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Abstract: In this paper, we propose a new visual-inertial Simultaneous Localization and Mapping
(SLAM) algorithm. With the tightly coupled sensor fusion of a global shutter monocular camera and
a low-cost Inertial Measurement Unit (IMU), this algorithm is able to achieve robust and real-time
estimates of the sensor poses in unknown environment. To address the real-time visual-inertial
fusion problem, we present a parallel framework with a novel IMU initialization method. Our
algorithm also benefits from the novel IMU factor, the continuous preintegration method, the
vision factor of directional error, the separability trick and the robust initialization criterion which
can efficiently output reliable estimates in real-time on modern Central Processing Unit (CPU).
Tremendous experiments also validate the proposed algorithm and prove it is comparable to the
state-of-art method.
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1. Introduction

Simultaneous Localization and Mapping (SLAM) has attracted a lot of attention from both
robotic community and industrial community. Laser scanner was the primary sensor in earlier SLAM
works (e.g., [1,2]). However, the size and weight of laser scanner significantly constrain the agility of
the platform and thus the use of vision sensor gradually became a tendency [3–8]. The advantages
of vision sensor include cheaper price, lighter weight and lower power consumption, which are
essential to mobile platforms (e.g., Micro Aerial Vehicle). Furthermore, vision sensor has the capability
for retrieving the environment’s appearance, color and texture such that it is possible to perform
some high-level tasks such as scene recognition. While stereo camera [9–11], RGB-D camera [12,13]
and omnidirectional camera sensors [14] have been proven suitable in some certain scenarios and
applications, monocular SLAM provides a fundamental solution.

A typical SLAM system is composed of front-end and back-end. Front-end is in charge of
performing data association for the back-end module. For visual SLAM, feature-based method
and direct method are two main approaches in the front-end module. Direct method (e.g., [15–17])
directly uses the intensity values in the image to estimates the structure and motion, showing more
robust than feature-based method in the texture-less scenarios. However, feature-based method
is much less sensitive to exposure adjustment in video/image, and it may be a better choice for
robust tracking under rich texture environment due to the invariance of descriptor. Back-end in
SLAM is in charge of state inference after data association. From the viewpoint of the probabilistic
framework, the purpose of back-end is to output the MAP (Maximum a posterior) estimates given
the measurements from front-end. For this purpose, the back-end solutions have evolved from filter
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based approaches [3,18–22] to graph optimization methods [7,8,23]. The first real-time monocular
SLAM system was presented by Davsion [3] with Extended Kalman Filter (EKF) framework, and
Civera [18] improved its performance with the inverse depth feature parametrization. However, the
maintaining of the dense covariance matrix in EKF is very expensive so that the size of features has to
be very limited. Compared to filter-based methods, Graph optimization exploits the sparse structure
and thus it enables fast computation by using sparse linear solvers. Current optimization solvers
(e.g., g2o [24], Ceres [25], iSAM [26], GTSAM [27]) are able to solve a typical optimization problems
with tens thousands of variables in few seconds. There also exists different strategies for combing the
front-end and back-end. Klein [7] presented a novel parallel system. This real-time system consists of
the tracking thread and the mapping thread. Motivated by the parallel design, Raul [23] presented
an improved system with the concept of co-visibility graph for local mapping to efficiently keep the
consistency for large scale environment. Forster [15] also utilized a parallel system by combining
direct tracking for pose estimation and depth filter for feature estimation. Besides these methods, the
sliding window strategy also shows good performance [11,28–30] and it keeps the computational time
bounded by marginalizing out old states.

On the other hand, inertial measurement unit (IMU), as a complementary sensor to camera,
is gradually used in the field of SLAM because it allows the recovery of the global roll, pitch and
the undetermined scale in monocular SLAM. The early works of visual-inertial fusion were loosely
coupled approaches [21,30–32] and then tightly-coupled approaches proved its superior performance
that jointly optimize all state variables [11,33–35]. Among these tight fusion approaches mentioned
above [11,20,29] are feature based approaches, which require the feature points that present a high
degree of saliency. Mourikis [19] provided MSCKF algorithm and then consistency analysis of MSCKF
was followed by [35,36], and [11,28,29] performed optimization framework by a sliding window to
limit the computation. Forster [33] proposed the IMU preintegration on a manifold for sensor fusion
and the iSAM back-end for incremental optimization. In contrast to these feature-based approaches,
direct method fusion with inertial sensor provided by Alejo Concha [34] is the first work that combines
the direct method with inertial fusion. Although direct methods are able to track features very
efficiently, but they are more likely to fail due to exposure adjustment in vision camera sensor. From the
viewpoint of computational complexity, the approaches based on sliding window like MSCKF can be
thought as a constant-time solution for each visual frame, but they suffer from relatively larger drift
since (a) the commonly used marginalization step usually leads to inconsistent estimates because the
invariance is obeyed [35,37]; (b) the earlier observations are neglected. The work in [33] is done by
an incremental optimization strategy (iSAM), but one of disadvantage is the unbounded complexity
of memory, which can grow continuously over time.

In this paper, we present a visual-inertial navigation system (VINS) that combines the visual SLAM
approach and IMU preintegration technique [33,38] beyond the framework of ORB-SLAM [23] and
PTAM [7]. Firstly, we derive a new IMU factor, motivated by the work in [35] with the corresponding
preintegration method. The derivation is based on the continuous form which allows the use of
high-order integration like Runge-Kutta. We stress that the derived IMU factor does not depend on
the assumption that the IMU biases keep unchanged between two consequential keyframes such
that our proposed IMU factor can better capture the correlation of state uncertainties. Thanks to
the proposed IMU factor, given IMU poses (up to a scale) and the preintegrated measurements,
we derive a linear least square formulation to initialize the system, which does not need to separately
estimate the state variables. More important, since the proposed initialization method has considered
the propagated uncertainty and the magnitude of the gravitational vector, we can have a robust
mechanism to decide whether current information for initialization is enough or not, which is beyond
the discuss in [38–40]. We then propose a well-designed parallel framework Figure 1 that runs a
tracking thread and a local mapping thread at the same time. In the tracking thread, we only optimize
the current IMU state with the IMU preintegration technique and the current vision factor for low
computation cost. In the local mapping thread, we optimize all IMU states in the co-visibility graph
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G and all map points observed in the G together for a more consist map. For faster convergence,
we employ the separability trick in the optimization that subtly uses the overlooked property–IMU
velocity and biases are linear in the cost function of the proposed IMU factor.

