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Abstract: Human Activity Recognition (HAR) is one of the main subjects of study in the areas of
computer vision and machine learning due to the great benefits that can be achieved. Examples of the
study areas are: health prevention, security and surveillance, automotive research, and many others.
The proposed approaches are carried out using machine learning techniques and present good results.
However, it is difficult to observe how the descriptors of human activities are grouped. In order to
obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities
to recognize the human activities. This paper proposes a novel approach for the HAR based on
acoustic data and similarity networks. In this approach, we were able to characterize the sound of the
activities and identify those activities looking for similarity in the sound pattern. We evaluated the
similarity of the sounds considering mainly two features: the sound location and the materials that
were used. As a result, the materials are a good reference classifying the human activities compared
with the location.

Keywords: human activity recognition; similarity networks; mel frequency cepstral coefficients

1. Introduction

Human Activity Recognition (HAR) has been an area of great interest for the academy and the
industry. This is due to the various applications that can be developed with this context information.
For example, systems can be designed that support fragile persons, such as elderly or blind people to
carry out their activities of daily living at home. In addition, systems based on computer vision that
detect suspicious behavior of a subject in crowds of people can help detect terrorist attacks.

In literature, several technological approaches have been proposed to recognize human
activities [1–4]. These activities can be divided into two types: simple activities (i.e., walking, running,
climbing stairs, moving arms) and complex (or long-term) activities (which include several simple
activities—for example, cooking—that could be comprised of walking and moving one’s arms [5,6]).
Most of the approaches that have been proposed are characterized by sensors involved that must be
carried by subjects (accelerometers, microphones, gyroscopes, biosensors, plantar pressure sensors,
Radio Frequency Identification (RFID) tags, among others [7–11]), as well as devices embedded in
their environment such as camcorders [12–14].

Sensors 2017, 17, 2688; doi:10.3390/s17112688 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17112688
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2688 2 of 15

Recently, interest in the study of ambient sound has taken hold within the area of activity
recognition. The use of the fingerprint of each particular sound, as well as the availability of many
acoustic sensors in the gadgets used every day, allow the ambient sound to be a broad and easy access
source of information to determine the human activities. For instance, Zhan et al. [15] propose an
algorithm that uses a Haar wavelet for audio feature extraction and a hidden Markov model (HMM)
for classification. Their algorithm is able to recognize twenty different environmental sounds related to
personal and social activities (e.g., walking, making a telephone call, taking a shower, brushing one’s
teeth, etc.). Their results indicate that an average activity recognition accuracy is 96.9%. Stork et al. [16]
propose a recognition approach called Non-Markovian Ensemble Voting, which is able to recognize
twenty-two different sounds related to human activities in a bathroom and kitchen (e.g., brushing
one’s teeth, using a dishwasher). Their results indicate that this approach has an accuracy of 85% to
recognize the human activities. Vacher et al. [17] propose AUDITHIS, a system that performs sound
and speech analysis in a health smart home.

Many of the activities recognition approaches applied so far have good performance in the
recognition of human activities, and some of them are based on feature selection [18–20]. Feature
selection is an excellent technique that automatically selects those features in the data that are most
relevant for the problem. This technique seeks to reduce the number of attributes in the dataset.
However, according to Zhao et al. [21], there are some complex data types such as data streams from
sensor networks, genetic data or social network analysis data that feature selection algorithms cannot
handle effectively. One of the main advantages of network analysis is that it allows for observing the
behavior of the studied phenomena more clearly [22–24]. For example, feature selection has been used
in the detection of variables in genetic datasets, and it has made it possible to detect important genes
in diseases such as diabetes [25] or cancer [26]. However, a recent study shows that when we want
to study more closely disease and genetic interaction, it is a good choice to use similarity networks
and some clustering network algorithms to identify communities and organize genes within clusters
that highlight biological processes [27]. According to Costanzo et al. [27], studying the problem
using similarity networks allowed them to have a more organized view of the problem and a more
comprehensible view of cellular function.

In the real world, we can find networks almost everywhere, people are connected through
different relationships, the web is a network of interconnected web pages, the interactions between
molecular structures in a body also can be represented as a network and it can be modeled using graph
structures. Even in the brain, a special type of network that is activated when performing certain
activities has been identified [22,28,29].

