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Abstract: Lock-in amplification (LIA) is an effective approach for recovery of weak signal buried in
noise. Determination of the input signal amplitude in a classical dual-phase LIA is based on incoherent
detection which leads to a biased estimation at low signal-to-noise ratio. This article presents, for the
first time to our knowledge, a new architecture of LIA involving phase estimation with a linear-circular
regression for coherent detection. The proposed phase delay estimate, between the input signal and
a reference, is defined as the maximum-likelihood of a set of observations distributed according to
a von Mises distribution. In our implementation this maximum is obtained with a Newton Raphson
algorithm. We show that the proposed LIA architecture provides an unbiased estimate of the input
signal amplitude. Theoretical simulations with synthetic data demonstrate that the classical LIA
estimates are biased for SNR of the input signal lower than −20 dB, while the proposed LIA is able to
accurately recover the weak signal amplitude. The novel approach is applied to an optical sensor for
accurate measurement of NO2 concentrations at the sub-ppbv level in the atmosphere. Side-by-side
intercomparison measurements with a commercial LIA (SR830, Stanford Research Inc., Sunnyvale,
CA, USA ) demonstrate that the proposed LIA has an identical performance in terms of measurement
accuracy and precision but with simplified hardware architecture.

Keywords: weak signal detection; lock-in amplifier; signal processing; circular regression;
laser photoacoustic spectroscopy; trace gas detection

1. Introduction

Lock-in amplifier (LIA) is an effective device capable of recovering weak signal buried in high
noise level. This technique relies on locking an input signal to measure at a specific reference frequency.
The signal is extracted from noise using phase sensitive detection (PSD) at this reference frequency [1,2].
In a LIA, the weak input signal is multiplied by a sine-wave signal that acts as reference signal [3].
This multiplication is processed with an analog multiplier, a digital switch or a digital multiplier [4].
A low-pass filter, with an appropriate cut-off frequency, is used to extract the mean value of the product
between these two signals. The output filter value is proportional to the amplitude of the input signal
and depends on a phase delay. This phase delay between the input signal and the sine-wave reference
signal results from frequency fluctuations [5]. In this context it is important to set the reference phase
to the value of the input phase signal in order to correctly recover the amplitude [6].

Phase locked loop (PLL) can be implemented in LIA to actively track the phase of the input signal.
In this approach an internal reference generator is adjusted to match the phase of the input signal [7].
Andrea De Marcellis et al. [8] added a “phase alignment channel” and a “90◦ phase shifter channel”
to the LIA. These channels generate a reference in-phase signal and a quadrature signal with a 90◦

shifted phase. The reference signal of the shifted channel and the input signal are provided to the PSD
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of the LIA. This novel LIA realizes an automatic phase alignment but needs, however, complex analog
components and has a long response time.

Dual-phase LIA is an architecture widely used to remove the effects of the phase delay φk. In this
architecture, two multiplications are performed with respectively a reference signal and the same
signal in quadrature. A low pass filter is applied to the signals to produce the in-phase component
I = A cos(φk) and the quadrature component Q = A sin(φk). A is the amplitude of the input noisy
signal, and φk = arctan(Q/I) the phase delay. The in-phase and the quadrature components are
squared and summed in order to remove the phase delay and to provide the input signal amplitude:
R =

√
I2 + Q2 = A [9]. However, R is a nonlinear function of I and Q. It can be shown that for the

classical hypothesis of an additive Gaussian noise on the two components in quadrature, the random
observations of R are distributed according to a Rician distribution [10]. When the signal-to-noise
ratio (SNR) is high, the Rician distribution is similar to a Gaussian distribution and A can be estimated
with observations of R. However, the Rician distribution deviates significantly from the Gaussian
distribution at low SNR and the estimation of A with observations of R is biased. The bias is a function
of the noise noise level [10].

