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Abstract: This review paper presents different ways to apply a measurement instrument of e-nose
type to evaluate ambient air with respect to detection of the odorants characterized by unpleasant
odour in a vicinity of municipal processing plants. An emphasis was put on the following applications
of the electronic nose instruments: monitoring networks, remote controlled robots and drones as well
as portable devices. Moreover, this paper presents commercially available sensors utilized in the
electronic noses and characterized by the limit of quantification below 1 ppm v/v, which is close to
the odour threshold of some odorants. Additionally, information about bioelectronic noses being
a possible alternative to electronic noses and their principle of operation and application potential
in the field of air evaluation with respect to detection of the odorants characterized by unpleasant
odour was provided.

Keywords: sensors and biosensors; bioelectronic nose; robots; drones; portable devices; odorants

1. Introduction

Odorants are the chemical substances which stimulate the olfactory system of humans, so an odour
is sensed. Some odorants are characterized by an unpleasant odour and their persistent or periodical
presence in ambient air results in an odour nuisance. Such situations are classified as one of the main
reasons for public complaints filed to various types of institutions [1–3]. The complexity of the problem
of odour nuisance in ambient air was emphasized in a number of different reports and classified as one
of the most important issues regarding environmental pollution. The human nose is a natural sensor for
the detection of odorants characterized by unpleasant odour. Information about odour can be perceived
by humans in a conscious and subconscious way. The odorants characterized by unpleasant odour are
naturally associated with potential danger, feeling of discomfort and can cause negative psychosomatic
symptoms. Thus, atmospheric emission of the gases polluted with malodorous substances constitutes
a significant environmental problem [4–8]. Unfortunately, continuous economic and industrial progress
of many countries significantly contributes to the increased emission of pollutants into the atmosphere.
Expansion of urban agglomerations in regions where municipal processing plants, such as sewage
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treatment plants or municipal landfills, are located see increased odour problems [9–13]. These plants
generate a substantial amount of substances that are harmful to the environment, characterized by
various physical as well as chemical properties; some of these pollutants are odorants characterized by
unpleasant odour. This situation still occurs despite the fact that many countries intensively implement
modern technologies aimed at limiting the malodorous substances emitted from that type of plant.
The negative influence of these compounds on the environment can result from: properties of particular
chemical compounds, mutual interactions between the components of gas mixtures (the phenomenon
of synergism) and atmospheric factors including air temperature, wind speed and direction, air
humidity, insolation [14,15]. Figure 1 provides schematic information about the expansion of urban
agglomerations and the related permanent or temporary odour nuisance over a particular area.
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Figure 1. Schematic presentation of interaction between urban agglomeration and municipal
processing plants.

The content of suitable osmophore groups in the chemical structure of odorants determines their
sensory perception with respect to odour sort (what the odour of the particular odorant resembles)
as well as hedonic tone (subjective opinion about the odour expressed using pleasant/unpleasant
categories). Odour threshold is also a parameter describing properties of odorants. It is the minimum
concentration of the odorant which stimulates the olfactory system of humans. Figure 2 presents
exemplary osmophore groups of the chemical compounds that are the most frequent in the ambient air
in the vicinity of municipal plants. Table 1 gathers the information about the concentrations at which
odour thresholds occur [16–25].
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Table 1. Olfactory thresholds for the chemical compounds detected in the vicinity of municipal
processing plants [26–28] containing particular osmophore groups.

Osmophoric Group Example Compound Odour Threshold Value Reference

Alcohols
methanol 33 ppm [26]
ethanol 55 ppm [27]

propanol 6 ppm [27]

Aldehydes
formaldehyde 0.83 ppm [28]
acetaldehyde 0.21 ppm [16]

n-butylaldehyde 0.67 ppb [26]

Ketones
acetone 13.5 ppm [20]

n-butanone 50 ppm [26]
3-pentanone 70 ppm [26]

Acids
aceticacid 363 ppb [27]

propanoicacid 5.7 ppb [26]
butyricacid 1 ppb [16]

Esters
ethyl acetate 3.9 ppm [28]
butylacetate 0.39 ppm [28]

methylmethacrylate 0.21 ppm [16]