In this paper, we propose an analysis of similarity of the natural environmental audio signals
related to human activities that are carried out in a home environment. In order to achieve this, it is
proposed to apply several metrics of network analysis instead of qualitative or contextual descriptors
as location. These analyses include probabilistic similarity networks showing nodes (activities) and
ties (similarity) to identify the potential classes. This will allow us to study more closely the degree of
similarity that exists between the sound of the activities over time. It will also allow us to identify if
there are patterns of behavior between the sound of the activities studied. In this paper, we show that,
when applying network analysis metrics, we found interesting patterns of behavior between the sound
of the activities. There are activities that emit very similar sounds at certain times and their similarity
is not always related to the location. Sometimes, the similarity is more related to the materials that are
used to develop those activities.
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This paper is organized as follows. A brief introduction of Human Activity Recognition (HAR)
and the research importance was presented in Section 1. A description of audio clips and devices used
are presented in Section 2. In Section 3, methodology is presented followed by similarity analysis, and
experimentation setup is presented in Section 4. In Section 5, results of similarity networks analysis
are presented, and, finally, conclusions and future work are presented in Section 6.

2. Dataset Description

The process of analysis that we follow to carry out this research work, can be observed in
Figure 1. We can see in the figure that the research consists of five main stages: data collection,
data pre-processing, data processing, data analysis and data visualization. The process for carrying
out each of the stages is described in the following sections.

Figure 1. Workflow of the analysis process.

The dataset consists of seven human activities and a collection of nonactivity sound files.
These sound files are usually performed in a residential setup environment—activities such as brewing
coffee, cooking, using the microwave oven, taking a shower, dish washing, hand washing, and teeth
brushing. Additionally, we add the sounds not related to the activities. Table 1 shows the activities
and a brief description of each. It is worth pointing out that four of these activities have a running
water background sound, adding to the complexity of the HAR problem. All environmental audio
recordings are available on the AmiDaMi research group page [30].

Table 1. Activities’ general description.

Activity Description

Brew coffee Brewing coffee in the stove using coffee pots and in coffee machines.
Cook Cooking meat and scrambled eggs in the stove.

Use microwave oven Using several microwave ovens to heat up water and a meal.

Take a shower Taking a shower in different environments, in some cases water fall was interrupted
at intervals.

Dish washing Dishes were washed by hand individually or in groups of different dishes, water noise is in
the background.

Hand washing Washing hands with bar soap.
Teeth brushing Audio clips include from opening the tap to closing it.

No activity No activity audio clips, which are mostly noises added by the device used to record (reading in
silence, resting in a coach, sleeping without snoring).

2.1. Recording Devices

The devices used to record the audio clips were chosen given the different specifications of the
microphones embedded in each. In Table 2, the system on chip (SoC) and operating system from
the selected mobile phones are shown. This information is important to explain the hardware and
software characteristics involved in internal audio recording and pre-processing methods.
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Table 2. Selected mobile phones’ system on chip (SoC) and operating system.

Smartphone System on Chip (SoC) Operating System

Lanix Ilium s600 Qualcomm Snapdragon 210 MSM8909 Android 5.1
LG G Pro Lite MediaTek MT6577 Android 4.1.2

iPhone 4 Apple A4 APL0398 iOS 4
iPhone 3GS Samsung S5PC100 iOS 3

HTC One M7 Qualcomm Snapdragon 600 APQ8064T Android 4.1.2

2.2. Spatial Environments

With the purpose of covering a wide range of sounds, all sounds were recorded in different
house locations to achieve different spatial environments (audio reflections and background sounds).
Additionally, different home facilities mean different cookware, home appliances and running water
reflections, and a different mobile phone that was close during the sound recording of the activity.
Figure 2 shows an example of the distance that was considered between the person doing the
dish-washing activity and the mobile phone that was used to record the sounds. In the image,
you can see that the mobile phone is in front of the person at a short distance.

Figure 2. Average distance between the mobile device and activity.

2.3. Meta-Data

Audio clips had a sample rate between 8000 Hz and 44,100 Hz. Mono and Stereo recordings were
done depending on the device used to record the audio clip. The range of the sample rate assured
that most mobile phones were able to record samples. In Table 3, the summary of meta-data for each
activity performed on this dataset is shown.

Table 3. Audio clips’ meta-data per activity.