Initialization
Map Points

KeyFrames

Co-visibility
Graph

Last frame

Memory Pool

Tracking

Local
Mapping

IMU state

Figure 1. The global framework for our state estimation system. Note the Tracking and Local Mapping
are two paralleled threads. A memory pool is utilized during the whole algorithm, which contains the
states of map points, keyframes, and last frame. It also maintains the co-visibility graph for both the
tracking and local mapping thread. Tracking thread uses the data from the memory pool to produce the
state estimation in real-time. Meanwhile, the local mapping thread refines the data in the memory pool,
which guarantees the estimation of tracking thread. Two threads perform different tasks and cooperate
through the data in the memory pool. The memory pool will be initialized by the initialization process
and will be described in Section 4. In the Sections 3.1 and 3.2 we will discuss the tracking thread and
the local mapping thread.

The rest of the paper is organized as follows. Section 2 introduces the graph optimization used
in estimation and the proposed IMU factor with the corresponding preintegration method. Section 3
presents our work for the tightly coupled approach for visual-inertial SLAM algorithm. Section 4 gives
the principle of initialization for our monocular visual-inertial SLAM algorithm. Initialization scheme
is by no means trivial for a monocular visual-inertial SLAM because initial feature depth and IMU
biases can have significant effects on tightly-coupled SLAM system and the estimator usually suffers
from the ill-conditioned cases (e.g., constant velocity). Notations: To simplify the presentation, the

vector transpose operators are omitted for the case A =
[
aᵀ, bᵀ, · · · , cᵀ

]ᵀ
.

2. Graph Optimization

In this section, we adopt the formalism of factor graph [27] and derive a nonlinear least
squares formulation to calculate the maximum a posterior (MAP) estimate of the visual-inertial
state estimation problem.

2.1. IMU Factor with Preintegration

2.1.1. IMU State and Motion Model

The IMU state to be estimated can be represented by a tuple, i.e.,

X = (R, p, v, bg, ba) (1)

where b := (bg, ba), (R, p) ∈ SE(3) denotes the IMU pose in the global frame, v := ṗ ∈ R3 denotes
the IMU velocity expressed in the global frame, bg(t) ∈ R3 denotes the gyroscope bias and ba(t) ∈ R3

denotes the accelerometer bias.
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An IMU sensor consists of a 3-axis gyroscope and a 3-axis accelerometer. The gyroscope reading
at the time t is corrupted by the bias and noise: w(t) = w̄(t) + bg(t) + ng, where w̄(t) denotes the
actual IMU angular velocity at the time t, ng is assumed to be a white Gaussian noise. Note that the
effects form earth rotation is neglected. The accelerometer reading at the time t is also corrupted by the
bias and noise: a(t) = Rᵀ(t)(v̇− g) + ba(t) + na, where g is the gravity vector in the global frame and
na is also modeled as a white Gaussian noise.

Employing the IMU measurements model above and the random walk model for the time-varying
IMU biases, we can easily conclude the IMU motion model in the following:

Ẋ = f (X, u, n)

=
(

RS(w− bg − ng), R(a− ba − na) + g, v, nbg, nba

) (2)

where the skew symmetric operator S(·) is given in Appendix, u :=
[
w, a

]
are the measurements from

IMU and n :=
[
ng, na, nbg, nba

]
are the white Gaussian noise with the known covariance Σ ∈ R12×12.

2.1.2. Mean Propagation

Ignoring the IMU noise n, we have a nominal IMU motion model:

˙̂X = f (X̂, u, 0) (3)

where X̂ denotes the nominal IMU state. Given the IMU state Xi and the IMU measurements ui:j
between the time step i and j, the predicted IMU state X̂j at the time-step j can be recursively computed
via the nominal motion model

X̂j = F(Xi, ui:j) (4)

Note that the transformation F(·, ui:j) above represents a series of integral operations and thus
a naive implementation of computing F(X, ui:j) is time-consuming and memory-occupied. Later we
will provide a method to efficiently compute F(X, ui:j) without need to re-integration.

2.1.3. Error-State Motion Model

To concisely quantify the effects of IMU noise, we employ an error between the nominal IMU
state X̂ and the actual IMU state X motivated from [35]

e := X̂	 X :=


log(RᵀR̂)

Rᵀ(v̂− v)
Rᵀ(p̂− p)

bg − b̂g

ba − b̂a

 ∈ R15 (5)

Based on the nominal motion Equation (2) and the actual motion Equation (3) and the error
Equation (5), we now can obtain the error-state propagation model:

ė ≈ Ae + Bn (6)

where

A =


−S(ŵ) 0 0 −I3 0
−S(â) −S(ŵ) 0 0 −I3

0 I3 −S(ŵ) 0 0
0 0 0 0 0
0 0 0 0 0

 (7)
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and

B =


−I3 0 0 0

0 −I3 0 0
0 0 0 0
0 0 I3 0
0 0 0 I3

. (8)

Note that the error-state propagation Equation (2) is almost an autonomous linear system,
independent of state x. Therefore,

• The covariance P of e can be accurately computed by using the following differential equation:

Ṗ = AP + PAᵀ + BΣBᵀ (9)

• The autonomous linear system can guarantee safe and reliable preintegration in the sense of the
first-order approximation. Given F(Xi, ui:j), we can easily calculate F(X, ui:j) based on the linear
system theory for any X as the following:

F(X, ui:j) = F(Xi, ui:j)⊕A(X	 Xi) (10)

where ⊕ is the inverse of the operation 	 defined in (5):

X⊕ e = (R exp(e1), v + Re2, p + Re3, bg + e4, ba + e5) (11)

The matrix A ∈ R15×15 can be pre-integrated from the following differential equation

Ȧ = AA (12)

with the initial state A(ti) = I. Here we stress that (10) makes hundreds of measurements ui:j
unnecessary to be stored after preintegration.