Amines/amides
methylamine 35 ppb [26]

trimethylamine 0.21 ppb [16]
dimethylformamide 2.2 ppm [28]

Sulphur compounds
dimethylsulphide 5.89 ppb [27]

dimethyldisulphide 0.16 ppb [26]
methyl mercaptane 2.1 ppb [16]

Currently, reduction of the emission of odorants characterized by unpleasant odour is a priority
for these branches of industry which introduce odorous compounds to the atmosphere. The most
effective methods of odorants characterized by unpleasant odour emission abatement include:

- prevention of malodorous compounds emission via application of the best available technology
(BAT),

- implementation of deodorization systems in existing industrial plants,
- proper planning at the localization and construction stage of newly-built plants.

However, independently of the applied technology of odorants characterized by unpleasant odour
emission limitation, it is necessary to provide verification via monitoring of deodorization effectiveness.
Evaluation of the deodorization level can be performed via measurement of odour intensity or
odour concentration at an inlet or an outlet of a given technological installation. Instrumental
techniques, apart from the olfactometric techniques—dynamic olfactometry, in particular, is one
of the most popular methods of odour measurement. Electronic nose technique belongs to the group
of instrumental methods. Similarly to the olfactometric techniques, it utilizes holistic analysis, without
a need for identification of particular components contributing to a summary odour of the mixture.
This technique belongs to dynamically developing instrumental techniques and it is increasingly
applied for monitoring and evaluation of the effectiveness of deodorization of unpleasant odours
generated by different fields of human activity [29–36].

In this review paper, the authors would like to focus on four aspects connected with monitoring
and evaluation of air odour quality in a vicinity of municipal processing plants using the electronic
nose technique. Figure 3 schematically illustrates the ways in which an electronic nose is used for
evaluation of ambient air quality. The first group includes stationary monitoring with a network
of electronic nose instruments. Information from particular electronic nose units located in a given
area is transferred to a central unit. The second group of application is remote robots and drones
which are sent to the places that are inaccessible, dangerous or harmful to people. Another group are
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portable electronic nose instruments which are devices for localization of emission sources or leakages
in technological installations. The fourth and final group are bioelectronic noses which, as opposed to
the classic electronic noses equipped with chemical sensors, possess biosensors or biological materials
sensitive to odours. This group is a promising one that is believed to be capable of replacing animals
and be characterized by better selectivity than the classic electronic noses.
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2. Sensors and Biosensors Utilized in Electronic and Bioelectronic Nose Instruments Design

Based on the information contained in Table 1, it can be noticed that volatile organic compounds
(VOCs) are a dominant group of odorous compounds. These compounds, depending on the contained
osmophore group, are characterized by a defined concentration range at which it is possible to identify
an odour with a probability of 0.5. The value of the olfactory threshold determines the application of
a suitable chemical sensor in the electronic nose instrument in order to allow measurement at a given
concentration level. A range of VOCs imission concentrations which can possibly occur in ambient
air is from 0.01 ppb to the maximum of single ppm. In this case, only a small number of the chemical
sensors for VOCs measurement can fulfil the requirements concerning measurement at such a low
concentration level. Electrochemical sensors, solid electrolyte semiconductor sensors and PID-type
sensors are dominant chemical sensors for VOCs detection which are commercially available. Table 2
presents basic information concerning commercially available sensor types and their metrological
parameters as far as measurement of the gases from VOCs group characterized by the limit of detection
lower than 1 ppm v/v is concerned [37,38].
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Table 2. Commercially available chemical sensors intended for measurement of compounds from volatile organic compounds group characterized by the limit of
detection lower than 1 ppm v/v.