In the present work, we propose to determine the signal amplitude with observations
Rc = I cos(φ̂k) + Q sin(φ̂k), where φ̂k is an estimate of φk. We show in Figure 1 that the observations
Rc are more accurate than the observations R provided by a classical coherent detection method.
Furthermore we show in the next section that these observations are unbiased even at low SNR.
This new approach requires, however, a precise estimate of the phase delay φk. This phase delay
between the reference and the input signal is mainly due to frequency instability in the input noisy
signal and is assumed to vary slowly [11]. It results in a linear phase delay variation. In this article,
we introduce a linear-circular regression model to accurately estimate phase delays of the input noisy
signal [12].
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Figure 1. Principle of the determination of R. Abscissae represents the in phase component
I = A cos(φk) + η I , and ordinate represents the quadrature component Q = A sin(φk) + ηQ , where η I

and ηQ are Gaussian noise terms. R = OC =
√

I2 + Q2 is an observation of A in conventional
dual-phase LIA method. Let ∆I and ∆Q be the uncertainty in I and Q, caused by η I and ηQ.
φ1 and φ2 are the observed phase delays of the input noisy signal. The red area describes the
uncertainties using traditional dual-phase LIA. In this article we consider the following observation
Rc = OB + BC = Q sin(φk) + I cos(φk) of A. In this case the area of uncertainties is a line between C1

and C2. This area of uncertainties is smaller than in the classical case and it shows that the proposed
observation Rc is more accurate than R.

Signal processing of angular data (here the phase delay) relies on the modeling of angles
in a circular Bayesian framework [13–15]. The noise is assumed to follow a circular normal von
Mises distribution. This distribution acts in the circular domain as the normal distribution in the
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linear domain for observations defined on the real line [16,17]. Several nonlinear techniques have
been proposed in the published works for angular data. These techniques include circular state
estimation [18,19] and recursive filtering [20–22]. In the present work the circular regression of angular
data is used to estimate the phase shift of the input signal [23].

The paper is organized as follows: the Section 2 describes the architecture of the proposed circular
regression-based dual-phase digital LIA. The linear-circular model and method used to accurately
estimate the phase delay are presented in the Section 3. In the Section 4, the proposed LIA is assessed
using synthetic and real experimental data. Finally, high-sensitivity measurements of NO2 trace gas in
the atmosphere are presented and the performance of the proposed LIA is evaluated in comparison
with a commercial LIA (SR830, Stanford Research Inc.).

2. Digital Signal Detection

A typical dual-phase LIA (Figure 2a) and the proposed circular regression-based dual-phase
LIA (Figure 2b) are schematically depicted in Figure 2. We assume that an input signal s(t) contains
a carrier of amplitude A at a frequency f . This signal is digitized at a sampling frequency fs by
an analog–to-digital convertor (ADC). This discrete sampled signal sn can be expressed as a function
of the sampling period Ts with the following expression:

sn = A sin (2π f nTs) + ηn (1)

where ηn is a Gaussian noise. The general aim of lock-in detection is to extract the amplitude value A,
buried in noise. We define the SNR of the input signal as follows:

SNR =
A
σg

(2)

where σg is the standard deviation of the Gaussian noise ηn. The SNR in dB is:

SNRdB = 10 log10

(
A2

σ2
g

)
(3)

The in-phase in component and the quadrature qn component are respectively defined as the
multiplication of the input signal with the reference signal (at frequency fr) and the multiplication of
the input signal with the reference signal shifted by π/2. in and qn are expressed as follows:

in =
A
2
(cos (2π( fr − f )nTs) + cos (2π( fr + f )nTs)) + ηi

n (4)

qn =
A
2
(sin (2π( fr − f )nTs) + sin (2π( fr + f )nTs)) + η

q
n (5)

where ηi
n and η

q
n are independent Gaussian noises with a variance of σ2

g /2. In order to filter out the
frequency component fr + f , Tw fs samples of the signals in and qn are summed on a working window
Tw. This sum acts as a low-pass filter. The integration time Tw corresponds to the time constant in
classic dual-phase LIA (Figure 2a). The choice of Tw will be investigated in a next section (Section 4.3).
Two components values, Ik and Qk, are processed at each time instant k, multiple of the period Tw.
Expressions of the two components after integration by the low-pass filter are given below:

Ik =
A fsTw

2
cos (φk) + η I

k (6)