The matrix A in (12) contains 225 elements. Fortunately, we can simplify the expression of A as
the following:

A =


Jᵀ1 0 0 J4 0

−Jᵀ1 S(J2) Jᵀ1 0 J5 J4

−Jᵀ1 S(J3) −∆tJᵀ1 Jᵀ1 J6 J7

0 0 0 I3 0
0 0 0 0 I3

 (13)

where J1 ∈ SO(3), J2 ∈ R3, J3 ∈ R3, Ji ∈ R3×3 (i = 4, 5, 6, 7) can be preintegrated by the following
differential equation:

J̇1 = J1S(ŵ), J̇2 = J1S(â)

J̇3 = J2, J̇4 = −S(ŵt)J4 − I3

J̇5 = −S(â)J4 − S(ŵ)J5, J̇6 = J5 − S(ŵ)J6

J̇7 = J4 − S(ŵ)J7

(14)

with the initial guess J1(0) = I3 and Ji(0) = 0 (i = 2, · · · , 7).

Remark 1. Compared to the methods proposed in Forster [33] and HKST [30], our derivation is more
straightforward and simple. Firstly, our proposed preintegration is born to be continuous. Secondly, unlike
the preintegration of Forster and HKST, both of them fix the bias first when computing the 3 preintegration
factors and simply use the first order Tyler expansion for the approximate Jacobian of IMU bias and IMU
factor, our proposed IMU preintegration factor is based on the entire IMU state(including bias), use continuous
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differential equations which can better capture the correlations inside the IMU state. Thirdly, the defined error is
invariant under the yaw angle transformation.

2.1.4. IMU Factor

Given the IMU state Xi and the IMU measurements ui:j between the time-step i and j, we have the
predicted state X̂j as presented in (4). According to the error definition (5) and the error-state motion
model (6), we can get the uncertainty between the predicted state X̂j and the actual state Xj

X̂j 	 Xj ∼ N (0, Pij) (15)

where the covariance matrix Pij is integrated from the differential equation (9) with the initial state
P = 0. In terms of factor graph, we have derived an IMU factor (i, j):

• Connected Nodes: the IMU state Xi at time-step i and the IMU state the IMU state Xj at time-step j.
• Cost function:

r(Xi, Xj) = Xj 	 F(Xi, ui:j) ∈ R15 (16)

• Covariance matrix: Pij

• Measurements: the pre-integrated matrix A and the IMU biases (b̂gi, b̂ai) used in
the preintegration.

Then the proposed preintegration elements in (14) results in a closed-form solution of the predicted
state F(Xi, ui:j) and therefore here we provide the closed form of the error function of the proposed
IMU factor (16):

r(Xi, Xj) =

 er + J−1
r (er)J4(bgi − b̂gi)

Rᵀj (vi + g∆tij + RiJ2 − vj) + J5(bgi − b̂gi) + J4(bai − b̂ai)

Rᵀj (pi + vi∆tij +
1
2 g∆t2

ij + RiJ3 − pj) + J6(bgi − b̂gi) + J7(bai − b̂ai)

 (17)

where er = log(Rᵀj RiJ1) ∈ R3, Jr(·) and log(·) are given in Appendix. Note that the proposed error
function is linear to all variables except Ri and Rj. Later we will use this linear property to design the
optimization algorithm.

2.2. Vision Factor

The conventional vision factor employs the re-projection error as the cost function, which is

π(KRᵀc (f− pc))− uv (18)

where π(·) : R3 → R2 is the projection function, (Rc, pc) = (R, p)TIC ∈ SE(3) is the camera pose,
K is the camera calibration matrix, TIC ∈ SE(3) is the transformation from camera to IMU and
uv ∈ R2 is the pixel observation for the map point f ∈ R3. However, the zero re-projection error just
implies that the predicted vector is parallel to the measured , which possibly results in a large number
of local minimums. To alleviate this shortcoming, we employ the directional error as the cost function,
resulting in a different vision factor. We present this improvement with more details in Figure 2.

• Connected Nodes: the IMU state Xi at time-step i and the map point f
• Cost function:

g(X, f) = N(Rᵀc (f− pc))− d(uv). (19)

where N(x) = x
‖x‖ for x ∈ R3 and d(uv) = N(K−1UV) (UV =

[
uv, 1

]
). Note the directional error

can be seen as the normalized vector between map point and camera center, which project the map
point into a unit sphere. Thus, unlike the projection error in (18) which is an unbounded factor,
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the directional error is bounded into the range of [−2, 2], which is friendly to the convergence of
the algorithm.

• Covariance matrix: σI3

Camera

Front Back 

Map Point

False Map Point

observation
x

zy

(x,y,z)

(-x,-y,-z)

Normalized
Image Plane

Camera

Front Back 
Map Point

Normalized
Image PlaneFalse Map Point

x

zy

(x,y,z)

(-x,-y,-z)

Observation
of Map Point

Observation
of False
Map Point

Unit Sphere

(a) (b)

Figure 2. The difference between projection error and directional error. In projection error, since
π(x, y, z) = (x/z, y/z)T both the map point (in front of camera) and the false map point (in back of
camera) would have the same observation, which can easily leads the algorithm falls into the local
minimum. However the directional error employed by our algorithm, which normalized the direction
vector between map point and camera center, can have different observations between the map points
in the front and back, even their direction vectors is parallel with each other. (a) projection error
employed by conventional vision factor; (b) directional error of our vision factor.