Manufacturer/Model Sensor Type 1 Measuring Range Response Time Detected Compound

Winsen, ME2-C2H5OH-Φ16 EC 0–1 mg/dm3 <20 s ethanol
Winsen, ME2-CH2O-Φ16 EC 0–10 ppm <60 s formaldehyde

Environmental Sensors CO, Z-300 EC 0–30 ppm <60 s formladehyde
3ETO CiTiceL EC 0.1–20 ppm <140 s ethylene oxide

Membrapor, ETO/M-10 EC 0.05–10 ppm <140 s ethylene oxide
Uni-tec SRL, SENS-IT MOS 0.1–30 ppb nd benzene

Uni-tec SRL, SENS 3000 MOS 0–400 ppb <3 s methane
UST, Triplesensor MOS 0.1–100 ppm <100 s benzene

Alphasense, PID-A12 PID 0.001–50 ppm <3 s VOCs with ionisation potentials < 10.6 eV
(isobutylene calibration)

Alphasense, PID-AH PID 0.001–50 ppm <3 s VOCs with ionisation potentials < 10.6 eV
(isobutylene calibration)

ION Science, PPB MiniPID 2 PID 0.001–40 ppm <3 s VOCs (isobutylene calibration)
piD-TECH eVx, Blue 045-014 PID 0.0005–1 ppm <4 s VOCs (isobutylene calibration)

piD-TECH plus, 043-235 PID 0.005–20 ppm <5 s VOCs (isobutylene calibration)
1 EC—Electrochemical sensor, MOS—Metal Oxide Semiconductor, PID—Photoionization sensor.
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A fundamental element in the bioelectronic noses design is olfactory receptors (ORs) or cells
exhibiting expression of olfactory receptor proteins which are used as an active element of the sensor
in order to analyse odours with desired sensitivity and specificity. A sensitive element made of this
type of biomaterial is directly connected with a sensor for odour identification and conversion of
the biological signal into an analytically useful signal—electrical or optical. The sensors utilized in
this type of nose are comprised of two elements—primary and secondary transducers. The first one
is built from olfactory receptors cells, for instance, whereas the secondary transducer (transductor)
is a non-biological device. Due to the implementation of biological elements of olfactory systems,
it is possible not only to detect odorous substances at low concentration levels [39,40] but also to
predict the mechanisms of odours perception. Recording and processing of the biological signal
can be accomplished using: microelectrode arrays (MEAs), electrochemical impedance spectroscopy
(EIS), quartz crystal microbalance (QCM), field effect transistors (FET), surface plasmon resonance
(SPR) sensors and conducting polymers (for example polypyrrole), carbon nanotubes, graphene and
others [41].

3. Stationary Monitoring Using Electronic Nose Network

In the case of this type of application, the electronic noses are located over the area where
the emission of odorants characterized by unpleasant odour occurs. An indispensable element of
such a network is the application of data loggers which allow acquisition of complete measurement
data from the sensors including raw data and a series of data describing measurement conditions
and operating parameters of a device in order to verify the quality of results and improve device
functioning. Thanks to transmission connections, the data logger provides scientific staff and operators
who stay in an office with remote access to the e-nose installed in measurement stations. It allows
on-line acquisition and verification of measurement results as well as supervision and control over
the measurement process. Data loggers, due to their superior computational power as compared to
the processors controlling measurement process, can perform necessary processing of measurement
data. Data transmission is realized using Internet technologies, which provides easy and fast access to
the e-nose instrument. Operation of stationary electronic nose instrument can be maintenance-free,
and the device works in two modes:

- the first one—sampling of ambient air for ca. 1 min,
- the second one—e-nose sensors conditioning for ca. 5–10 min.

In the first mode, the air sucked into a sensor chamber triggers reaction of the sensors to a change
in air composition. Temperature and relative humidity of air should be stabilized before entering the
sensors chamber. In the second mode, there is a flow of air stream free of odorous compounds either
from a bottle or from a zero air generator, instead of ambient air purified from odorous compounds.
The aim is to bring the sensor’s signals to their initial value (prior to measurement). The obtained
signal is processed using converters and obtained information can be presented as odour concentration.
A general overview of the process of sensor signal conversion into odour concentration is schematically
presented in Figure 4. Precise determination of odour concentration from the information obtained
using the sensors requires calibration with olfactometric methods. Such a situation results in the fact
that a ratio of sensor signal changes ∆S to reference signal S0 is not directly proportional to a ratio of
odour concentration ∆C to the concentration, at which olfactory threshold occurs (COT). Maintenance
of proportionality requires the application of correction (k), which is determined using the olfactory
methods. The devices activate an alarm in case of occurence of odour nuisance or instantaneous
increase in odour concentration above defined admissible value. Literature provides information
about such an application of an electronic nose instrument as an element of the monitoring network in
a vicinity of municipal processing plants [42–44]. The information about the type of electronic nose,
method of measurement, and applied data analysis can be found in Table 3.
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4. Remote Controlled Robots and Drones