Qk =
A fsTw

2
sin (φk) + ηQ

k (7)
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where η I
k and ηQ

k are Gaussian noises with a variance of fsTwσ2
g /2. φk is the phase delay between

the input signal and the reference. This phase delay evolves linearly with time when the frequency
difference fr − f is constant. In a classical dual-phase LIA (Figure 2a), the noisy observations of Ik and
Qk are processed with the following expressions to observe noisy values of the signal amplitude and
the phase delay:

R =
√

I2
k + Q2

k (8)

φ̃k = arctan
Qk
Ik

= φk + ∆φk (9)

where ∆φk is the phase noise related to Gaussian noises η I
k and ηQ

k . Figure 2b shows the proposed
LIA architecture. In this architecture, we notice φ̂k the phase delay obtained with the linear-circular
regression estimator. With the proposed approach, noisy observations of Ik and Qk are processed with
the following expression to observe the signal amplitude:

Rc
k = Ik cos(φ̂k) + Qk sin(φ̂k) (10)
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Figure 2. (a) Basic dual-phase lock-in amplification (LIA); (b) Linear-Circular regression-based
dual-phase LIA. ADC: analog-digital convertor. ∑: sum function working as low-pass filter.
Arctan: the inverse tangent function.

With a linear-circular regression approach the estimated phase delay φ̂k is between φ̃k and φk.
The estimate φ̂k tends to φk when the number of observations used to process the circular estimate
is high. In the opposite, the estimate φ̂k tends to φ̃k when the number of observations is low.
The corresponding expressions for Rc

k are given below.
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• When φ̂k = φ̃k

Rc
k = Ik cos(φ̃k) + Qk sin(φ̃k) (11)

= Ik
Ik

I2
k + Q2

k
+ Qk

Qk

I2
k + Q2

k
(12)

=
√

I2
k + Q2

k =

∣∣∣∣A fsTw

2

∣∣∣∣+ ηC
k (13)

where ηC
k is a Rician noise. In this case, Rc

k = Rk and the proposed approach is equivalent to
the classical dual-phase approach. The noise on the observed signal is distributed according to
a Rician distribution. This approach is called incoherent detection (ID) in the rest of the article.

• When φ̂k = φk

Rc
k = Ik cos(φk) + Qk sin(φk) (14)

=
A fsTw

2
cos2 (φk) +

A fsTw

2
sin2 (φk) + η I

k cos2 (φk) + ηQ
k sin2 (φk) (15)

=
A fsTw

2
+ ηC

k (16)

In this case, ηC
k = η I

k cos2 (φk) + ηQ
k sin2 (φk) is a Gaussian noise. This is the proposed approach.

In this case the noise on the observed signal amplitude is distributed according to a Gaussian
distribution. This approach is called coherent detection (CD).

We show in Figure 3 the mean value of A obtained with observations of Rc
k. The x-axis is the

SNR of the components Ik and Qk. The black line shows the values of the input signal amplitude A.
The black line is also the mean value of A obtained with the CD method for a Gaussian noise on the
observations. The red line represents the mean value of A obtained with the ID method for a Rician
noise on the observations. These curves show that the ID method (incoherent detection) is biased in
case of weak signal detection, especially when the SNR of the Ik and Qk components is less than 5 dB.
These results are obtained for a Rician probability distribution given by the following equation:

f (x|A, σ) =
x

σ2 exp
(
−x2 − A2

2σ2

)
I0

(
x A
σ2

)
(17)

where σ2 is the variance of the Gauss noises η I
k and ηQ

k . I0 is the modified Bessel function of first kind
and order zero. The mean value µ of the Rician distribution is obtained with the following expression:

µ = σ

√
π

2
L1/2

(
−A2

2σ2

)
(18)

where Lq(x) is the Laguerre polynomial.
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Figure 3. Mean estimate of A in the case of incoherent detection (ID).

3. Circular Regression

Circular regression has been used in several applications such as wind and wave direction
estimation [23,24], GNSS altimetry [25]... In this article we use a linear-circular regression to estimate
the phase delay between a reference signal and the signal to be measured. In this model the abscissae is
linear and the ordinate is an angle. We can find in the published works three different circular
regressions; the circular-linear regression, the circular-circular regression and the linear-circular
regression [16].