Activity Sample Rate Encoding Format Channels

Brew coffee 8000 Hz–44,100 Hz m4a, amr Stereo, Mono
Cook 44,100 Hz m4a Stereo

Use microwave oven 44,100 Hz m4a Stereo
Take a shower 44,100 Hz m4a, mp3 Stereo
Dish washing 44,100 Hz m4a Stereo
Hand washing 8000 Hz–44,100 Hz m4a, amr Stereo, Mono
Brushing teeth 44,100 Hz m4a Stereo

No activity 8000 Hz–44,100 Hz m4a, amr Stereo, Mono
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2.4. Data Preparation

All of the audio samples have no other pre-processing other than trimming the samples in 10 s
clips. No other audio processing was performed to simplify the implementation in any mobile device.

To identify acoustic descriptors from the environmental sound, Mel-Frequency Cepstral
Coefficients (MFCC) are a feature widely used. We extract the MFCC from each sample. In total,
24 Cepstral coefficients per second were obtained for each sample. In Table 4, the average
Mel-Frequency Cepstral Coefficients per second is shown.

Table 4. Average Mel-Frequency Cepstral Coefficients (MFCC) per second during 10 s.

Activities CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10

Brew coffee (1) 0.316 −2.689 4.503 −4.484 5.154 −2.251 −3.408 5.202 −11.333 5.621
Cook (2) 0.277 −5.423 6.552 −6.399 7.445 −2.430 −2.367 7.166 −9.044 5.802

Use microwave (3) 0.310 −1.324 4.645 −6.107 6.267 −2.802 −3.490 5.755 −7.593 5.202
No activity (4) 0.163 −1.681 4.369 −1.669 5.194 −3.713 −0.756 7.975 −5.513 5.675

Take a shower (5) 0.673 −8.038 9.892 −9.121 9.068 −3.150 −3.661 9.492 −9.094 9.757
Dish washing (6) 0.722 −4.107 8.595 −8.198 7.863 −4.416 −3.781 6.834 −8.975 7.690
Hand washing (7) 0.510 −7.697 −5.127 6.109 −2.870 −1.157 1.893 −1.583 1.180 0.961
Brushing teeth (8) 0.407 −8.097 5.246 −9.758 5.437 −3.838 −1.621 7.878 −8.824 6.750

3. Similarity Networks

In this paper, we use the audio clip recordings as our dataset. Network Analysis (NA) is
applied to obtain metrics to detect and analyze similarity networks between audio records of different
human activities.

There are many network analysis metrics that can be used to characterize different types of
networks [31]. In this study, we analyze our similarity networks through the following network
metrics: degree centrality, closeness centrality, clustering, and power law distribution. These metrics
were selected because they have been widely reported in the literature. Most of the metrics of centrality
(degree and closeness) have been widely used in different studies and have been found to be a key
indicator to explain different social phenomena [32,33]. Specifically, the degree centrality is the simplest
and most used metric.

The degree centrality of a node denotes the number of relationships that are incident with it.
This metric helps to understand the influence and power of such nodes within the graph. In our case,
we work with weighted graphs. This means that the links between the nodes are weighted links and
the weight of the links represents the degree of similarity between the nodes. In this case, the degree
centrality of a node represents the degree of similarity that the node has with respect to the other nodes
present in the network.

Closeness centrality is calculated as the sum of the length of the shortest paths between one
specific node and all other nodes in the network. This means that the more central a node is, the closer
it is to all other nodes in the network. Clustering is another important network metric and is the most
used to detect communities in the networks [34–36]. We applied it to detect communities between the
activities in our similarity networks.

Another important phenomenon that has been identified in many complex social, biological or
technological systems is that they do not follow a normal distribution. It has been found that they
follow a power law distribution [37]. The power law distribution is used to describe events in
which a random variable reaches high values infrequently, while low values are much more common.
Some examples are the population of cities or the intensities of earthquakes. To follow a power law
distribution in the case of the population of cities means, for example, that there are few cities with a
large population and many cities with few population [38].

The power law distribution is very related to the probability distribution of degree over all nodes
in the network, which often has a power law form compatible with the existence of high degree nodes
or network hubs [39]. The objective is to identify whether, in our networks of similarity, the activities
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follow a power law distribution. That is, to identify if there are few activities that really have a high
degree of similarity, while most have a low degree of similarity.