The use of electronic olfaction facilitates automation of labour-intensive measurements, such as
environmental odour monitoring [45]. However, when conducting measurements in an outdoor
environment, an assumption that chemical substances are moved predominantly by molecular
diffusion is no longer valid, as factors such as temperature, relative humidity and, most importantly,
wind speed and direction come into play. For that reason, it is difficult to predict the behaviour of
the plume, even with sophisticated models and ample computational power [46]. Because of that,
when collecting input data for gas distribution modelling (GDM) from a distributed network of
stationary electronic noses intended for environmental monitoring data from an extended period
of time, fluctuations in local atmospheric conditions are taken into account. However, there are
instances in which there is a need to investigate gas distribution in an area which is not covered by
a pre-existing monitoring network or to rapidly detect small, localised emissions, for instance, a leak
in an industrial plant. In such a case, mobile robots equipped with electronic noses can be used to
map the gas distribution in a relatively short amount of time, or even be programmed to track sources
of contamination. Such an application is also relevant when reducing the cost of human labour is of
major concern, or in hazardous environments where they can be used over prolonged periods of time.
Mobile robots can also be potentially used to collect measurements in a tighter grid than is the case
with stationary e-nose networks [47]. Electronic noses could also be mounted on existing autonomous
mobile devices already used in the industry, such as robots for sampling in wastewater plants [48],
further reducing the operational expense.

Furthermore, in areas which are not easily accessible even for dedicated mobile platforms, aerial
drones, or even swarms thereof can be used [49,50]. Such a solution would also facilitate preparing
three-dimensional GDM models, and its implementation prospects are improved by the development
of new, miniaturized sensor types which could be used instead of the bulky and power-consuming
MOS sensors [51,52]. The turbulent flow of air usually breaks up into discrete areas of increased
concentration with little continuity to the source which means that mapping of the plume is a non-trivial
task, and considerable effort is put into the development of strategies for source detection, which were
described in detail by Russell et al. [53]. GDM can also be approached without any strong assumptions
and simplifications regarding the character of the odour plume, instead treating sensor response signals
as variables in order to obtain an overview of the gas dispersion [47]. This ‘model-free’ approach
was likely first used by Ishida et al. to estimate the location of emission source remotely, without
reaching the source itself [54]. As is the case with the construction of electronic noses and bio-electronic
olfaction, the algorithms which govern the robot’s path, either during mapping or localization are also
inspired by nature. These include foraging and mate-seeking patterns exhibited by seabirds, lobsters,
fish, bacteria and, perhaps most importantly, insects [55–58]. In particular, the behaviour of moths
which move directly upwind, and upon losing the scent perform a local search until it is reacquired
has been emulated in several approaches [59,60]. An actual olfactory apparatus of a silkworm moth
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was even integrated with a mobile robot for pheromone tracking [61]. However, it has been argued
that biomimetic approaches to plume source tracking are not practical since the sensing capabilities
of animals differ significantly from the electronic noses mounted on mobile platforms. Hernandez
Bennetts et al. compared the chemical sensing available to both moths and robots and also investigated
three different mobile platforms, both wheeled and aerial. They argued that the design of robots
equipped with gas sensors should not directly follow the biological counterparts, but instead be guided
by a thorough understanding of how the underlying principles of sensing and actuation principles
of the animal olfactory sense [62]. Another issue is the fact that gas distribution modelling is usually
used for mapping the concentration of a single gas, which in a real, outdoor environment is unrealistic.
In actuality, there are numerous interferences which might impact the response signal of non- or
semi-selective gas sensors and mask the presence of other sources of emission. A majority of reported
attempts at equipping autonomous robots with gas sensors involved a single type of odour source,
emitting a known chemical compound at a steady rate. In field use, in applications such as detection
of sources of malodours, it might be necessary to use an array of several sensors and interpret their
response pattern holistically—equipping the mobile platform with an electronic nose instead of a single
sensor. This has been done in numerous studies, however in a number of these the e-nose mounted on
a pre-existing robot body was used as just a set of different sensors, with only the signal magnitude of
one of them used as input for GDM and source localization, with no statistical processing of the signal
from the entire array, which does not conform to the definition put forward by Persaud and Dodd [63].