The main difficulty in a linear-circular regression is the circular nature of the variable response.
One way to address the circularity is to assume that the noise is distributed according to a von Mises
distribution. We can find in the published works different maximum likelihood approaches for the
regression parameters estimation [26–29]. In this article we derived a similarity function from the
likelihood and we propose to maximize this similarity function with a Newton Raphson algorithm.

In this section, we derive an accurate estimate of the phase delay φk of the input signal. We consider
a working window Tp and observations obtained with a period Tw. The number of observations used
to process the linear-circular regression thus is n = Tp/Tw. The choice of the working window Tp

is discussed in the next section, dedicated to simulation assessment of the proposed LIA approach.
The observed phase delay φ̃k is a circular variable which takes its values on the circumference of
a circle. This variable is assumed to follow a linear-circular model with an additive angular noise
following a circular von Mises distribution. The noisy linear-circular model is described as follows:

yk = α + βxk + εk(mod 2π) (19)

where yk models the observations of the phase delay φ̃k at xk. εk is a zero-mean noise distributed
according to a von Mises distribution with concentration parameter κ. α and β are the y-intercept and
slope of the linear-circular regression. In our application the slope is equal to β = 2π( fr − f ). mod 2π

is the modulo of 2π. The von Mises distribution is defined by the following equation:

f (yk/α, β, κ) =
1

2π I0(κ)
exp(κ cos(yk − (α + βxk))) (20)

The likelihood of n samples yk is defined by:

L(y1, . . . , yn) = f (y1/α, β, κ) . . . f (yn/α, β, κ) (21)
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The likelihood of n samples for the von Mises distribution is given by:

L(y1, . . . , yn) =
1

(2π I0(κ))
n exp

(
κ

n

∑
k=1

cos(yk − (α + βxk))

)
(22)

The log-likelihood function is given by:

l(y1, . . . , yn) = log (L(y1, . . . , yn)) (23)

= − n log (2π I0(κ)) + κ
n

∑
k=1

cos(yk − (α + βxk))

In order to derivate the maximum likelihood estimate α̂ of α, the log-likelihood function is derived
with respect to α, and the result is given in Equation (24):

∂l(y1, . . . , yn)

∂α
= κ

n

∑
k=1

sin(yk − (α + βxk)) (24)

Equation (24) is set to zero to obtain the estimate of α:

∂l(y1, . . . , yn)

∂α
= 0 (25)

cos(α)
n

∑
k=1

sin(yk − βxk) = sin(α)
n

∑
k=1

cos(yk − βxk)

Finally the estimate of α is obtained:

α̂ = arctan∗
(

∑n
k=1 sin(yk − βxk)

∑n
k=1 cos(yk − βxk)

)
(26)

where Arctan∗(. . . ) is the “quadrant-specific” inverse of the tangent. It is shown in [19] that
Arctan∗(. . . ) is the maximum likelihood estimate. In order to compute the maximum likelihood
estimate β̂ of β, the 1st and 2nd order derivatives of the log-likelihood with respect to β are calculated:

∂l(y1, . . . , yn)

∂β
= κ

n

∑
k=1

xk sin(yk − (α + βxk)) (27)

∂2l(y1, . . . , yn)

∂β2 = −κ
n

∑
k=1

x2
k cos(yk − (α + βxk)) (28)

In this context the second order Taylor approximation of l(. . . ) at y1, . . . , yn can be obtained
with the Newton Raphson algorithm and the values of α and β that maximize the log-likelihood are
recursively obtained by:

αi = arctan∗
(

∑n
k=1 sin(yk − βi−1xk)

∑n
k=1 cos(yk − βi−1xk)

)
(29)

βi = βi−1 +
1
2

∑n
k=1 xk sin(yk − (αi + βi−1xk))

∑n
k=1 x2

k cos(yk − (αi + βi−1xk))
(30)

αi and βi converge to the maximum likelihood estimates α̂ and β̂. The circular regression is
equivalent to the linear regression when yk is unwrapped. In this context the variance of the estimate
β̂ is defined by:

var(β̂) =
σ2

l

∑n
k=1 (kTw − t̄)2 (31)
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The link between the standard deviation σl in the linear domain and the parameter of
concentration κ in the circular domain is defined by [17]:

σ2
l = −2 ln(A(κ)) (32)

with A(κ) =
I1(κ)

I0(κ)
(33)

where In(. . . ) is the modified Bessel function of the first kind of order n. Finally the relation between κ

and the SNR of s(t) can be approximated using the following linear expression:

κ =
fsTw

2
SNR (34)

4. Experimental Assessments

In order to characterize the ID and CD approaches and to optimize the typical parameters such as
Tw, Tp, synthetic data are simulated with MATLAB in a first step. In a second step, the proposed CD
approach is applied to an optical NO2 sensor for experimental validation.

4.1. Simulation Assessment Using Synthetic Data

The ID and CD methods are assessed through MATLAB simulations. We show in Figure 4a the
ID and CD estimates of the input signal amplitude A. These estimates are plotted in Figure 4a as
a function of the SNR. The amplitude A is fixed to 1.0 V. The difference of frequency between the signal
and the local reference is fr − f = 2 Hz (a typical frequency shift of a mechanical chopper usually
used for amplitude modulation in optical sensors [11]). The linear-circular regression is processed
with phase delay observations obtained in a working window Tp = 1 s. The sampling frequency is
fs = 44 kHz. The observations of A provided by the ID and CD methods are averaged within an
observation window To = 1 s to provide an estimate Â:

Â =
Tw

To

To
Tw

∑
k=1

Ak (35)
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Figure 4. (a) Estimates of the input signal amplitude A as a function of the signal-to-noise ratio (SNR).
Assessment of coherent detection (CD) and incoherent detection (ID) methods for different Tw: 0.001 s,
0.01 s, 0.1 s and 0.25 s; (b) Frequency response of the Low-Pass Filters (LPF) with Tw of 0.001 s, 0.01 s,
0.1 s and 0.25 s.
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As can be seen in Figure 4a, for weak signals with a SNR lower than −5 dB, the ID estimate
deviates significantly from the real signal amplitude when the integration period is Tw = 0.001 s
(black line) or Tw = 0.01 s (red line). This effect is due to the biased observations provided by the ID
method. For a period Tw = 0.01 s (grey line), the CD estimate does not deviate significantly from the
real signal amplitude even for a SNR lower than −5 dB. In this case, the observations provided by the
CD method are indeed unbiased.

In order to improve the ID estimate and to remove the bias, the integration period Tw is increased.
In this case we can observe in Figure 4a that the amplitude is underestimated for Tw = 0.1 s (blue line)
or Tw = 0.25 s (green line). This underestimation is explained in Figure 4b with the study of the lock-in
detection process in the frequency domain.

In lock-in detection, the incoming signal is down converted at frequency fr − f and then filtered
out by a low-pass filter (sum function). The transfer function of the low pass filter is given by the
following equation:

H( f ) =
sin (π f NTs)

sin (π f Ts)
exp (−j2π f (N − 1)Ts) (36)

where N = fsTw, is the number of observations in an integration period Tw. Figure 4b shows the
transfer function of low-pass filters with different integration periods . As fr − f = 2 Hz, the amplitude
output of the low-pass filter with integration periods 0.25 s, 0.1 s, 0.01 s and 0.001 s are respectively
0.60, 0.93, 0.99 and 1. These amplitudes are close to the amplitude estimated with the ID method and it
demonstrates that a period Tw larger than 0.25 s results in an underestimated signal amplitude with a
bias ratio of 0.60. In addition, larger Tw results in a longer response time of the LIA detection. As a
conclusion, using the ID method, the amplitude is either biased at low signal to noise ratio (for large To)
or underestimated at any signal to noise ratio (for large Tw). In this context, the only way to improve
the estimation process is to estimate the signal amplitude with CD observations processed with long
observation window To and short integration time Tw.

As a conclusion, using the ID method, the amplitude is either biased at low signal to noise ratio
(for large To) or underestimated at any signal to noise ratio (for large Tw).