2.3. Nonlinear Least Squares Form

In our proposed system, optimization is used to correct the error due to sensor noise. Given all
IMU measurements u and camera measurements z along the trajectory, the MAP estimate is

X ∗ = arg max
X

p(X |z, u)

= arg max
X ∏

k
p(Xk|Xk−1, uk−1:k)∏

k,l
p(Xk, fl |zk,l)

(20)

where X = {Xk, fl} includes the observed map points and the IMU states from time step 0 to N.
Note that p(Xk|Xk−1, uk−1:k) and p(Xk, fl |zk,l) correspond to the IMU factor and the vision factor,
as discussed in Section 2.1 and Section 2.2. Based on the theory of factor graph, the optimization
problem above can be abstracted into a graph (Figure 3) that consists of nodes (Xi and fl) and
factors (r and g). The MAP estimate inference can be transformed into the following nonlinear
least squares problem:

X ∗ = arg min
X ∑

i
‖r(Xi, Xi+1)‖2

P−1
i,i+1

+ ∑
i,l
‖g(Xi, fl)‖2

σ−1I3

= arg min
X
‖h(X )‖2

(21)

Different from the standard least squares problem, the state space of the problem above is
non-Euclidean space and thus we integrate the “lift-retraction” strategy into the conventional
Gauss-Newton method for solving optimization, which has been summarized in Algorithm 1. Note
that � in Algorithm 1 is user-defined and we choose

X � {(ei, el)} = {(Xi, fl)}� {(ei, el)}
= {(Xi ⊕ ei, fl + el)}

(22)

where ⊕ is given in (11).
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Algorithm 1: Solving Equation (21) by Using the Gauss-Newton Algorithm

Input: the initial guess X (0) and the retraction �.
Output: the local minimum X ∗
Process:
X ∗ ← X (0) ;
while X ∗ does not converge do

solving the normal equation
H∆xgn = −Fh(X ∗) (23)

where F := ∂h(X ∗�x)
∂x |x=0 and H := FᵀF.;

Update: X ∗ ← X ∗ � ∆xgn;

X₁ X₂ X₃

f₁

f₂ f₃

g
₁₁

g
₁₂

g
₁₃

g
₂₁

g
₂₂

g
₃₂

g
₃₃

r₁₂ r₂₃

Vision factor

IMU factor

map point state

IMU state

Figure 3. A VINS graph with 3 IMU states and 3 map points. The notation Xi represents the IMU
state at time-step i, fi represents the map point i. The notation gij represents the vision factor and rij

stands for the IMU factor. Then the objective cost function for the VINS solution should be adding all
factors ogether.

Optimization can provide a relatively accurate estimation for visual construction and the
IMU state. However, the Cholesky decomposition used in solving the normal equation (23) suffers
from the O(det(H̄)3) complexity, where H̄ has the same sparsity of H and only contains 1 and 0.
To alleviate this, we present a novel way to solve (21), which employs the overlooked partial linear
structure of (21) and the local observability of VINS. The related details will be given in Section 3.

3. Visual Inertial SLAM Algorithm

Our system is inspired by ORB-SLAM [23] which simultaneously runs the tracking thread and
the local mapping thread in real-time.

3.1. Tracking

The tracking thread is in charge of estimating the latest IMU state, which involves twice
optimization. In the first optimization, the initial value is given by the IMU preintegration. Then we
search for the map points observation by 3D points’ projection. Finally, we perform the small-size
optimization (24) which is solved by Algorithm 2. The optimization can be seen as an extension of the
pose-only bundle adjustment in the ORB-SLAM [23]. Different with [23], the state variables brought
by the IMU factor has been considered. We separate the state vector into two groups and optimized
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them separately. In the first step, we only update Ri and pi thus we can avoid the large drift caused by
the low-cost IMU sensor. Secondly, the optimization turns into a linear least squares problem w.r.t the
(vi, bgi, bai). We describe this solution with more mathematical detail in the Remark 2.

After the first optimization, we perform a guided search of the map points from last frame.
A wider search of the map points will be used if not enough matches are found. For efficient and
robust data association, we use the projection method from the frames in the co-visibility graph to
the current camera frame to perform feature correspondence. In order to keep the computational
complexity bounded, we only deal with the keyframes in the local mapping thread. Therefore,
there is a mechanism in the end of the threading thread that decides whether the current frame is a
new keyframe. To insert a new keyframe, all the following conditions must be met: (1) More than 5 cm
have been passed from the last keyframe; (2) More than 20 frames have been passed from last keyframe;
(3) Current frame tracks at least 50 points and the number of common points between current frame
and last keyframe should be less than 90% of last keyframe. The last condition ensures a visual
change condition, and the 1st and 2nd condition will also reduce the number of unnecessary keyframes.
We will also send a waiting signal to stop local mapping thread, so it can process the new keyframe as
soon as possible. The framework of tracking is summarized in Figure 4.

Remark 2. To quickly output the estimate xi, we employ a small-size optimization (24) instead of the
full optimization:

x∗i = arg min
xi
‖h(xi)‖2

= arg min
xi
‖r(Xi−1, Xi)‖2

P−1
i−1,i

+ ∑
l
‖g(Xi, fl)‖2

σ−1I3

(24)

where xi−1 is the previous IMU state, fl denotes the map point observed in the current step.
For efficient estimation, both xi−1 and fl are fixed in (24). In addition, an ignorable property of (24) is that given
the current pose (Ri, pi), the optimization becomes linear least squares problem w.r.t. (vi, bgi, bai). Therefore,
we employ the separability trick for solving (24), which is summarized in Algorithm 2.

Algorithm 2: Optimization (24) in Tracking

Input: the initial guess xi = (Ri, pi, vi, bgi, bai).
Output: the local minimum x∗i
Process:
x∗i ← xi ;
while x∗i does not converge do

Extract (∆R, ∆p) ∈ R6 from the normal equation

H∆xgn = −Fh(x∗i ) (25)

where ∆xgn = (∆R, ∆p, ∆v, ∆bg, ∆ba), F := ∂h(x∗i �x)
∂x |x=0 and H := FᵀF.;

Update pose: (R∗i , p∗i )← (R∗i , p∗i )⊕ (∆R, ∆p);
Update (v∗i , b∗gi, b∗ai) from the linear least squares (24) in which (R∗i , p∗i ) is fixed;
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Figure 4. The framework of the Tracking thread.