Through the analysis of the networks, we seek to understand more closely the behavior that exists
between human activities through networks of similarity of sounds. In the similarity networks, we
find that all the activities are related to each other. What makes the difference between the relations
that exist between pairs of activities is defined as the degree of similarity that the activities present in
the sounds that emit. When calculating the degree centrality of each of the activities, we will obtain
for each second the activities that stand out the most and those that stand out less according to their
similarity. When calculating the closeness centrality between activities, we will also consider the
degree of similarity between them and based on those values its proximity. What is expected to be
obtained in this analysis is to identify the activity or activities that are most similar in their sound to all
activities analyzed.

In the analysis of clustering, we also consider the centrality degree of each activity and the
similarity that exists between the activities to group them. After identifying the clusters, we will
perform a more detailed analysis to observe possible clustering patterns such as location since the
location is a characteristic analyzed in several HAR studies. Finally, in our last analysis of power-law
distribution, the objective is to identify if there are really few activities in each analyzed second,
which actually show high degrees of similarity compared to the others.

4. Experimentation

Our similarity networks are represented as graphs, where the nodes are the human activities
described in Table 1 and the relations between the nodes represent the degree of similarity that exists
between activities, taking into account the Mel-Frequency Cepstral Coefficients (MFCC) of each activity.

To measure the degree of similarity between the activities, we use the average of the values of
MFCC of all activities per second shown in Table 4. To carry out a temporal analysis of the activities,
we construct a similarity matrix for every second (from literature review [40–43], 10 s is reported as a
recommended time that preserves information of the audio clips.). To construct each similarity matrix,
we used UCINET [44] a software widely used for Social Network Analysis (SNA), for the analysis and
visualization of social network data. For each second, we use the MFCC values of the activities. For
example, for the first second, we use only the first column of the Table 4. This column has the Cepstral
Coefficients of the eight activities during the first second (CC1). We introduce the values of the CC1
column in UCINET, and we calculate the Euclidean distance between activities’ pairs according to
their CC1 values:

ED(x, y) =
√
(xi − yi)2, (1)

where ED means Euclidean Distance, and (x,y) refers to the activities to which their distance is being
calculated. Applying the Euclidean distance between pairs of activities, we obtain the matrix of
dissimilarity between the activities as shown in Table 5. We call it dissimilarity matrix because the
larger the MFCC value between two activities, the more different those activities are.

Table 5. MFCC dissimilarity matrix for second 1.

Activities 1 2 3 4 5 6 7 8

1 0.000 0.039 0.007 0.154 0.357 0.405 0.194 0.090
2 0.039 0.000 0.032 0.115 0.396 0.444 0.233 0.129
3 0.007 0.032 0.000 0.147 0.364 0.412 0.200 0.097
4 0.154 0.115 0.147 0.000 0.511 0.559 0.347 0.244
5 0.357 0.396 0.364 0.511 0.000 0.048 0.163 0.267
6 0.405 0.444 0.412 0.559 0.048 0.000 0.212 0.315
7 0.194 0.233 0.200 0.347 0.163 0.212 0.000 0.103
8 0.090 0.129 0.097 0.244 0.267 0.315 0.103 0.000
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The values in Table 5 is the distance that exists between pairs of activities according to their CC
values in the first second. Because, for this study, we are interested in knowing the degree of similarity
between activities per second, and we apply the inverse of Euclidean distance to the previous matrix:

Similarity(x, y) =
1

ED(x, y)
. (2)

The result is a similarity matrix as shown in Table 6 for the first second. We repeat the same
procedure for the other 9 s, and, as a result, we obtained a similarity matrix for every second.

Table 6. MFCC similarity matrix for second 1.

Activities 1 2 3 4 5 6 7 8

1 0.00 25.61 147.00 6.50 2.80 2.47 5.16 11.09
2 25.61 0.00 31.01 8.71 2.52 2.25 4.30 7.74
3 147.00 31.01 0.00 6.80 2.75 2.43 4.99 10.31
4 6.50 8.71 6.80 0.00 1.96 1.79 2.88 4.10
5 2.80 2.52 2.75 1.96 0.00 20.71 6.12 3.75
6 2.47 2.25 2.43 1.79 20.71 0.00 4.72 3.17
7 5.16 4.30 4.99 2.88 6.12 4.72 0.00 9.66
8 11.09 7.74 10.31 4.10 3.75 3.17 9.66 0.00

As we can observe, the data of the similarity matrix between the activities in Table 6 are not
normalized. To normalize them, we use a scale from 0 to 100, where a value of 0 means that the
activities are very different and a value of 100 means that the activities are very similar in terms of
their MFCC values.

