
sensors

Article

An Intelligent Cooperative Visual Sensor Network for
Urban Mobility

Giuseppe Riccardo Leone 1, Davide Moroni 1,* , Gabriele Pieri 1 , Matteo Petracca 1,
Ovidio Salvetti 1, Andrea Azzarà 2 and Francesco Marino 2

1 Institute of Information Science and Technologies, National Research Council of Italy, 56124 Pisa, Italy;
g.leone@isti.cnr.it (G.R.L.); gabriele.pieri@isti.cnr.it (G.P.); matteo.petracca@isti.cnr.it (M.P.);
ovidio.salvetti@isti.cnr.it (O.S.)

2 Scuola Superiore Sant’Anna of Pisa, 56124 Pisa, Italy; andrea.azza@gmail.com (A.A.);
fr.marino@santannapisa.it (F.M.)

* Correspondence: davide.moroni@isti.cnr.it; Tel.: +39-050-621-3130

Received: 8 October 2017; Accepted: 8 November 2017; Published: 10 November 2017

Abstract: Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee
optimal access to mobility resources available in urban areas. Intelligent video analytics deployed
directly on board embedded sensors offers great opportunities to gather highly informative data about
traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns.
In this paper, we present a visual sensor network in which each node embeds computer vision logics
for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a
global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion.
This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware
which encompasses in-network event composition as well as full support of Machine-2-Machine
(M2M) communication mechanism. The potential of the proposed cooperative visual sensor network
is shown with two sample applications in urban mobility connected to the estimation of vehicular
flows and parking management. Besides providing detailed results of each key component of the
proposed solution, the validity of the approach is demonstrated by extensive field tests that proved
the suitability of the system in providing a scalable, adaptable and extensible data collection layer for
managing and understanding mobility in smart cities.

Keywords: visual sensor networks; real time image processing; embedded vision; IoT middleware;
internet of things; intelligent transportation systems; smart cities

1. Introduction

By 2050 over 70% of the world’s population will live in cities, metropolitan areas and surrounding
zones. There is thus a strong interest in making our cities smarter by tackling the challenges connected
to urbanization and high density population by leveraging modern Information and Communications
Technologies (ICT) solutions. Indeed, progresses in communication, embedded systems and big
data analysis make it possible to conceive frameworks for sustainable and efficient use of resources
such as space, energy and mobility which are necessarily limited in crowded urban environments.
In particular, Intelligent Transportation Systems (ITS) are envisaged to have a great role in the smart
cities of tomorrow. ITS can help in making the most profitable use of existing road networks (which are
not always further expandable to a large extent) as well as public and private transport by optimizing
scheduling and fostering multi-modal travelling. One enlightening example of the role of ITS is
represented by the seemingly trivial parking problem: it has been shown that a share of the total traffic
of 10% (with peaks up to 73% [1]) is represented by cars cruising for parking spaces; such cars constrain
urban mobility not only in the nearby vicinity of usual parking zones, but also in geographically

Sensors 2017, 17, 2588; doi:10.3390/s17112588 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5175-5126
https://orcid.org/0000-0001-5068-2861
https://orcid.org/0000-0001-7662-1661
http://dx.doi.org/10.3390/s17112588
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2588 2 of 25

distant areas, which are affected by congestion back-propagation. Indeed, the cruising-for-park issue
is a complex problem which cannot be solely ascribed to parking shortage, but is also connected to fee
policies for off-street and curb parking and to the mobility patterns through the city in different periods
and days of the week. Indeed, cheap curb parking fees usually foster cruising, with deep impacts on
global circulation, including longer time for parking, longer distances and a waste of fuel, resulting
thus in incremented emissions of greenhouse gas. As such, the problem cannot be statically modeled
since it has clearly a spatio-temporal component [2], whose description can be classically obtained
only through detailed data acquisition assisted by manual observers which—being expensive—cannot
be routinely performed. Nowadays, however, ITS solutions in combination with the pervasive sensing
capabilities provided by Wireless Sensor Networks (WSN) can help in tackling the cruising-for-parking
problem: indeed by the use of WSN it is possible to build a neat spatio-temporal description of urban
mobility that can be used for guiding drivers to free spaces and for proposing adaptive policies for
parking access and pricing [3].