3.2. Local Mapping

Once a keyframe is inserted from the tracking thread, the local mapping thread will
begin its work that includes creating map points, deleting map points, deleting keyframes and
performing optimization. The flowchart of the local mapping thread is presented in Figure 5, and we
also add a graph to present the local mapping thread in Figure 6.
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Figure 5. The framework of the Local Mapping thread.
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x1 K x1 x1 x1

Map points 
(seen by the keyframes in the co-visibility graph )

KK K K K K

K New Keyframe

Keyframe 

Vision factor

IMU factor

Deleted Keyframe

Fixed Keyframes

K

Co-visibility Graph

Figure 6. Graph illustration with 7 keyframes for the local mapping thread. Keyframes inside the
co-visibility graph (red transparent area) will be connected by IMU factors, and their IMU state will be
optimized by the local mapping thread. Other keyframes in the memory pool which also observe the
map points will remain fixed (red dot rectangle). The graph also illustrates the IMU factor’s evolution
when we delete a keyframe. Two IMU factors which are connected to the deleted keyframe will be
fused into a new IMU factor by the Algorithm 3.

3.2.1. Creat Map Points

When the local mapping thread gets a new keyframe, new map points observed in the new
keyframe and the local keyframes will be created by triangulation. The following are the main steps.
First, the projection method from the local keyframes is used to search the feature correspondences.
The search is performed according to the time order, and it begins from last keyframe and stops once
it fails to get a match. With the new feature correspondences from the search, we then calculate the
coordinates of new map points by using the fast linear triangulation. In order to get rid of spurious
data association, we only keep the new map points that are observed at least three times. Finally,
the co-visibility graph will be updated by adding the undirected edges between the keyframes that
share the same map points.

3.2.2. Delete Map Points

Considering that outliers or incorrect feature correspondences will significantly affect the system
performance, map points culling is needed before optimization. In the local mapping thread, we check
the epipolar constraint and reprojection error of each map point for each keyframe which observes
this point. In addition, we also check the parallax angle of each point. If the maximum parallax value
is below a threshold, the map point will be removed. In this step, only the map points in the local map
are processed.

3.2.3. Delete KeyFrames

Deleting the redundant keyframes is beneficial for optimization, which saves the
computational time. We discard keyframes whose 90% of map points have been seen in at least
other three keyframes. When deleting a keyframe, we need to integrate two IMU factors (connected to
this keyframe) into one IMU factor (connected to the last keyframe and the next keyframe). According
to the theory of linear system, we derived an integration algorithm, summarized in Algorithm 3.
Figure 6 shows the keyframe process in optimization graph, from which we can easily see the way of
IMU factor fusion when delete a keyframe.
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Algorithm 3: The Fusion of Two Consequential IMU Factors

Input: two consequential IMU factors (i, j) and (j, k)
Output: IMU factor (i, k)
Process:
Connected Nodes: the IMU state Xi and the IMU state the IMU state Xk.
Cost function:

r(Xi, Xk) = Xk 	 F(Xi, ui:k) ∈ R15 (26)

Covariance matrix: Pik = Aj,kPijAᵀj,k + Pjk.

Measurements: the pre-integrated matrix Aik = AjkAij and the IMU biases (b̂gi, b̂ai).

3.2.4. Optimization

The last step of the local mapping thread is the optimization (21) with the nodes:

(a) the latest IMU state xi and all IMU states xj in the co-visibility graph (w.r.t. xi);
(b) all map points fl observed by xj in the co-visibility graph (w.r.t. xi);
(c) all IMU state xk that observes the map points in (b). Note that these variables are fixed in the

optimization.

The involved factors are:

• The IMU factors that connects the consecutive IMU states in (a).
• The vision factors that connects the IMU states in (a) or (b) and the map points in (c).

To maintain a consistent estimate, we fix the IMU states in (b). Typically, the naive implementation
of the optimization here suffers from the O((15n)3) computational complexity in solving the reduced
normal equation, where n is the number of IMU states in (a). Similar to the separability trick in
Algorithm 2, we also use separability strategy on the optimization here so that the computational
complexity can be reduced to O((6n)3), which is given in the following Algorithm 4.

Algorithm 4: Optimization in Local Mapping

Input: the initial guess X that consists of xi = (Ri, pi, vi, bgi, bai) in (a) and fl in (b)
Output: the local minimum X ∗
Process:
X ∗ ← X ;
while X does not converge do

Fix all v∗i , b∗gi, b∗ai, employ the Schur trick and extract all (∆Ri, ∆pi) ∈ R6 from the normal
equation

H∆xgn = −Fh(X ∗) (27)

Update pose: (R∗i , p∗i )← (R∗i , p∗i )⊕ (∆Ri, ∆pi);
Update map point fl via the back-substitution with {(∆Ri, ∆pi)}.
Update (v∗i , b∗gi, b∗ai) from the linear least squares (21) in which all pose and map point is
fixed;

4. Initialization

In this section, we propose a novel initialization method that provides a robust estimate at
the beginning stage. The initialization is significant to the visual-inertial SLAM system due to the
nonlinearity in optimization. Inspired by the linear property of the variables (vi, bgi, bai) in the
IMU factor, we propose a linear least square that can estimate the scale, the velocity, the IMU biases
and their covariance matrix. To achieve the reliable estimates and handle the case of poor observability,
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the linear estimator will keep running until the uncertainty is lower than a threshold. The whole
initialization scheme is presented by Figure 7.

Visual
estimation by

Sec 4.1

Visual-Inertial
alignment by

Sec 4.3

Optimization
by

Algorithm 1

Checking
by Sec 4.4

IMU Factor
fusion

by Algorithm 4

Yes

No

Frames

IMU
measurements

IMU 
preintegration
by Sec 2.1.4 

Figure 7. The framework of the initialization.

4.1. Visual Estimation

At the first step, we employ the pure monocular ORB-SLAM [23] to produce the estimates of
the frame and their IMU body poses. Note that the absolute scale s is unobservable in the pure
visual odometry. The output (Ri, Pi) ∈ SE(3) from the pure visual odometry is up to the scale s, i.e.,

(Ri, Pi) = (Ri,
pi
s
) (28)

for i = 0, 1, · · · , N, where s ∈ R is the undetermined scale.