The amplitude observation window To influences the performance of the CD approach for
recovery of weak signals amplitude. We show in Table 1 the minimum SNR required for the estimation
of the input signal amplitude with an uncertainty lower than 10%. In this simulation, the integration
time Tw is set to 10 ms, Tp = 1 s and the frequency difference is fixed to 2 Hz. The minimum SNR of the
input signal varies from −14 dB to −22 dB when To varies from 0.25 s to 1 s. It tends to be constant
(−24 dB) with a period To larger than 2 s. Increasing the size of To from 0.25 s to 1 s with a Tw = 0.01 s
can enhance the estimation accuracy, but for an observation window superior to 2 s the performance
remains the same.

Table 1. Minimum SNR obtained for the estimation of the input signal amplitude with an uncertainty
less than 10%. The SNR is provided as a function of the observation window To.

To (s) 0.25 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
SNR (dB) −14 −19 −22 −23 −24 −24 −24 −24 −24

The estimation accuracy of the CD method can be enhanced with the phase observation window
Tp. The dependence of the standard deviation (SD) of the estimated slope (that reflects the frequency
difference) over the phase observation window Tp is investigated Figure 5a. We present in Figure 5a
the standard deviation of the estimates α̂ and β̂ as a function of the phase observation window Tp for a
SNR of −22 dB. We show in Figure 5a that the SD of α̂ and β̂ decrease when the period of observation
Tp increases. In practice a period of observation Tp = 1 s and an integration period Tw = 10 ms are
used. This choice is based on the simulations results. We indeed observe in Figure 5a that the SD of the
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estimated slope with Tp = 1 s is 0.37 rad/s. This SD value corresponds to a frequency difference of
0.06 Hz which is sufficiently accurate for a typical frequency shift of 2 Hz.
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Figure 5. (a) Standard deviation of β̂ and α̂ for a SNR of −22 dB; (b) Example of LIA detection using
coherent and incoherent detections.

Figure 5b shows a measurement example obtained with simulated data. The phase delay of the
input signal is estimated with the circular regression of the CD method discussed in Section 3. For this
experiment the amplitude A changes from 0.05 V to 0.10 V and to 0.20 V and the corresponding SNR of
the input signals are, respectively, −26 dB, −20 dB and −14 dB. The difference of frequency between
the signal and the local replica is fixed to fl − f = 2 Hz. For the CD and ID approaches, an integration
time Tw =10 ms and a phase observation window Tp = 1 s are applied. The signal amplitudes estimated
by ID approach for a SNR of −26 dB, −20 dB, −14 dB are respectively 0.10± 0.01 V, 0.13± 0.01 V
and 0.21± 0.02 V. The signal amplitudes estimated by CD approach are 0.05± 0.02 V, 0.10± 0.02 V
and 0.20± 0.02 V and are well consistent with the true values. As expected, the estimated signal
amplitudes with the ID approach are biased for a SNR less than −20 dB. The same conclusions are
observed with LIA detection of a real signal, as presented in the next paragraph.

4.2. Application to High-Sensitivity and Accurate Measurements of NO2 at ppbv Concentration Level in
the Environment

We implement the proposed “circular phase processing” LIA approach in an optical sensor for
accurate measurements of low trace gas concentration of NO2 in the atmosphere. The optical sensor
is based on photoacoustic spectroscopy (PAS). In this sensor a pressure wave (acoustic signal) is
generated by thermal expansion resulting from absorption of a power-modulated light by target
gas [30]. The resulting acoustic signal, proportional to the target gas concentration, is detected
with microphones.

Figure 6a describes a classical LIA architecture of a PAS sensor. A laser beam, modulated with
a mechanic chopper at a “reference frequency”, is used to probe absorption of NO2. The reference
frequency is then used to demodulate the signal with a traditional lock in amplifier. The photoacoustic
(PA) cell is a single-pass cylinder which has a length of 26 mm and a diameter of 6 mm [31].
The proposed LIA architecture is described in Figure 6b. The proposed approach uses a fix frequency
and no tracking of the reference frequency is necessary.