More generally, pervasive sensing and ubiquitous computing can be used to create a large-scale,
platform-independent infrastructure providing real-time pertinent traffic information that can be
transformed into usable knowledge for a more efficient city thanks to advanced data management
and analytics [4]. A key aspect for the success of these modern platforms is the access to high quality,
high informative and reliable sensing technologies that—at the same time—should be sustainable for
massive adoption in smart cities. Among possible technologies, probably imaging and intelligent video
analytics have a great potential which has not yet been fully unveiled and that is expected to grow [5].
Indeed, imaging sensors can capture detailed and disparate aspects of the city and, notably, traffic
related information. Thanks to the adaptability of computer vision algorithms, the image data acquired
by imaging sensors can be transformed into information-rich descriptions of objects and events taking
place in the city. In the past years, the large scale use of imaging technologies was prevented by inherent
scalability issues. Indeed, video streams had to be transmitted to servers and therein processed to
extract relevant information in an automatic way. Nevertheless, nowadays, from an Internet of Things
(IoT) perspective it is possible to conceive embedded vision nodes having on-board suitable logics
for video processing and understanding. Such recent ideas have been exploited in cooperative visual
sensor networks, an active research field that extends the well-known sensor network domain taking
into account sensor nodes enabled with vision capabilities. However, cooperation can be meant at
different levels. For instance in [6] road intersection monitoring is tackled using different sensors,
positioned in such a way that any event of interest can always be observed by at least one sensor.
Cooperation is then obtained by fusing the different interpretation of the sensors to build a sort of
bird’s eye view of the intersection. Instead in [7] cooperation among nodes is obtained by offloading
computational tasks connected to image feature computation from one node to another. With respect
to these previous works, one of the main contributions of this paper is the definition and validation of
a self-powered cooperative visual sensor network designed for acting as a pervasive roadside wireless
monitoring network to be installed in the urban scenario to support the creation of effective Smart
Cities. Such an ad hoc sensor network was born in the framework of the Intelligent Cooperative
Sensing for Improved traffic efficiency (ICSI) project [8], which aimed at providing a platform for
the deployment of cooperative systems, based on vehicular network and cooperative visual sensor
network communication technologies, with the goal of enabling a safer and more efficient mobility in
both urban and highway scenarios, fully in line with ETSI Collaborative ITS (C-ITS). In this direction,
and following the ICSI vision, the proposed cooperative visual sensor network is organized as an
IoT-compliant wireless network in which images can be captured by embedded cameras to extract
high-level information from the scene. The cooperative visual sensor network is responsible for
collecting and aggregating ITS-related events to be used to feed higher levels of the system in charge
of providing advanced services to the users. More in detail, the network is composed of new custom
low-cost visual sensors nodes collecting and extracting information on: (i) parking slots availability,
and (ii) traffic flows. All such data can be used to provide real-time information and suggestions to

Sensors 2017, 17, 2588 3 of 25

drivers, optimizing their journeys through the city. Further, the first set of collected data regarding
parking can be used in the Smart City domain to create advanced parking management systems, as
well as to better tune the pricing policies of each parking space. The second set of data related to
vehicular flows can be used for a per-hour basis analysis of the city congestion level, thus helping the
design of innovative and adaptive traffic reduction strategies.

Extraction and collection of such ITS-related data is achieved thanks to the introduction of novel
lightweight computer vision algorithms for flow monitoring and parking lot occupancy analysis,
which represent another important contribution of this paper; indeed, the proposed methods are
compared to reference algorithms available in the state of the art and are shown to have comparable
performance, yet they can be executed on autonomous embedded sensors. As a further point with
respect to previous works, in our proposal, cooperation is obtained by leveraging a Machine-2-Machine
(M2M) middleware for resource constrained visual sensor nodes. In our contribution, the middleware
has been extended to compute aggregated visual sensor node events and to publish them using M2M
transactions. In this way, the belief of each single node is aggregated into a network belief which
is less sensitive either to partial occlusion or to the failure of some nodes. Even more importantly,
the visual sensor network (and the gain in accuracy that is possible to obtain thanks to the cooperative
approach) is not only proved through simulation or limited experimentation in the lab, but is shown
in a real, full-size scenario. Indeed, extensive field tests showed that the proposed solution can be
actually deployed in practice, allowing for an effective, minimally invasive, fast and easy-to-configure
installation, whose maintenance is sustainable, being the network nodes autonomous and self-powered
thanks to integrated energy harvesting modules. In addition, during the tests, the visual sensor
network was capable of gathering significant and precise data which can be exploited for supporting
and implementing real-time adaptive policies as well as for reshaping city mobility plans.

The paper is organized as follows. Related works are reviewed in Section 2, focusing both on
architectural aspects and computer vision algorithms for the targeted ITS applications. In Section 3 the
main components used for building the cooperative visual sensor network are introduced and detailed,
while in Section 4, the findings of the experiments for the validation of the embedded computer
vision logics (Section 4.1) and of the IoT-compliant middleware for event composition (Section 4.2) are
reported together with the global results of field tests (Section 4.3). Section 5 ends the paper with ideas
for future research.