However, some attempts have been made to use an e-nose equipped robot in an environment
with more than one odour type. These include several investigations involving researchers from the
Center for Applied Autonomous Sensor Systems of the Örebro University, in which the capabilities
of robots for odour source localization and mapping and the detection and identification of odours
using an electronic nose were successfully combined [62,64–66]. In a recent work, a robot-mounted
electronic nose equipped with an array of MOS sensors was used to generate a distribution map
for multiple volatile compounds with a ‘model-free’ algorithm, together with a set of classification
maps in which the estimated likelihood of detecting a given compound at a particular location is
shown [47]. Such an approach could possibly find application in measuring the emission from a large,
non-homogenous source of emission such as a communal landfill. A robot could also be used during
landfill rehabilitation for examining the condition of the soil in a given locality. The use of electronic
noses mounted on mobile autonomous devices in environmental monitoring has some promising
prospective applications. A majority of research in this area is preliminary, as the challenges of using
electronic olfaction in an open environment are compounded by the spatial and temporal variability
of the measurements and with the necessity to develop reliable, adaptive algorithms governing the
robot’s behaviour. However, with the ongoing miniaturisation of gas sensors and a steady increase of
computational power at our disposal, the future use of aerial drones, likely working in swarms [59],
could be used to rapidly assess the odour distribution over a relatively large area with no pre-existing
monitoring network. Table 3 presents exemplary applications of robots for evaluation of air quality in
a vicinity of municipal processing plants.

5. Portable Electronic Nose Instruments

The concept of application of portable electronic nose instruments resembles utilization of remote
robots and drones. The only difference is the fact that the electronic nose is transported by humans.
These devices can be employed when odour concentrations are low and do not impose a hazard to
human health and life. Thus, it is rather a warning device or an instrument for detection of leakages
from technological lines. Moreover, portable electronic noses can be useful in odour evaluation in
the cases where other analytical methods are difficult to apply. The examples can be diffuse sources,
such as sheds, hangars, hen houses, tanks etc. with stagnant air, where evaluation of emitted air
stream is difficult or emission fluctuates over time, which makes attribution of odour concentration
to a particular time of day impossible. Metal oxide sensors, which are the most popular and widely
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available chemical sensors used in electronic olfaction, are far from ideal for use in hand-held devices
for environmental monitoring due to high power consumption and susceptibility to changes in relative
humidity [67] but can be easily miniaturised, especially in the case of metal oxide semiconductor
field effect transistors (MOSFET) [68]. The main issue with using portable electronic noses is the fact
that in environmental samples, the analytes are present at very low concentrations and cannot be
easily pre-concentrated, as the implementation of purge-and-trap modules would lead to excessive
power consumption and bulkiness for a hand-held device. Because of that, when the atmospheric
air is introduced directly into the sensor chamber, the operator must get relatively close to the odour
source in order to perform a reliable measurement. It is estimated that hand-held electronic noses
exhibit approximately 10 times lower precision and 10 times higher limits of detection than stationary
devices [69]. On the other hand, the use of portable and hand-held devices enables on-site screening
which can be followed by an in-depth analysis in the laboratory and is particularly useful in situations
which require an immediate response [70]. Some studies have focused on the use of portable e-noses
for detection of malodours from animal farms and landfills [71,72], however, mixed results were
obtained. For the above-mentioned reasons, a vast majority of hand-held e-noses use an enclosed, static
headspace sampling system and are intended for the analysis of food and agricultural products [73–75],
and models in which dynamic sampling of atmospheric air are used are intended for analysis of
localised gas leaks and emissions [76]. Exemplary applications of portable electronic nose instruments
for evaluation of air odour quality are shown in Table 3.
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Table 3. Examples of application of electronic nose instruments for evaluation of air odour quality in a vicinity of municipal processing plants.