4.2. IMU Preintegration

Along with the visual estimation, we also perform the IMU preintegration as shown in Section 2.1.
This step will output N IMU factors: the IMU factors (0, 1), (1, 2), · · · , (N − 1, N). Note that here the
nominal IMU biases used for the preintegration of (12) and (9) are zeros.

4.3. Visual-Inertial Alignment

After visual estimation and IMU preintegration, we perform the visual-inertial alignment to
roughly estimate the scale, gravity, velocity, IMU biases. First of all, we substitute (28) into the IMU
cost function r(Xi−1, Xi) and then we can see that the variables s, g, (vi, bgi, bai) and (vi−1, bg,i−1, ba,i−1)

are linear in this the term r(Xi−1, Xi). Fixing the variables (Ri, Pi) for i = 0, 1, · · · , N, the MAP problem
from (21) becomes

X∗ = arg min
X

∑
i
‖r(Xi, Xi+1)‖2

P−1
i,i+1

= arg min
X
‖h̄(X)‖2

(29)

where X = (s, g, v0, bg0, ba0, · · · , vN , bgN , baN). Note that here h̄(X) is almost linear to the variable
block X. Thus we can straightforwardly obtain the solution X∗ of (29) using the linear least square.
However, the linear solution for (29) does not consider the magnitude ‖g‖ = 9.8 and thus it easily gets
ill-conditioned. If we consider the magnitude constraint of g, the linear optimization (29) becomes

min
X
‖h̄(X)‖2

st:gᵀg = 9.82
(30)

The new optimization problem (30) is quadratically constrained quadratic program (QCQP)
problem, which is a convex problem. It is well known that the local minimum in convex optimization
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is always a global minimum. Thus we convert (30) to a equivalent unconstrained form formulated in
factor graph

min
X
‖h̄(X)‖2 (31)

with a corresponding retraction

X⊕ e = (s + es, exp(Ceg)g, v0 + ev0, bg0 + ebg0, bba0 + eba0, · · · , baN + ebaN) (32)

where e =
[
es, eg, ev0, ebg0, eba0, · · · , evN , ebgN , ebaN

]
∈ R9N+12, eg ∈ R2 and C ∈ R3×2 can be

regarded as the null space of g. The use of (32) can grantee that the magnitude of g keeps unchanged
after optimization.

4.4. Checking

It is well-known that a good visual-inertial alignment requires sufficiently motion.
For robust estimates, we expect a smart checking step that is in charge of deciding if the estimate X∗

from last step (Section 4.3) is safe or not. Here we adopt a value to quantify the accuracy/uncertainty
of the estimate X∗, which is the worst-case estimation error [41,42]

λmax(H̄−1) (33)

where H̄ is the information matrix of scale and gravity, extracted from the Hessian matrix for the
optimization problem (31), evaluated at the point X∗. Note that the larger value of λmax(H̄−1), larger
uncertainty of gravity and scale.

4.5. Optimization

If λmax(H̄−1) is more than a threshold σint, the system will accept the estimate X∗. To
refine the estimate X∗, we perform the optimization process (21) with all IMU preintegration and
visual measurements. After this step, we have finished the whole initialization.

4.6. IMU Factor Fusion

If λmax(H̄−1) is less than the threshold σint, the system will reject the estimate X∗ and wait
a time-step for reinitialization. The reinitialization will be boosted with all measurements from
time-step 0 to time-step N + 1. Before the reinitialization, we perform IMU fusion of the IMU factors
(N − 2, N − 1) and (N − 1, N) to bound the size of the IMU factors. Note that the fusion algorithm is
given in Algorithm 3.

5. Implementation Details and Results

The algorithm is implemented via C++11 code with ceres-solver [25] for nonlinear
optimization framework. The proposed method runs in real-time (20 Hz) for all experiments on
a standard computer (Intel Pentium CPU G840, 2.8 GHz, Dual-Core, 8 GB RAM). We test and evaluate
our monocular visual-inertial SLAM system in both the low-cost, off-the-shelf visual-inertial sensor
(Figure 8) and the EuRoC dataset [43].

At the beginning of the tracking thread (in Section 3.1), we select keypoints that are
well-distributed in the current image. First we detect FAST corners in the 4 pyramid levels of the image.
We then split the image into the 32× 32 blocks. For each block, we calculate the average Shi-Tomasi
score [44] for the FAST corners inside this block. Then we filter out those FAST corners below a specific
threshold and calculate the number of the rest FAST corners in each block. If there is a block in which
the number of FAST corners is very small (below the 20 percent of the median value of all blocks),
we set the threshold to be half of the original one to get more FAST corners. If there is a block that
does not contain any FAST corner, we split the image into the 16× 16 blocks and repeat the selection
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steps above. After extracting the FAST corners, we then calculate the orientation and ORB descriptor
for each retained corner. This stage takes about 17 ms on our computer.

(a) (b)

Figure 8. Loitor Sensor and coordinate system of IMU and left camera. Note we only use the left
camera and the IMU sensor for testing our monocular visual inertial SLAM. For more details about
the Loitor Sensor, see Loitor’s SDK page: https://github.com/loitor-vis. (a) Loitor Sensor; (b) The
coordinate systems of IMU sensor and left eye camera.

After obtaining these keypoints with descriptors, we use the preintegrated IMU measurements
(Section 2.1) to get the initial guess of the IMU state (1). In order to deal with the extreme case for
the low-cost accelerometer, we filter out those accelerometer readings that are more than 50 times of
the last reading. Then we start to perform the guided search of map points in the tracking thread
(Section 3.1). Note that the feature correspondences in this step is coupled with the invariance property
of the ORB descriptor such that the keypoints in the current frame can be matched with some earlier
observations. In addition, we use the efficient subspace dog-leg algorithm in ceres-solver [25] to
implement the nonlinear optimization (24). Multi-threads to compute the cost functions and jacobians
are used to speed up the system.