The detailed experimental set-up is shown in Figure 7. A high power laser diode (NDB7875,
Nichia, Tokushima, JAPAN) operating at a wavelength of 444 nm is used as light source. The laser
light, driven by a laser diode controller (6340, Arryo instrument, San Luis Obispo, CA, USA),
is amplitude-modulated using a mechanical chopper (3501, New Focus, Inc., San Jose, CA, USA).
The modulation frequency is matched to the fundamental longitudinal resonance frequency of
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the cylinder (in order to be an acoustic resonator) at 6260 Hz. Electric condenser microphones
(EK-23329-P07, Knowels, Itasca, IL, USA) are used to record the acoustic signal in the PA cell.

PA signal 

PA signal 

Reference frequency 

 Laser diode Chopper PA cell 

 

Signal processing 

 

PA cell 

 

Signal processing 

 

Classical architecture (a) 

Simplified architecture (b) 

Chopper Laser diode 

Figure 6. Architectures of LIA involved in a PAS-based NO2 sensor.
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SR830 detection ID/CD detection 
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NO2 N2

Figure 7. Experimental set up of photoacoustic spectroscopy (PAS)-based NO2 sensor.

Photoacoustic signals are sampled and digitized with a data acquisition system (MX411-P, HBM,
Darmstadt, Germany). The following configurations are adopted: a 24-bit ADC at a sampling rate
of 96 kHz. As a reference instrument used for inter-comparison, a classical dual-phase LIA SR830
(Stanford Research Inc.) is used with the following configuration: 16-bit DAC and a sampling rate of
256 kHz. The proposed CD approach is implemented in real time with MATLAB.

For NO2 concentration calibration, we use a standard reference concentration of 10 ppmv (parts
per million by volume) NO2, diluted with pure nitrogen (N2). We obtain different NO2 concentrations
varying from 6 ppbv to 100 ppbv (parts per billion by volume) using a dilutor (Modele PPA 2000M).
The photoacoustic signal is calibrated with measurement of NO2 concentration provided by an analyzer
(AC-31M). The ID and the proposed CD approaches are used to measure different NO2 concentrations.
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Figure 8a shows the estimated NO2 concentrations obtained with the ID and CD methods as a
function of the NO2 concentration measured by the NOx analyzer AC-31M. For this experimentation
the period of observation of the phase delay is Tp = 1 s. For both ID and CD measurements the
integration time is Tw = 0.01 s. The estimated concentration is the average of the measurements
obtained over a period To = 1 s. In Figure 8a the error bar is the root mean square error between the
NO2 concentration measured by the AC-31M analyzer and the concentration estimates obtained with
the CD and ID methods. At low concentration, the error bars of the estimates obtained with the ID
method are larger than the error bar of the estimates obtained with the CD approach. The inaccuracy
of the ID approach in this case is due to the estimation bias of the method. It is obvious that the ID
approach can not accurately recover NO2 concentration less than 20 ppbv. The CD method overcomes
this limitation. These results are in accordance with the previously presented theoretical study and
assessment using synthetic data.
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Figure 8. (a) Estimated NO2 concentrations using ID and CD approaches with regards to the NO2

concentration measured by AC-31M analyzer. The error bars are the root mean square error between
the AC-31M measurements and the estimates obtained with the ID or CD methods; (b) Observed and
estimated phase delay for a NO2 concentration of 76 ppbv; (c) Observed and estimated phase delay for
a NO2 concentration of 6 ppbv.

Figure 8b,c show the observed and estimated phase delay for a NO2 concentration of respectively
76 ppbv and 6 ppbv. We can observe in Figure 8b,c that the observations of phase delay are more
noisy when the concentration of NO2 decreases. We can observe in Figure 8c that the linear-circular
regression is not affected by the 2π transitions due to the periodic nature of the angular observations.
Figure 8b,c, the cycle of the observed phase is 0.56 s, which corresponds to a difference frequency
( fr − f ) of 1.79 Hz and an estimated slope β̂ of −11.24 rad/s.

4.3. Comparison Measurements with Commercial LIA

An inter-comparison of NO2 measurement at low concentrations is carried out using a commercial
LIA (SR830) and the proposed LIA architecture. In order to assess the proposed LIA architecture,
the SR830 LIA is implemented in two different operation modes. In the first implementation (called
external mode SR830E), a link between the chopper and the LIA (as shown in Figure 7, the green arrow)
provides an accurate measurement of the PA signal frequency. In the second implementation using
an internal mode SR830I, the reference frequency is fixed to 6260 Hz and the above link is removed.
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These two implementations are compared with the proposed CD method when the integration time
is increased.