2. Related Works

With the increasing number of IoTdevices and technologies, monitoring architectures have
moved during the years from cloud based approaches towards edge solutions, and more recently to fog
approaches. The main drivers of this progressive architectural change have been the capabilities and
complexities of IoT architectural elements. As the computational capacity of devices has increased,
the intelligence of the system has been moved from its core (cloud-based data processing) to the
border (edge-computing data analysis and aggregation), pushing further until reaching devices
(fog-computing approach) to spread the whole system intelligence among all architectural elements [9].
One of the main features of fog computing is the location awareness. Data can be processed very close
to their source, thus letting a better cooperation among nodes to enhance information reliability and
understanding. Visual sensor networks in the ITS domain have been envisioned during the years
as an interesting solution to extract high value data. The first presented solutions were based on an
edge-computing approach in which whole images or high-level extracted features were processed by
high computational nodes located at the edge of the monitoring system. Works such as [10,11] are just
an example of systems following this approach. More recent approaches leverage powerful visual
sensor nodes, thus proposing solutions in which images are fully processed on-board, thus exploiting
fog-computing capabilities. Following this approach, several works have been proposed in the
literature by pursuing a more implementation-oriented and experimental path, works such as [12,13]
must be cited in this line of research, and, more recently a theoretical and modeling analysis [14].

Sensors 2017, 17, 2588 4 of 25

By following a fog computing approach, the solution described in this paper proposes (i) a visual
sensor network in which the logic of the system is spread among the nodes (visual sensors with image
processing capabilities), and where (ii) information reliability and understanding is enhanced by nodes
cooperations (cooperative middleware) exploiting location awareness properties.

As discussed in the Introduction, the proposed visual sensor network is applied to two relevant
ITS problems in urban mobility, namely smart parking and traffic flow monitoring. Nowadays,
besides counter-based sensors used in off-street parking, most smart parking solutions leverage
two sensor categories, i.e., in situ sensors and camera-based sensors. The first category uses either
proximity sensors based on ultrasound or inductive loop to identify the presence of a vehicle in a
bay [15,16]. Although the performance and the reliability of the data provided by this kind of sensors
are satisfactory, nevertheless installation and maintenance costs of the infrastructure have prevented
massive uptake of the technology, which has been mainly used for parking guidance systems in
off-street scenarios. Camera-based sensors are based on the processing of videos streams captured
by imaging sensors thanks to the use of computer vision methods. In [17] two possible strategies to
tackle the problem are identified, namely the car-driven and the space-driven approaches. In car-driven
approaches, object detection methods, such as [18], are employed to detect cars in the observed images,
while in space-driven approaches the aim is to asses the occupancy status of a set of predefined
parking spaces imaged by the sensor. Change detection is often based on background subtraction [19].
For outdoor applications, background cannot be static but it should be modeled dynamically, to cope
with issues such as illumination changes, shadows and weather conditions. To this end, methods based
on Gaussian Mixture Models (GMM) [20] or codebooks [21] have been reported. Other approaches
are based on machine learning, in which feature extraction is followed by a classifier for assessing
occupancy status. For instance, in [22], Gabor filters are used for extracting features; then, a training
dataset containing images with different light conditions is used to achieve a more robust classification.
More recently, approaches based on textural descriptors such as Local Binary Patterns (LPB) [23] and
Local Phase Quantization (LPQ) [24] have appeared. In [25], which can be considered as the state of the
art, Support Vector Machines (SVM) [26] are used to classify parking space status on the basis of LPB
and LPQ features and an extensive performance analysis is reported. Deep learning methods have also
been recently applied to the parking monitoring problem [27]. All the previously described methods
are based on the installation of a fixed camera infrastructure. Following the trends in connected and
intelligent vehicles, however, it is possible to envisage novel solutions to the parking lot monitoring
problem. For instance, in [28], an approach based on edge computing is proposed in which each vehicle
is endowed with a camera sensor capable of detecting cars in its field of view by using a cascade of
classifiers. Detections are then corrected for perspective skew and, finally, parked cars are identified
locally by each vehicle. Single perceptions are then shared through the network in order to build
a precise global map of free and busy parking spaces. A current drawback is that the method can
provide significant results and a satisfactory coverage of the city only if it is adopted by a sufficient
number of vehicles. Similarly, several methods based on crowd-sourcing [29] have been reported in
the literature, most of which rely on location services provided by smart-phones for detecting arrivals
and departures of drivers by leveraging activity recognition algorithms [30,31].

For what regards traffic flow monitoring, the problem has received great attention from the
computer vision community [32], even for the specific case of urban scenario [33]. Nevertheless
most of the existing methods use classical computer vision pipelines that are based on background
subtraction followed either by tracking of the identified blobs or of the detected vehicles (see, e.g., [34]).
Such approaches are too demanding in terms of computational resources for deployment on
embedded sensors.