Application Type Level of
Advancement

Results Expressed
in Odour

Concentration Units

Comparision
with

Olfactometry
Sensors Data Processing Reference

NETWORK

Indoor/outdoor air quality prototype Advanced in-situ
experiments No No MOS Neural Processing

Blocks (NPB) [43]

Odour dispersions modelling commercial In-situ
implementation Yes Yes Odotech’s system,

OdoWatch mapping [44]

Pulp and paper industry prototype
Calibration of

electronic noses
network

No No MOS ANN [77]

Odour monitoring prototype In-situ
implementation No Yes MOS cluster analysis,

mapping [78]

Assessment of odour annoyance
near a compost facility. prototype Advanced in-situ

experiments Yes Yes MOS DFA, PLS [79]

Monitoring of odours from
a composting plant commercial Advanced in-situ

experiments Yes Yes EOS, Sacmi Group,
Imola, Italy (MOS) kNN [80]

Monitoring odour emissions from
an oil & gas plant commercial

Advanced
experiments in model

condition
Yes Yes

EOS Ambiente, Sacmi
Group, Imola, Italy

(MOS)
not provided [81]

PORTABLE

Landfills odour monitoring prototype
Improvement of
electronic nose in

field studies
No No MOS DA, PCA, MLR,

PCR, PLS [82]

Outdoor air quality prototype Basic in-situ
experiments No No MOS, EC mapping [83]

Odour measurement around:
compost facilities, printing houses,
paint shops, wastewater treatment
plants, rendering plants, settling

ponds of sugar factories

prototype Basic in-situ
experiments No No MOS DA, PCA [84]
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Table 3. Cont.

Application Type Level of
Advancement

Results Expressed
in Odour

Concentration Units

Comparision
with

Olfactometry
Sensors Data Processing Reference

Unpleasant and potentially
harmful odours in urban areas,
likely coming from residential

waste containers

prototype Basic in-situ
experiments No No MOS mapping [85]

Farm odour prototype Advanced in-situ
experiments Yes Yes MOS ANN [86]

Asphalt odour patterns in hot mix
asphalt production commercial Basic experiments in

model condition No No

Cyranose 320,
Smiths Detection Inc.,
Edgewood, MD, USA

(CP)

Polar plots, PCA [87]

ROBOTS & DRONES

Air Quality prototype Basic experiments in
model condition No No MOS mapping [88]

Localizing gas emission sources on
landfill sites prototype

Advanced
experiments in model

condition
No No MOS Polar plots &

mapping [62]

Air Quality prototype Basic experiments in
model condition No No MOS mapping [89]

ANN—Artificial Neural Network; CP—Conducting Polymer; DA—Discriminant Analysis; DFA—Discriminant Function Analysis; kNN—k-Nearest Neighbours; MOS—Metal Oxide
Semiconductor; MLR—Multiple Linear Regression; PCA—Principal Component Analysis; PCR—Principal Component Regression; PLS—Partial Least Squares.
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6. Bioelectronic Noses

A subgroup of electronic noses engulfs bioelectronic noses which also possess high development
potential. They can be implemented in all the fields where emitted odours or other types of chemical
information call for high measurement sensitivity and selectivity. Intense development of these devices
is aimed at elaboration of:

• sensors characterized by high sensitivity, repeatability, specificity and short response time,
• methods of detection of the wide spectrum of odorous substances comprising odour profile,

including small size molecules (>300 Da),
• data processing systems enabling real-time monitoring,
• portable devices (sensor-on-chip),
• methods of production and immobilization of olfaction-inspired biomaterials on secondary

transducers,
• sensor systems generating the signals similar to the ones present in biological counterparts,
• an electronic system, which would imitate human nose or brain,
• more friendly sensor systems allowing reduction of equipment and analysis costs.

Regarding sensors design, one can distinguish the bioelectronic noses with different types of
sensitive element plating. It was presented schematically in Figure 5.