To visualize the similarity networks that are formed during each second, we use Gephi,
an open-source and leading visualization software that allows analysis of the evolution of the network
over time by manipulating the embedded timeline [45].

The resulting data allowed us to see the level of similarity normalized between the activities.
We consider three levels of similarity in the relations between the activities, activities between 0.014286
and 0.099961 values are considered as low values of similarity, activities between 0.102028 and 0.999006
values are considered as medium values of similarity, and activities between 1.016614 and 100 values
are considered as high values of similarity. For the following analyses, we consider the relationships
between activities with high values of similarity.

We introduce our activities data with high values of similarity in Gephi, and we visualized it as a
dynamic network with a timeline of 10 s. This allowed us to observe over time how the relations of
similarity between activities were changing. The larger size of the nodes indicates the greater degree
centrality of the node in terms of its similarity with other activities, the thickness of the relationships
means the degree of similarity between pair of nodes: the thicker tie means greater similarity between
activities and vice versa.

To analyze more closely the network of similarity, we use R, a free software environment for
statistical computing and graphics [46]. In R, we visualized the network of similarity that was
formed in each second. In order to observe the level of similarity between the activities per second,
we performed a degree centrality analysis for each activity in each second and a closeness centrality
analysis. The centrality analyses were performed with the R/igraph 0.7.1 package of the R software
(R Foundation for Statistical Computing, Vienna, Austria) [47].

The degree centrality of a node i, Di is defined as the summing up of the edge weights of the
adjacent edges to the node i. Closeness centrality measures how many steps are required to access
every other node from a given node in the network. The closeness centrality of a node is defined by
the inverse of the average length of the shortest paths to/from all the other nodes in the network [47].
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To observe more closely the clusters that exist between the activities according to their degree
of similarity, we applied the fast greedy community algorithm that allows us to detect communities
in networks. The fast greedy community tries to optimize a quality function called modularity.
The modularity measures when the division in a network is a good one. Initially, in the algorithm,
every node belongs to a separate community, the algorithm iterates, and stops when it is not possible
to increase the modularity any more [36].

Finally, to analyze if our networks follow a power law distribution, we use the R package
poweRlaw. According to Clauset et al., in a power law distribution, a variable x obeys a power law if it
follows a probability distribution [38,48].

p(x) = αx−α, (3)

where α is a constant parameter known as the scaling parameter. The α parameter typically lies in the
range 2 < α < 3, although there are some exceptions [38].

Our model was fitted using a maximum likelihood procedure and cut-off value, Xmin, it was
estimated by minimizing the Kolmogorov-Smirnov (K-S) test statistic. The Xmin is the minimum value
from which the power law is satisfied.

The closer the alpha parameter to 1, the less likely it is that an activity has a similarity greater
than x. The lower the alpha value, the greater the inequality in the degree distribution of the more
similar activities.

5. Results

The results of the degree centrality analysis of each of the activities per second are shown in
Figure 3. In this figure, we can observe that, in the first network (Net1), which represents the first
second, the degree centrality of the activities is much higher in comparison to the other networks.
The activities of brewing coffee, cooking and using the microwave oven, during this first second, have
the highest degree centrality of all networks. This means that these activities in that second have a
very high degree of similarity. The other activities during the first second also present a similar level of
degree centrality, which makes them similar but at a lower level.

We can also observe that, in almost all networks, the degree centrality of activities is relatively
low, but there are some activities that stand out from the majority in almost all the seconds, with some
exceptions. In Figure 3, we can also observe the changes that exist between the degree centrality of
the activities from one second to the other. For example, in the first second, there is a high degree of
similarity between the activities that are performed in the kitchen (coffee, cooking, and microwave);
however, in second 2, similarity is very low. This result is very important because it reflects the
importance of analyzing the similarity between activities every second.