Among the various approaches and algorithms used, only few of them are for a real-time on
site processing: among them, Messelodi et al. in [35] perform a robust background updating for
detecting and tracking moving objects on a road plane, identifying different classes of vehicles. Their
hardware is not reported, but in any case the heavy tracking algorithm let understand that it cannot be

Sensors 2017, 17, 2588 5 of 25

an embedded and autonomous platform. A similar approach is reported in [36] where the tracking is
based on Optical-Flow-Field estimation following an automatic initialization (i.e., localization), but
the final goal is more related to a 3-D tracking and tests were performed on a laboratory PC. Another
feature-based algorithm for detection of vehicles at intersection is presented in [37], but again the used
hardware is not reported, and the tests seem to be performed only on lab machines. An interesting
embedded real-time system is shown in [38], for detecting and tracking moving vehicles in nighttime
traffic scenes. In this case, they use a DSP-based embedded platform operating at 600 MHz with
32 MB of DRAM, their results on nighttime detection are very good, but yet their approach did not
have to cope with low-energy constraints. In [39], the real-time classification of multiple vehicles, also
performing a tracking based on Kalman filtering, is performed using commercially available PCs, yet
results are around 95%. Lai et al. [40] propose a robust background subtraction model facing lighting
changes problems with slowly moving objects in an acceptable processing time. However, the used
hardware is not described and the final acceptable processing frame rate is around 2.5 fps, which is
not acceptable for a normal traffic condition. The same problem arises in [41], where they perform
real-time vision with so-called autonomous tracking units, which are defined as powerful processing
units. Their test-bed are parking (in particular airport parkings) with slow moving vehicles and their
final processing rate is again very low i.e., below 5 fps. Finally, in [42] the algorithm based on Support
Vector is not used in real-time condition and, even if the processing times and the hardware are not
reported, it must be a powerful unit, yet obtaining around 95% accuracy.

3. System Architecture and Components

In this section, the system architecture is reported before presenting the prototyped visual sensor
node and the two key components that enable the creation of a cooperative visual sensor network:
namely, computer vision logics, especially designed for deployment on embedded sensors, and the
IoT middleware. The vision logics are meant to be deployed on board each single sensor in the visual
sensor network, which is then able to provide autonomously its interpretation of the scene at sensor
level. These local processing results are then integrated and converted into a more advanced, robust
and fault tolerant understanding of the scene at network level [43], leveraging a middleware layer
capable of event composition over resource constrained sensor networks. Both the computer vision
logics and the middleware solution have been used in the design of a visual sensor network, that has
been physically deployed and validated on the smart camera prototype described in Section 3.1.

3.1. System Architecture and Visual Sensor Prototype

The high level system architecture of the deployed monitoring sensor network for urban mobility
is reported in Figure 1. It is mainly composed of three components: (i) the visual sensor devices able to
exploit on board processing capabilities of the scene while providing M2M communication, (ii) the
system gateway, acting as connection point between devices belonging to the visual sensor network
and the Internet world, and (iii) the remote server in which detected events and data are stored for
both analytic purposes and visualization on web portals. The following of the section focuses on the
monitoring part of the system by reporting motivation and design choices behind the realization of the
visual sensor node.

Although many nodes that might support the creation of a visual sensor network are currently
available (see, e.g., [44,45] for a review of some of them), nevertheless none seems to be satisfying for
targeting outdoor ITS applications and to have capabilities for M2M communication. Actually, M2M
communication is seen to be a key aspect to drive the shift from classical cameras and centralized video
processing architecture to smart cameras and distributed video analytics over heterogeneous sensor
networks. For these reasons, the design of an integrated IoT node was addressed, taking into account
several requirements both from the functional and non-functional perspective. Indeed, the node
should have enough computational power to accomplish the computer vision task envisaged for urban
scenarios as described in Section 3.2 but, at the same time, it should be based on low power and low

Sensors 2017, 17, 2588 6 of 25

cost technologies. In this way, the nodes might be used to setup an autonomous, self-powered network
in the city, using whenever possible photo-voltaic panels or other energy harvesting opportunities.
Low cost components and architecture, in addition, guarantee that –once engineered– the node can be
manufactured at low cost in large quantities, which is a fundamental aspect for the sustainability and
wide scale adoption of the proposed technology. As for network communication, the node should be
ready to support the interfaces needed in the IoT domain and, in particular, to support the middleware
described in Section 3.3.

Figure 1. System architecture.

Inside the node, two main logical components have been identified, corresponding to networking
and vision aspects. In particular the networking component takes care of communication both by
managing M2M transactions and by interacting with the vision processes, e.g., by requesting
their activation, transferring of their results, or setting parameters and behaviors of computer
vision algorithms. Thus, networking component needs to be operating most of the time to
guarantee responsiveness of the node to incoming requests and it must be low-consuming, but
no high computational resources are needed. By converse, the vision component consumes many
computational and energetic resources to run the algorithms reported in Section 3.2 when the node
is operational; however, if there is resource shortage, policies might be adopted to slow down
computation, entering eventually a best-effort behaviour without affecting the overall functioning of
the sensors.