We pay more attention about the outliers in the local mapping thread (Section 3.2). In order to
gain robust performance, huber loss function with the scale value of 0.2 is used in the vision factors.
To get rid of the effects caused by outliers, we first optimize with the huber loss function and then
delete the vision factors whose cost function value is more than 0.2. We also check the estimated
depth between each map points and keyframes. Map points with negative depth value will be seen
as outliers and deleted. After deleting those map points that are outliers, we perform the nonlinear
optimization without huber loss function.

5.1. Initilization Implementation

The proposed VINS initialization is evaluated in the in the sequence V1_01_easy. Because the
robust estimates from visual odometry also need enough information, we perform the SE(3) estimates
of the IMU poses at the first 3 s with the visual initialization from ORB-SLAM [23] and then implement
the initialization method presented in last section. Figure 9 shows the uncertainties of gravity and
scale, which converges after 11 s. The convergence means that the information is enough and then the
system can work with a reliable initial estimate. The novelty of our method is

• Our method jointly optimizes the scale, gravitational vector, IMU biases, IMU velocity with proper
covariance matrix from preintegration.

• Our method subtly uses the knowledge of the magnitude of the gravitational vector such that the
ambiguity between the gravitational vector and the accelerometer bias can be avoided.

• We have a criterion to check whether the estimates for initialization is robust or not.

Since the proposed initialization method is convex which means a unique minimum solution,
we optimize the intialization with Gauss Newton method for faster convergence. The Gauss Newton

https://github.com/loitor-vis
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method is implemented by our own source code with Eigen C++ library [45]. The time cost for this
optimization in initialization method is 23 ms on average. Note here we do not use huber loss function
cause there is no outlier in IMU measurements. Neither ransc nor multi-thread implementation
is needed. After this initialization module, we scale the poses of cameras and the positions of the
map points.

2 4 6 8 10 12 14 16
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2

4

6

8

·10−3

Time (unit: s)

λ
m

ax
(H̄
−

1 )

Figure 9. IMU initialization in V1_01_easy: the uncertainty of gravity and scale.

5.2. Preliminary Test on Low-Cost Hardware

In this subsection, the adopted visual-inertial sensor is the Loitor inertial Stereo camera which
is a low-cost device. The Loitor device contains a synchronized global shutter stereo camera which
is able to output the 640× 480 images at the frequency 30 Hz. The device also includes a MPU-6050
IMU with the frequency 200 Hz. The stereo camera and the IMU sensor have been synchronized. This
sensor is calibrated by the calibration toolbox Kalibr [46]. Note here although the device contains a
stereo camera, we just use the output of the left camera for testing our system. The entire algorithm is
implemented in C++ using ROS for acquiring device data.

The algorithm is tested under an indoor scene with random texture. Chess board or any special
visual tag is unavailable. The rate of the algorithm is 20 Hz on our computer, with a hand-held
Loitor device. Figure 10 shows the well-distributed keypoints in the images. The top view of the
estimated trajectory from the proposed system is plotted in Figure 11.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. The distribution of keypoints in the images. (a,b,d) are taken in computer rooms and (c) is
taken in the meeting hall.

(a) (b)

Figure 11. The top view of two estimated trajectories (in blue triangle) and map points (in white points)
of our system. We can see the trajectory in (a) has some drift at the green point. Drift also exists in the
image (b), but is not obvious. Both the experiments are implemented under an indoor environment
with the size of 60 m × 60 m.

5.3. Evaluation on EuRoC

The accuracy of our Visual-Inertial SLAM is evaluated in the 11 sequences of the EuRoC
dataset. The EuRoc dataset provides synchronized global shutter WVGA stereo images at 20 Hz
with MEMS IMU measurements at 200 Hz and trajectory ground-truth under different rooms in
Figure 12. The dataset was collected by a MAV and ground truth is gained by a Vicon motion capture
system which provided 6 DOF(degree of freedom) pose measurements at 100 Hz of a coordinate frame.
For more detail we refer to paper [43].

IMU initialization is performed inside the SLAM system. Our system fails to run the sequence
V1_03_di f f icult since the visual only SLAM failed to initialize under the extreme movement. For other
data sequence, our SLAM algorithm can run in real-time without tracking lost. Table 1 presents the
results of RMSE and standard deviation (in terms of translation) for different data sequences in
EuRoC dataset. We evaluate the trajectories through the ATE method [47] which align the trajectories
first, and then group them by the distance, finally compute the RMSE for each group. We present
more details for the comparisons in Figure 13. In Figure 14 we plots some trajectories for our SLAM
estimations and the ground truth (in top view).
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(a) (b)

Figure 12. The different rooms in EuRoC data sets. Data sequences of Machine Hall in (a) have rich
texture while Vicon Room of (b) have a lot of white walls which make them difficult for feature tracking.

Table 1. RMSE and Std deviation results for data sequence.

Sequence RMSE (Unit: m) Std (Unit: m)

V1_01_easy 0.0542 0.0194
V1_02_medium 0.0607 0.0246

V1_03_di f f icult X X
V2_01_easy 0.0424 0.0145

V2_02_medium 0.0430 0.0150
MH_01_easy 0.1010 0.0459

MH_02_medium 0.0643 0.0294
MH_03_medium 0.0632 0.0257

MH_04_di f f icult 0.0921 0.0384
MH_05_di f f icult 0.1378 0.0348

We compare our proposed system with two state-of-art reasearch: stereo-inertial odometry
OKVIS [11] and the VINS-MONO [30] without loop-closure and VINS-MONO with loop closure for
completeness. Figure 13 shows the results of three system in terms of RMSE. From the error bar
results in (b), (d), (e) and (f) in Figure 13, we can see our algorithm significantly outperforms the
state-of-art algorithm VINS-MONO [30] and OKVIS [11] with stereo camera, which can be explained
by the following:

• Our proposed IMU factor is more linear and it does not need reintegration when optimization.
The cost function of our proposed IMU factor is more linear in terms of the defined retraction ⊕.
The propagated covariance can better reflect the uncertainty of the physical system.

• The use of the separability trick and the novel vision factor makes convergence faster than the
conventional method such that local or global minimum can be reached after few iterations
in optimization.