In the analysis of closeness centrality that is shown in Figure 4, we can see that the activity of hand
washing is the one that stands out from the others. The above means that the activity of hand washing
is the activity that is closest to all other activities, according to the level of similarity in most networks.
This result is particularly important because hand washing is an activity that can be performed in the
kitchen or in the bathroom, and it is possible that the same sound is produced in both cases. In almost
all the seconds analyzed, hand washing is closer to the other activities, which can be interpreted as an
activity difficult to differentiate, since, in a way, it is very close to the other activities.

Figure 5 allows us to observe more closely the networks of similarity between the activities per
second, and the clusters that are identified according to the parameter of modularity applying the fast
greedy community algorithm.

These results show that, in each second, the clusters that are forming are different. In some cases,
only two large groups are formed, and, in others, we identify three groups.
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By analyzing in more detail the characteristics of the activities that are grouped in each second,
we could observe a particular phenomenon. The activities in some cases are grouped according to the
material that is used to carry out the activity. For example, in the first second (Network A), there are
two groups. The first group are activities that use a tool such as a kitchen utensil or home appliance
(using the microwave, cooking and brewing coffee). The thickness of the links shows that they are
activities that emit very similar sounds in this second, and, according to the location, all of these
activities are done in the kitchen. The second group of the same network are all activities that only
use water to wash something (dishwashing, teeth washing, taking a shower, hand washing) and are
performed in different locations, in the kitchen, and in the bathroom. In second 2 (Network B), we
observed almost the same phenomenon. The only difference is that the activity of dishwashing is
passed to the group of activities that are done in the kitchen and that use some utensil. In Network C,
the activities with the greater similarity that are grouped are those that use some utensil or apparatus
and are realized in the kitchen (using the microwave and cooking). In Network D, again, the activities
of cooking and using the microwave are grouped together, and, at the same time, other activities that
only use water are separated into two groups. In Network D, we did not observe some pattern of
similarity between the activities, perhaps because of the strong relationship between brewing coffee
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and no activity. Network F has grouped activities such as teeth and dishwashing, where the two use
only water and are performed in different locations.

A B C

E F G H

I J

00:00:01 00:00:02 00:00:03 00:00:04

00:00:05 00:00:06 00:00:07 00:00:08

00:00:09 00:00:10

Figure 5. Similarity networks in 10 s., where each sub-figure represents a second.

In Network G, we observed three groups, of which two of them show high similarity relations
between their activities, the group where the activities of using the microwave and brewing coffee,
using some utensils or apparatuses and the group taking a shower and washing dishes that use only
water to wash something. In Network H, we only observed the strong relationship between using the
microwave and brew coffee, and the strong relationship between taking a shower and washing dishes.
In Network I, there are two groups: one highlights out the relationship between using the microwave
and brewing coffee and the other highlights the relationship between taking a shower and washing
dishes. In the last network, there are two groups and again we observed in one group the activities of
cooking and brewing coffee, but brewing coffee had a strong relationship with using the microwave,
and taking a shower and washing dishes in the other group also had a strong relationship between
each other. With the above results, we could observe that, in most networks, activities are grouped
according to the materials, tools, or devices that are used to carry them out.

Several studies on the recognition of human activities are based on recognizing the activities
by their location. Because, in our previous results, it is observed that some activities are grouped
according to the material or instruments they use to take them, we decided to measure the precision of
the results by taking into consideration two criteria: we first analyze the clusters of activities according
to their location, separating the activities that were performed in the kitchen (brewing coffee, cooking,
using the microwave oven and dishwashing) and the activities that were performed in the bathroom
(taking a shower, hand washing and brushing teeth). In a second analysis, we observed the clusters of
activities according to the material that was used. We separated the activities in which only water was
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used to perform them (taking a shower, dish washing, hand washing and brushing teeth), and the
activities that used some instrument or utensil to perform them (brewing coffee, cooking and using
the microwave oven).

To measure the precision of clusters of activities according to their location, we use Equation (4):

Precision =
TP

TP + FP
, (4)

where TP means True Positive, and refers to the number of activities that were correctly clustered with
other activities that were carried out in the same location, and FP means False Positive, and refers
to the number of activities that were mistakenly clustered with other activities because they were
performed at different locations. We observed the clustering of seven activities during ten seconds.
No activity was not considered in this analysis. The precision for location can be seen in Equation (5):

Precision for location =
46

46 + 24
= 0.65. (5)

To measure the precision of clusters of activities according to the materials used, we use the same
equation, where TP means the number of activities that were correctly clustered with other activities
because they were performed only with water or because they were performed using some kitchen
utensil, and FP means the number of activities that were mistakenly clustered with other activities
because some activities in the same group used only water and some kitchen utensils. The precision
for materials used can be seen in Equation (6):

Precision for materials used =
55

55 + 17
= 0.78. (6)

As can be seen from the above results, the degree of precision is greater when we consider the
materials used for activities such as clustering pattern, when we consider the location.