It is worthwhile to notice that the visual sensor network is intrinsically privacy-preserving. Indeed,
images are processed locally at sensor level, without the need to transfer them to other locations, and
then disregarded. Therefore, confidential information contained in the acquired images is not at risk,
since they are neither stored nor accessible from a centralized location. Although it was not a primary
scope of this paper (and, thus, it has not been taken into account in the implementation), a further
security level on the communications inside the visual sensor network can be added; for instance,
security concerns might be addressed using the methods proposed in [46], where an elliptic curve
cryptography approach for IoT devices is adopted and applied to the smart parking domain.

For the realization of the new node, a custom printed circuit board (PCB) has been designed to
have the maximum flexibility of use while maximizing the performance/consumption ratio. A good
compromise has been achieved by using a Freescale CPU based on the ARM architecture, with support
for MMU-like operating systems GNU/Linux. This architecture has the advantage to integrate within
it a PMU (Power Management Unit), in addition to numerous peripheral interfaces, thus minimizing
the complexity of the board. Moreover, the CPU package of type TQFP128 allowed to minimize the
layout complexity, since it was not necessary to use multilayer PCB technologies for routing. Thus,
the board can be printed also in a small number of instances. The choice has contributed to the
further benefit of reducing development costs, in fact, the CPU only needs an external SDRAM, a
24 MHz quartz oscillator and an inductance for the PMU. Also considering the footprint of running

Sensors 2017, 17, 2588 7 of 25

programs, a 64 MB SDRAM has been selected, which gives the possibility to keep in main memory
a number of full resolution images more than sufficient for addressing the targeted applications.
The chosen architecture has been proved to have an average consumption measured at the highest
speed (454 MHz) less than 500 mW, which makes it suitable for using energy harvesting strategies.
A microSD slot is present, which is essential for booting the system, booting the kernel and file-system
associated (EXT4); the board can be upgraded simply by changing the contents of the microSD. The
PCB is connected to a SEED-EYE device [47] for managing networking aspects and has the capability
to integrate camera sensors supporting USB Video Class device (UVC). The selection of a low-cost
device brought to an easy-to-buy and cheap camera, the HP HD 2300 Webcam, that has been used
during the experimentation.

3.2. Embedded Vision Logics for Visual Sensor Networks

In the proposed cooperative visual sensor network, each node consists of an embedded sensor
equipped with vision logics able to perform real-time scene understanding. The goal of this analysis is
two-fold: (i) exact detection of parking slot availabilities in a parking lot, and (ii) traffic flow analysis
on relevant roads for parking. The major issue described here is the balance between the need to take
into account low cost, scalability, and portability requirements, and the production of reliable and
efficient computer vision technologies deployable on an IoT smart object.

Among the various scenarios, the differences in specific requirements are substantial: real-time
constraints for traffic flow versus so-called near real-time (i.e., processing fulfilled in temporal terms
of minutes) for parking slot monitoring; smaller area of interest to monitor a two-lane road, wider
area to monitor a parking lot with several spaces; need for a fast frame acquisition rate for performing
an efficient traffic flow monitoring. In the following, the two specific scenarios and the solutions
implemented for solving them are analysed separately.

3.2.1. Parking Lot Availability Scenario

As discussed in Section 2, the car-driven and the space-driven approaches are the two main
strategies to deal with the problem of detecting parking lot vacancies. In car-driven approaches,
features detection methods are employed to detect cars in the observed images, while in space-driven
approaches the aim is to detect empty spaces rather than vehicles. Recent works proposed in the
literature show very good performance (see Table 2 in the next section). Although this scenario,
as mentioned above, allows for less restrictive processing constraints (e.g., not a strict real-time
processing), state-of-the-art algorithms generally require performing hardware and it is not possible
to deploy them on low memory/low computational power sensors. Various algorithms have been
studied and designed to be deployed on the proposed visual sensor network for the analysis of parking
lot occupancy status. The methodology chosen is based alternatively on the analysis of single frames,
or on frame differencing, in order to highlight the changes in the Regions of Interest (RoI) with respect
to an adaptive GMM background reference image [48]. For outdoor applications, background cannot
be static but it should be modeled dynamically, to cope with issues such as illumination changes,
shadows and weather conditions. In order to improve the robustness of the algorithm with respect to
environmental light changes, normalized versions of the images are computed and used, with respect
to global illumination parameters (average and variance of both the current and reference image).
To improve computational efficiency, image analysis and frame differencing for detecting changes
are performed only on predetermined RoI in the acquired frame. Each of the RoI corresponds to a
specific parking slot, it is set up manually with the help of a graphic tool, and can be of any polygonal
shape (this helps to avoid occlusion like trees, poles or other static artifacts). In Figure 2A) the green
zones are the defined parking lots RoI. For each of the regions a confidence value of the occupancy is
computed in real-time. The output of a single node is a vector of probability values of the occupancy
for each parking slot.