• The use of co-visibility graph in our system can provide edges from current IMU state to the map
points observed by the earlier IMU states, Since the data sequences in EuRoC is taken in a single
small room, the drone can get the earlier observations easily by turning around, which makes the
algorithm with co-visibility graph performs with much better precision.

• The fusion of IMU factors also provides the constraints between two consequential IMU states.

We would let readers know that although our algorithm performs with high precision, it fails to
run the V103 data sequence. This data sequence has extreme movement at the beginning which is the
main reason for the initialization failure in our system. In comparison, OKVIS [11] with a stereo camera
can run without performing initialization which make the algorithm handling this data sequence easily.
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However, OKVIS fails to process the V203 data sequences. On the other hand, VINS-MONO [30],
use sparse optical flow tracking as an independent front-end module to retrieve data association.
Optical flow is a robust way for tracking features in video, which makes the initialization successfully
and let the algorithm can process all the data sequences in EuRoC dataset. However, the algorithm
suffers from low precision for ignoring the early observations. Besides, optical flow is not accurate for
feature tracking in sub-pixel accuracy.
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Figure 13. Comparison of the proposed method versus the OKVIS, VINS-MONO and VINS with
loop closure (VINS-LOOP). The OKVIS uses a stereo visual-inertial sensor and the VINS-MONO
(VINS-LOOP) uses a monocular visual-inertial sensor. Our algorithm has substantial improvement
over other two methods in the Machine Hall (MH01-MH04) data sequences, also has comparable result
with OKVIS in the rest of data sequences. Note we haven’t show the results of V103 and V203, since
our algorithm fails to run the V103 and OKVIS fails to run the V203 data sequence. (a) MH_01_easy;
(b) MH_02_medium; (c) MH_03_medium; (d) MH_04_di f f icult; (e) V1_01_easy; (f) V1_02_medium;
(g) V2_01_easy; (h) V2_02_medium.
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Figure 14. The top-views of estimated trajectory from our proposed approach (blue line) and
ground truth (red line) of the dataset. (a) MH_01_easy; (b) MH_02_medium; (c) MH_03_medium;
(d) MH_04_di f f icult; (e) V1_01_easy; (f) V1_02_medium.

6. Discussion and Future Work

In this paper, based on the pure monocular vision ORB-SLAM [23], we present a monocular
visual-inertial SLAM system with our new IMU factor, vision factor, initialization. The proposed
visual-inertial slam has high precision over the EuRoC dataset. One of the main reason behind this, is
the co-visibility graph we employed from the ORB-SLAM [23], since even we found even the stereo
ORB-SLAM [23] without IMU can have higher precision than OKVIS [11] with stereo-inertial sensor.
The co-visibility graph makes it possible to utilize the early observations while the sliding window
based methods ignore them. Our algorithm has substantial improvement on Machine Hall data
sequences in EuRoC, since the visual texture is very friendly for ORB feature tracking and co-visibility
graph construction. Meanwhile, our algorithm achieves the comparable performance with the
state-of-art method OKVIS which use a stereo camera and IMU sensor on the Vicon Room data
sequences. In these data sequences we found our algorithm happened to track lost for a few times
since they contain a lot of white walls and gray boards which is hard to detect any features on them.
We can easily see this effect in Figure 12.

Since the algorithm still use the same front-end module, same keyframe decision with visual
ORB-SLAM [23], we still think there is lots of things to do for further improvement. (1) For the front-end,
we think direct method, which directly use the gray scale value into optimization, is a promising
way since it can use weak feature that just have gradient value. Like in the DSO algorithm [17],
by understanding more exposure adjustment in optical camera, the algorithm have surprising precision
with impressive robustness. (2) For the vision factor in back-end, we found that our implementation
of directional error have higher precision, but it is a bit slower than original bundle adjustment.
There will be more comparison with more details between direction and projection vision factor in
our future research. Also, we think getting rid of the map points that their parallax are below certain
threshold is not reasonable for it lost the rotation information given by those map points. However,
map points with low parallax will turns the system into ill-posed since their location is not observable.
Therefore, developing a vision factor that can make use of low parallax is essential. (3) Some basic
technique like on-line calibration for the sensor, loop closure can also be added into system. Machine
learning methods that detect movable objects in visual observation can also be tried.
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7. Conclusions

This paper demonstrates a new method for the monocular vision and inertial state estimation
algorithm with a real-time implementation. The proposed IMU preintegration not only reaches the
state of art efficiency, but also have better linear form which can better capture the correlation of state
uncertanties. To increase the speed of the algorithm, the separability trick and the novel vision factor
for fast computation was used in both the tracking thread and the local-mapping thread. Thanks to
the proposed IMU preintegration with better linearity, the proper weight and the reasonable criterion
to check the reliability of the estimates, our initialization method is fast and reliable, which solves a
convex optimization with less uncertainty. So far we have build a tightly coupled visual-inertial SLAM
system that can run with real-time performance in unknown environment. The future work will be
mainly on providing more data to give more insights about the performance of our initialization and
seek a better model for the tightly-coupled visual-inertial SLAM’s back-end.
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Appendix A. Math

Here we provide the mathematical functions used in this paper. For more details, see [48].
The operator S(·) transforms a 3-dimensional vector to a 3× 3 matrix:

S(x) =

 0 −x2 x3

x2 0 −x1

−x3 x1 0

 (A1)

for x =
[

x1, x2, x3

]ᵀ
. The exponential mapping exp(·) transforms a 3-dimensional vector to a 3× 3

rotation matrix:

exp(x) = I3 +
sin(‖x‖)
‖x‖ S(x) +

1− cos(‖x‖)
‖x‖2 S2(x) (A2)

for x ∈ R3. The logarithm mapping: for R ∈ SO(3)

log(R) = S−1(
θ(R− Rᵀ)

2 sin θ
) (A3)

where θ = arccos( tr(R)−1
2 ). The right Jaocbian: for x( 6= 0) ∈ R3

Jr(x) = I3 −
1− cos(‖x‖)
‖x‖2 S(x) +

‖x‖ − sin(‖x‖)
‖x‖3 S2(x),

Jr(0) = I3

(A4)
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