Sensors 2017, 17, 2671  12 of 19 

 

6. Bioelectronic Noses 

A subgroup of electronic noses engulfs bioelectronic noses which also possess high 

development potential. They can be implemented in all the fields where emitted odours or other 

types of chemical information call for high measurement sensitivity and selectivity. Intense 

development of these devices is aimed at elaboration of: 

 sensors characterized by high sensitivity, repeatability, specificity and short response time, 

 methods of detection of the wide spectrum of odorous substances comprising odour profile, 

including small size molecules (>300 Da), 

 data processing systems enabling real-time monitoring, 

 portable devices (sensor-on-chip), 

 methods of production and immobilization of olfaction-inspired biomaterials on secondary 

transducers, 

 sensor systems generating the signals similar to the ones present in biological counterparts, 

 an electronic system, which would imitate human nose or brain, 

 more friendly sensor systems allowing reduction of equipment and analysis costs. 

Regarding sensors design, one can distinguish the bioelectronic noses with different types of 

sensitive element plating. It was presented schematically in Figure 5. 

 

Figure 5. Schematic presentation of available biomaterials used for the construction of bioelectronic 

noses. 

Currently the market does not offer commercial odour biosensors based on olfactory receptors, 

however, there are still attempts to broaden their practical application, including in the field of 

environmental analytics and monitoring. Concept versions of bioelectronic noses are designed to 

enable detection of odorants at low concentrations before their amount reaches the level dangerous 

for the environment. A fundamental problem connected with proper operation of bioenoses is the 

poor activity of biological elements in dry conditions. A solution to this problem seems to be the 

implementation of synthetic peptides mimicking binding sites of the olfactory receptors [90,91]. The 

bioenose designed by Lee et al. [92] was capable of selective detection of trimethylamine and 

ammonia which are considered environmentally onerous due to their strong odour. Lee et al. also 

demonstrated a sensor functionalized with olfactory receptor proteins, activated in dry state [93]. 

Additionally, the sensor exhibited the properties of the human sense of smell such as antagonism. In 

order to obtain a more stable tertiary structure of the olfactory receptors, proteins were trapped in a 

‘nanodisc’, a self-assembling nano-scale membrane assembly [94]. In the future, the bioelectronic 

nose can significantly complement the shortages of electronic noses, especially as far as more specific 

and sensitive analysis of numerous environmental pollutants is concerned. Son et al. [95] presented 

the bioelectronic nose enabling real-time monitoring of water quality via analysis of geosmin and  

2-methylisoborneol as the indicators of water contamination level. In order to eliminate the 

disadvantages of conventional methods, human olfactory receptors (hORs) were applied, which 

selectively bind odorants molecules; the analysis stage is not preceded by a sample preparation 

Figure 5. Schematic presentation of available biomaterials used for the construction of bioelectronic noses.

