501
70 0.954 0.521 0.815 1.290 1.614
75 0.956 0.511 0.806 1.300 1.603

Num: Number of standardization samples; Rc
2: Determination coefficient of calibration; Rp

2: Determination
coefficient of prediction; RMSEC: Root mean squares error of calibration; RMSEP: Root mean squares error of
prediction; RPD: Ratio of standard deviation to standard error of prediction; PDS: Piecewise direct standardization;
LS-SVM: Last-squares support vector machine.
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Here, linear interpolation-PDS was compared with linear interpolation spectra without PDS
(using linear interpolation to wavelengths of slave spectra matrix, but did not using PDS to
eliminate the instrument differences) and the common-wavelengths-reserved-PDS, and prediction
using standard spectra was based on LS-SVM. The response of VECTOR 22/N was converted to
fit the response of SupNIR-1500 at each wavelength before linear interpolation-PDS and finally
the data matrixes of each instrument contain a total of 800 wavelengths; a total of 230 common
wavelengths for both instruments were selected before common-wavelengths-reserved-PDS, and all of
these wavelengths were taken into the consideration of PDS. After several trails, the optimal half-width
of the window for PDS was selected by lowest RMSEP using a total of 45 standardization samples.
The results are shown in Table 4. Although the results of linear interpolation-PDS were not better than
that of master spectra, this method produced better results than common-wavelengths-reserved-PDS,
with considerably higher Rp

2 of 0.857 and RPD of 1.895, along with lower RMSEP of 1.099%.

Table 4. Performances of calibration transfer methods for the total soluble solid contents of Ruby
Seedless based on least-squares support vector machine (LS-SVM).

Methods Rp
2 RMSEP (%) RPD

Origial 0.125 28.487 0.072
Common-wavelengths-reserved-PDS 0.471 3.489 0.676

Linear interpolation-PDS 0.857 1.099 1.895

Rp
2: Determination coefficient of prediction; RMSEP: Root mean squares error of prediction; RPD: Ratio of standard

deviation to standard error of prediction; PDS: Piecewise direct standardization.

The plots of the predicted values verses the reference values of different models are presented
in Figure 5. In these figures, the straight lines which pass through the origin were linear-curve
fitting results between the references and predicted values which represent the relationship between
the two. And when the slope is near to 1, means that predicted values were close to reference
values. From the plots we found that the slope of linear interpolation-PDS is more similar
with that of master set, it in turn indicted that linear interpolation-PDS performed better than
common-wavelengths-reserved-PDS. Figure 6 shows the average spectra of master instrument, original
slave instrument and transferred slave instrument of same prediction set. It could be seen that
transferred spectra of slave instrument looked more similar to the original spectra of master instrument.
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Figure 6. The average spectra of prediction sets for Ruby Seedless in the range of 1000–1800 nm.

The linear interpolation-PDS combines advantages of PDS and Shenk’s Algorithm which
takes wavelength correction into consideration. Moreover, the linear interpolation-PDS solves the
enormous computation of multiple regression at each wavelength in PDS algorithm and solves transfer
problems between different NIR spectrometers with different wavelength intervals; and it takes
the relationship between wavelength and photometric into consideration while Shenk’s Algorithm
does not. Pérezmarín [34] pointed out the importance of wavelength correction when using Shenk’s
Algorithm to transfer the ingredient composition calibration model from a Foss NIRSystem 6500
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SY-II (400–2500 nm) to a Foss NIRSystems 5000 (1100–2500nm). Sulub [35] and Peng [36] found
that PDS performed well in the calibration transfer between different NIR spectrometers with the
same wavelength intervals. PDS performed better than direct standardization (DS), orthogonal signal
correction (OSC), reverse standardization (RS), piecewise reverse standardization (PRS), slope and
bias correction (SBC) in the prediction of quality parameters for gasoline between a FT-IR PerkinElmer
Spectrum GX spectrometers and an ABB Bomen FT-NIR MB160D spectrometer in Pereira’s [37] work.
Liang [12] proposed a Rank-KS algorithm combined PDS to acquire a better calibration transfer
method. By combining the KS-PDS with our linear interpolation hypothesis for variables selection and
conversion, a better transfer results were obtained in the prediction of SSC for grape berries between
a benchtop Fourier transform (FT) spectrometer and a portable grating scanning spectrometer.

4. Conclusions

In this study, total soluble solid contents of Ruby Seedless were predicted by two totally
different instruments, considering the alignment of wavelengths and selection of standardization
samples, a modified PDS transfer method is generated to transfer the calibration between a benchtop
Fourier transform (FT) spectrometer and a portable grating scanning spectrometer. And this linear
interpolation-PDS can solve the difficulty caused by resolution difference and performed better than
traditional wavelengths-reserved method. And it was proved that re-calculating the standardization
samples into master model could improve the performance of calibration transfer in this study.
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