Sensors 2017, 17, 2588 8 of 25

In the first phase, the input image is evaluated with respect two lightweight algorithms
(a car-driven approach and a space-driven one). The car-driven method searches for car features
in the predefined RoI. A fast edge-detector, the Canny operator [49] is used to obtain a very crisp
image of the vehicles contours of the frame acquired at time t as it is shown in Figure 2B; we guess if a
vehicle occupies the RoI Rk calculating the index ek(t) which is proportional to the ratio of edge pixels
with respect to the square root of total number of pixels in Rk, i.e.,:

ek(t) = #(edge pixels in Rk) /#(pixels in Rk)
(1/2) (1)

For an empty slot ek(t) is very close to zero, while slots with active edges (i.e., most probably not
empty) have a higher value. This index cannot be used if a pole or a tree partially create an occlusion
of the slot (they can be misinterpreted as a presence in the lot).

Figure 2. (A) RoI for a set of parking lots are set up manually with the help of a graphic tool. Small
rectangles on the driveway define the samples for asphalt detection (B) The output of the Canny edge
detector (C) White regions represent areas where asphalt is detected (D) Current input image with
augmented reality displaying the status (E) Background image (F) Frame differencing to detect major
status changes.

The second index comes out from a space-driven approach: considering that an empty slot should
appear as plain asphalt concrete, we aim to detect asphalt areas based on the color characteristics of
small samples on the driveway (see Figure 2A); we consider a subset of Hue and Saturation in the HSV
color space (we discard the brightness to be more robust against different illumination); furthermore
these values are periodically updated to include changes occurring due to time/light changes, rain,
etc. For every input frame, the asphalt detection acts like a binary filter (see Figure 2C)

The index ak(t) is the ratio of asphalt pixels and total pixels of a RoI, i.e.:

ak(t) = #(asphalt pixels in Rk) /#(pixels in Rk) (2)

This index is really trustworthy if it is close to 1. As a rule of thumb for value greater than 90%
the lot can be consider available. The index of a not-empty lot is generally below 20% but cars with
similar color of the asphalt sometimes arrive at higher value. However the presence of different non
gray area like windows, tires, plates and so on do never scores like plain asphalt.

Sensors 2017, 17, 2588 9 of 25

Combining these two indexes, we compute a final evaluation of occupancy probability Pk(t) of
the slot k as seen from this sensor:

Pk(t) = ek(t) ∗ (1 − ak(t)) (3)

This joint index is valuable mainly to determine the initial status (analysis of the initial frames)
or when there is a sudden light change that blinds the camera. After the first k frames (being k a
number between 10 and 30) the background image is available (see Figure 2E) and from that moment
all the major events are determined by frame differencing. This is a very reliable detector also with our
0.5 fps because during parking every vehicle move is slow (Figure 2F shows the very clear shape of
the parking car—notice the absence of this car in the background image). If a major change happens in
a RoI, it is very easy to be detected and the system keeps track of the history of these changes.

3.2.2. Traffic Flow Monitoring Scenario

On the contrary to the previous scenario, in this one restrictive processing constraints exist, due
to the need to detect not only all the passing vehicles but also in view of a deeper analysis of the traffic
flow, i.e., sensing average speeds and categories of vehicles.

With respect to the classical computer visions techniques reviewed in Section 2, an ad hoc
lightweight method was designed which is suitable for deployment on embedded devices.

For the deployment on the visual sensor network, background detection is performed only on
small quadrangular RoI which are sufficient for modelling physical rectangles under a perspective skew.
In addition, lightweight methods are implemented for background modelling, that is determining
if a pixel belongs to foreground (i.e., meaning that it is changed w.r.t. the previous scene), or to
the background (i.e., pixel unchanged). Three main approaches have been considered, i.e., frame
differencing, static background and adaptive background. The latter class of algorithms proved to be
the most robust for use in uncontrolled outdoor scenes. The background is constantly updated using
both the previous background model and the latest acquired actual image.