Figure 9 shows the experimental results for the measurement of a NO2 concentration of 24.5 ppbv.
We show in Figure 9 the assessments of the three different methods and several time constants.
The mean value and the standard deviation (error bars) of each estimate are processed in an
experimentation of 60 s. In this experiment the time constant Figure 9 is the period Tw for SR830E
and SR830I LIA. For CD implementation Tw is fixed to 0.01 s, Tp is fixed to 1 s and the time constant
(the abscissa Figure 9) is the period To.

The results presented in Figure 9 show that the LIA SR830I in internal mode underestimates
the concentration when the time constant is >100 ms. This underestimation is due to the frequency
difference between the reference frequency and the modulation frequency of the mechanic chopper.

Figure 10a,b show the distribution histogram of the estimated NO2 concentrations by CD and
SR830E LIA with a time constant of 1000 ms. The distribution histograms of the measured concentration
are fitted to a Gaussian profile. The mean concentration of 23.9 ppbv obtained by CD method results in
an accuracy of 0.6 ppbv (Figure 10a) with a precision of 1.8 ppbv. The mean concentration obtained by
the SR830E LIA shown in Figure 10b is 25.2 pppv. Its measurement accuracy and precision are found
to be 0.7 ppbv and 1.4 ppbv, respectively.

1 10 100 1000 10000

-5

0

5

10

15

20

25

30

35

N
O

2
 c

o
n
ce

n
tr
a
tio

n
 (
p
p
b
)

Time constant (ms)

SR830I
SR830E
CD

Figure 9. Performance comparisons of the estimated NO2 concentration obtained with a SR830
lock-in amplifier and the proposed CD approach. The error bars are the standard deviation of the
concentration estimates.
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Figure 10. Histogram showing the distribution of the estimated NO2 concentration (of 24.5 ppbv
measured with a reference NOx analyser) by CD (a) and SR830E (b).

As can be seen in Figures 9 and 10, the proposed CD method and the LIA SR830E working
in external mode have close performance. The advantage of the proposed CD method is that the
linear-circular regression accurately estimates the phase delay and removes the noisy phase fluctuations.
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The implementation of the proposed CD approach is easier and more robust because it only requires
a fix reference frequency and simplified hardware components, while SR830 adopts complicated
hardware such as low noise amplifier and notch filter to reduce the noise in the input signal and a
phase locked loop to track the phase delay.

5. Conclusions

We introduce in the present work a new dual-phase Lock-In Amplification (LIA) processing for
coherent detection. The proposed approach relies on precise estimation of the phase delay between
the input signal and a reference signal. In our implementation we propose a linear-circular regression
estimate of the phase delay. We show with theoretical results and synthetic experimentation that
the proposed coherent detection estimate is more accurate than the classical incoherent detection
estimate. We show that the proposed approach accurately recovers weak signal intensity at low SNR
and outperforms the classical incoherent detection approach for a SNR of the input signal lower
than −20 dB.

Coherent detection and incoherent detection approaches are then applied to a PAS-based optical
sensor for NO2 concentration measurements in the atmosphere. The estimated concentrations are
assessed with a reference instrument of NO2 analyzer. The measurements carried out at different NO2

concentrations indicate that the estimated concentration from incoherent detection approach is biased
when NO2 concentration is less than 20 ppbv. We show that the proposed coherent detection approach
overcomes this limitation. This result is in accordance with the theoretical study and assessment using
synthetic data.

The measurements comparison, for a constant NO2 concentration of 24.5 ppbv and different
time constants of integration, indicates that the proposed coherent detection LIA and the commercial
LIA SR830 have close performances in terms of measurement accuracy and precision. However, the
proposed LIA architecture is simpler and the processing is more robust. In future work, the proposed
LIA approach using linear-circular regression will be implemented in a field programmable gate array
for atmospheric measurements of trace gases pollutants.
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