Currently the market does not offer commercial odour biosensors based on olfactory receptors,
however, there are still attempts to broaden their practical application, including in the field of
environmental analytics and monitoring. Concept versions of bioelectronic noses are designed to
enable detection of odorants at low concentrations before their amount reaches the level dangerous
for the environment. A fundamental problem connected with proper operation of bioenoses is
the poor activity of biological elements in dry conditions. A solution to this problem seems to be
the implementation of synthetic peptides mimicking binding sites of the olfactory receptors [90,91].
The bioenose designed by Lee et al. [92] was capable of selective detection of trimethylamine and
ammonia which are considered environmentally onerous due to their strong odour. Lee et al. also
demonstrated a sensor functionalized with olfactory receptor proteins, activated in dry state [93].
Additionally, the sensor exhibited the properties of the human sense of smell such as antagonism.
In order to obtain a more stable tertiary structure of the olfactory receptors, proteins were trapped in
a ‘nanodisc’, a self-assembling nano-scale membrane assembly [94]. In the future, the bioelectronic
nose can significantly complement the shortages of electronic noses, especially as far as more
specific and sensitive analysis of numerous environmental pollutants is concerned. Son et al. [95]
presented the bioelectronic nose enabling real-time monitoring of water quality via analysis of geosmin
and 2-methylisoborneol as the indicators of water contamination level. In order to eliminate the
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disadvantages of conventional methods, human olfactory receptors (hORs) were applied, which
selectively bind odorants molecules; the analysis stage is not preceded by a sample preparation process.
The olfactory receptors were trapped in the form of nanovesicles deposited on single-walled carbon
nanotubes (swCNT) of a field-effect transistor (FET). Another example of the biosensor based on
TNT-binding receptors (tryptophan-histidine-tryptophan—WHW) linked to a conjugated polymer
polydiacetylene (PDA) and modified onto the surface of single-wall carbon nanotube (SWNT)-FET,
which allows measurement of 2,4,6-trimethyltoluene (TNT) content in analysed air already at the level
of 1fM was presented by Kim et al. [96]. The insect antenna-based odour sensors can be a useful
tool in protection plants; they reveal significant development potential in the field of identification of
plant diseases markers or early detection of fires [97,98]. Highly sensitive and fast detection of volatile
chemical compounds combined with substantial miniaturization potential creates big opportunities
for elaboration of the odour biosensors, which can operate in the field and in turn could facilitate and
broaden their practical application in environmental monitoring and analytics. Another milestone in
malodorous substances analysis can be standardization of odours which is a correlation between data
obtained from sensor matrix (for example bioelectronic nose) and particular sensations connected with
the smell of given odorants. The legal acts concerning odour nuisance implemented in developed
countries are based mainly on the investigations utilizing sensory analysis, which are still the most
popular, however, they are gradually substituted with more advanced techniques, not burdened with
problems associated with sensory panels [99]. Nowadays, various investigations are carried out which
are aimed at digitalization of olfactory sensations and emotions accompanying particular odours and
flavours [100]. Some stages can be realized using the bioelectronic noses which most precisely imitate
the principle of operation of the human sense of smell thanks to the utilization of the olfactory receptors
as one of the measurement elements [101].

7. Summary

Legislative bodies of most highly developed countries undertake the problem of the admissible
level of odorous pollutants emission. The regulations concerning measurement of emission of
malodours are continuously changed and improved, and electronic noses become one of the devices
admitted in reference methodologies for odours measurement [102–104]. This paper presents different
ways to apply a measurement instrument of e-nose type to evaluate ambient air with respect to
detection of the odorants characterized by unpleasant odour in a vicinity of municipal processing
plants. This problem is very important because the expansion of urban agglomerations goes beyond
safe limits resulting in exposure to odour nuisance originating from the municipal processing plants.
Due to the specificity of electronic noses, the operation of these devices can be a successful complement
to current techniques of odours measurement and many countries put an emphasis on this type of
approach. The electronic nose can be used as a complementary device with respect to other analytical
techniques, in particular sensory analysis techniques. Currently, the market offers devices for detection
of odorants characterized by unpleasant odour. Moreover, they are continuously being improved
and new, upgraded prototype versions are elaborated. The most crucial aspect limiting widespread
application of electronic noses is lack of defined legal regulations and their standardization. In recent
years an effort has been made to develop a framework for the standardization of the use of e-noses
as monitoring devices. In particular, the CEN/TC264/WG41 work group aims to propose a new
European standard for instrumental odour monitoring [105]. It will be focused on technical aspects
of the devices, e.g., sensitivity and selectivity to odour compounds or ease of calibration, especially
in the context of relating and validating the sensor response signals to the presence of odours. It will
not be applicable to the measurement of hedonic values such as measurement of odour concentration,
which is the task of other work groups, such as CEN/TC264/WG2, which aims to revise the EN13725
standard for determination of odour concentration by dynamic olfactometry [106].

Stability upon temperature and humidity changes, as well as sensor response drift in time are
still fundamental problems connected with the sensors comprising the electronic nose instruments.



Sensors 2017, 17, 2671 14 of 19

Bioelectronic noses are met with optimism, which are a subgroup of the electronic noses. Their
specificity and high sensitivity can lead to the elaboration of commercial versions. Numerous literature
reports concerning fundamentals and potentialities of electronic and bioelectronic noses justify the
statement that development of the methods of odours analysis is connected with the utilization of
such type of devices.
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