The data extraction procedure starts by taking as input one of several RoI for each lane suitably
segmented in foreground/background. When processing the frame acquired at time t, the algorithm
decides if the RoI Rk is occupied by a vehicle or not. Such an occupancy test is based on the ratio of
pixels changed with respect the total number of pixels in Rk, i.e.,:

ak(t) =
#(changed pixels in Rk)

#(pixels in Rk)
(4)

Then ak(t) is compared to a threshold τ in order to evaluate if a vehicle was effectively passing
on Rk. If ak(t) > τ and at time t − 1 no vehicle was detected, then a new transit event is generated. If a
vehicle was already detected instead at time t − 1, no new event is generated but the time length of
the last created event is incremented by one frame. Finally, when at a time t + j no vehicle is detected
(i.e., ak(t + j) < τ), the transit event is declared as accomplished and no further updated. Assuming
that the vehicle speed is uniform during the detection time, the number of frames j in which the vehicle
was observed is proportional to the vehicle length and inversely proportional to its speed. In the same
way, it is possible to use two RoI, RoI1 and RoI2, lying on the same lane but translated by a distance
∆, to estimate the vehicle speed. The algorithm uses two RoI for classifying vehicles with respect to
their size and speed class (see Figure 3). At the beginning both RoI are set as inactive. Then a frame
is grabbed from the sensor and an occupancy test is run on both RoI sequentially. If a RoI becomes
busy according to the occupancy test, it is marked as active. RoI2 is only tested for occupancy when
RoI1 is active. When both RoI are active, a transit event has occurred. The algorithms continues to
grab frames until RoI2 becomes free. At this point, the transit event is concluded since the vehicle has
left the detection area. It is then possible to classify the event. Using counters based on the elapsed
time and knowing the distance ∆ among the RoI, the vehicle speed and size are computed. Notice

Sensors 2017, 17, 2588 10 of 25

that the main loop described is a simplified version of the one actually implemented, where there are
some further controls and heuristics to avoid false alarms. For instance, a timeout is set for the RoI2 to
become active after RoI1 has. Indeed, since the RoI are within a few meters distance, no more than
some seconds can elapse from the occupation of the first to the occupation of the second one.

Figure 3. Flow chart of the traffic flow monitoring algorithm.

3.3. IoT Middleware for Event Composition

In an ITS system, in which the roadside network is composed of an IoT-compliant visual sensor
network devices, the remote management of the nodes as well as their cooperation and data collection
functionalities can be all managed by an IoT middleware. In this respect the ICSI Middleware proposed
in [50] has been extended and adapted to forward both simple and aggregated visual sensor node
events towards remote gateways by using Machine-2-Machine (M2M) transactions [51]. Further, the
middleware enables a remote configuration of the IoT visual sensor nodes, which turns out to be useful
in several scenarios, for example when event aggregation strategies are adopted. The possibility of
aggregating events in the roadside segment enables in-network processing capabilities which can be
used to increase the robustness of the information. In fact, by using visual sensor nodes a possible
problem is the temporary occlusion of the field of view, which can be overtaken deploying different
visual sensors monitoring the same scene, while requiring an event processing heuristic inside the
network. When an event, e.g., a parking slot becoming free or busy, is detected by more than a single
sensor it is necessary to process and aggregate all the events to provide a final decision on the status of
the slot. In this depicted scenario the node responsible for the in-network event aggregation could
be a single point of failure in case it fails, e.g., due to battery depletion. To tackle this problem the
middleware implements a dynamically reconfigurable system, based on standard interfaces, capable
of moving event aggregation tasks from node to node at runtime. Such a functionality, better described
in the following, is implemented by enabling a virtual machine based approach in the part of the visual
sensor node responsible for the IoT communications.

Considering a pervasive roadside segment based on visual sensor nodes, the ICSI Middleware is
a software component instantiated on each node. The high level middleware architecture is shown in
Figuer 4. The middleware has been designed following the Component-based Software Engineering

Sensors 2017, 17, 2588 11 of 25

approach, which promotes the Separation of Concerns and the Single Responsibility principles.
According to these principles, the ICSI middleware has be partitioned into distinct modules which
encapsulate very specific, not overlapping functionalities, and which communicate with each other via
interfaces. The adoption of this approach allowed to come up with a high cohesive and low coupled
system, with all the implied benefits in terms of maintainability and flexibility. The core modules
are placed on-top of the operating system and make use of networking, virtualization and data
serialization services provided by embedded software libraries. The main middleware components are:
(i) the Resource Processing Engine (RPE), taking care of in-network event processing tasks; (ii) the ETSI
M2M library, supporting standard communication with system gateways; (iii) the Sensor Interface,
a software library abstracting the functionality of on-board sensors; (iv) the Configuration Manager,
enabling the remote configuration of the node.

Figure 4. Middleware architecture.