In our last analysis, our objective was to verify if our audio similarity networks followed a power
law distribution. The results we obtained for each network per second are shown in Table 7. For
most of the networks that follow a power law distribution, their alpha parameter lies between 2 < α < 3.
In our networks, we observe that in the seconds 4, 6, 7 and 9, this parameter is not within that range.
In these activities, the alpha value is very high, indicating that the inequality between the degree
of similarity of the activities is really very low. The other networks show lower values of alpha,
which shows that there is greater inequality in the degree of similarity of the activities. It can also be
observed that, for these activities, the level of significance of the Kolmogorov-Smirnov (K-S) test is
greater than 0.05, which indicates that the test accepts the hypothesis that the data of the similarity
networks follow a power law distribution.

Table 7. Power law distribution statistics for audio similarity networks per second.

Second Alpha Xmin LogLik KS.stat KS.p

1 2.29 32.73 −38.4290 0.1789 0.9355
2 2.16 2.83 −20.3705 0.1750 0.9454
3 1.78 1.91 −20.1863 0.2512 0.6933
4 4.23 3.16 −5.3490 0.2770 0.7463
5 2.14 4.97 −18.4297 0.2467 0.7875
6 5.62 9.90 −10.8197 0.2057 0.9282
7 11.79 19.92 −4.2951 0.2361 0.9789
8 1.97 2.67 −19.4789 0.2261 0.8077
9 7.37 30.99 −7.3468 0.2320 0.9823
10 1.57 1.89 −25.2218 0.2010 0.9027
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Figure 6 shows the plots of the degree distribution of activities per second, where the red lines are
the power-law fit, starting from some Xmin value.

The above means that, in most networks of similarity of sounds, there are only a few activities
that present the greatest degree of similarity in their sound. If we observe the networks of similarity in
Figure 5, we can realize that, for example, the activities that have the highest degree of similarity in
several networks are microwave with coffee and dishes with bath.
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Figure 6. Power law distribution per second.

6. Conclusions

Currently, there is a great tendency to offer or recommend customized products or services
according to the preferences of the possible users. This tendency implies recognizing the preferences of
the users through certain patterns of behavior. In this line, the recognition of human activities is a great
challenge because, through the context, it is possible to recognize the activities carried out by users.
Some studies have attempted to recognize human activities through video, motion and sound sensors,
and systems designed based on these methods have not been implemented on some sites because of
privacy concerns or are not very accurate [49]. For this reason, we consider that it is very important
to recognize patterns in different human activities in order to identify similarities and differences
between them that allow advances in the investigation of the recognition of human activities.

In this paper, we make the first approach when trying to identify patterns of behavior of human
activities through acoustic data, applying network analysis metrics.

Through network analysis, we were able to identify the similarity networks that exist between
different human activities, and we found interesting patterns of behavior. We observed that, at some
point in time, some activities emit very similar sounds and this similarity of sound was not always
related to the location where the activity was being performed, but rather to the type of materials or
utensils used to perform the activity. This is a very important result because we find that location alone
is not always a good reference when trying to recognize human activities. There are other aspects that
should be considered such as the materials used in the activities.

Also through the analysis of networks, we were able to observe in detail the activities that
presented greater similarity in their sounds over time, and we identified that, in most of the analyzed
seconds, the activities follow a power law distribution.
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While this method is a useful advancement in the field of recognition of human activities, further
research may enhance the approach in the future—for example, applying feature selection to strengthen
our results or through the recognition of more complex human activities, trying to separate the sounds
emitted by the different materials and devices that are used to try to find more precise patterns
of behavior.

Finally, we are aware of mixed or simultaneous activities that could lead to a misclassification of a
human activity recognition. Therefore, we propose as future work a wide study using robust machine
learning techniques as convolutional neural network (CNN) or a multi-staking approach to tackle
this issue.
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