The whole middleware has been developed on top of Contiki OS [52], an open-source operating
system targeted to IoT compliant devices and fully supporting IoT protocols, i.e., 6LoWPAN [53,54],
RPL [55], and CoAP [56]. Contiki has been preferred to other embedded operating systems such
as Riot and TinyOS because of its full and certified implementation of the IoT stack. In order to
support some of the advanced features of the ICSI RPE, we added client-side support for CoAP
Observe, which is needed by RPE to “observe” the input resources. Moreover we implemented IPv6
loopback communication (i.e., the possibility for a process to communicate with another process on
the same node using sockets), needed by the RPE tasks to interact with resources belonging to the
node on which they are deployed. The RESTful Web Service [57] component, based on the CoAP
protocol, handles all network data inputs, outputs and implements a resource directory service. Such
a component uses other important features implemented in the CoAP implementation provided by
Contiki: (i) block-wise transfers to manage large resource representations; (ii) resource observation,
to publish changed resource representation to all subscribers; (iii) sending of the acknowledgment for
a request and the relative application data in separate responses in order to avoid undesired request
retransmissions and timeout when the request involves time consuming tasks; (iv) resource discovery
using the CoRE Link Format by automatically generating the /well-known/core handler at which all
resources are registered. The middleware virtualization capabilities have been integrated by using
PyMite [58], a lightweight Python interpreter on which tasks and applications can be instantiated
at run-time by uploading Python bytecodes. Python has been preferred to other commonly used
interpreted programming languages such as Java and Javascript, because the former does not allow the
definition of processing functions by means of scripts and the latter cannot be compiled into bytecode,
and both these characteristics do not fit well in constrained scenarios. PyMite has been specially
designed to be executed on devices with scarce resources, e.g., microcontrollers with limited Flash and
RAM capabilities. The Data Serialization Library component provides data serialization services in the
EXI format, a very compact representation of XML, which provides better performance in compressing
M2M messages [59].

Sensors 2017, 17, 2588 12 of 25

The in-network event composition is performed by the RPE module. Such a component is placed
on top of the virtualization module, and it is based on T-Res [60], a framework enabling in-network
processing in IoT networks.

T-Res comes with the CoAP-based RESTful interface depicted in Figure 5, which allows to remotely
instantiate, configure and delete tasks on a node. T-Res tasks are defined by their input sources (/is),
the data processing they perform (/pf), and the destination of their output (/od). According to the
RESTful paradigm the input sources and the output destination are CoAP resources specified by means
of their Uniform Resource Identifiers (URIs), while the processing function resource /pf contains the
Python bytecode of the task to be executed. It is possible to dynamically modify the behavior of a
task by invoking the proper CoAP methods on such resources. Specifically, it is possible to change
the processing function bytecode of a task simply performing a PUT on the relative /pf subresource
providing the new bytecode. By allowing the run-time instantiation of tasks as Python bytecodes, the
event processing function can be moved at run-time from one node to another, e.g., to a node having a
better connectivity or a larger residual energy, completely decoupling the source of the information
from the single physical sensor. The Configuration Manager is the component responsible for the
global configuration of the ICSI Middleware. Each configurable component is registered through
the RESTFUL Web Service and provides the APIs to allow remote configuration. This component
provides access to a wide range of functions, including: (i) RPE configuration (input/output resources
and processing); (ii) Over-the-air software update; (iii) Energy Policy Reconfiguration (duty cycle
configuration); (iv) Networking and general purpose maintenance features. The ETSI M2M library uses
the services provided by the data serialization libraries and exposes a set of APIs to encode/decode
M2M messages according to ETSI specifications.

/tasks # list currently installed tasks [GET]
/{task_name} # retrieve/create/delete a specific task [GET|PUT|DELETE]

/is # retrieve/update the input sources [GET|PUT|POST]
/pf # retrieve/update the data-processing function [GET|PUT]
/od # retrieve/update the output destinations [GET|PUT|POST]
/lo # retrieve/observe the last output produced [GET]

Figure 5. T-Res interface.

4. Results

The proposed visual sensor network was tested separately for the vision and networking parts in
order to validate each single logical component; then the prototype was actually installed in the city of
Pisa for an extensive field trial.

4.1. Evaluation of Embedded Vision Logics

In this section, tests and evaluations of the algorithms for traffic and parking monitoring are
presented. These first tests were performed in order to be able to deploy the algorithm on the actual
visual sensor network, through an assessment of the performance. Processing of these data was
performed off-line in lab, but an important note is that all the data used were real-time acquired data
from the real world.

4.1.1. Parking Lot Availability Tests

Following the description of the background modelling given in Section 3.2.1, in Figure 6 the
background model at a specific frame t of the acquired test sequence is shown (Figure 6a) and its
corresponding processed output (Figure 6b). In the processed frame the red colour means busy because
the belief of occupation is very strong due to the high number of edges and low asphalt detection
inside the RoI. On the contrary, green parking slots indicate the status available because a very large area
of asphalt is found within and few pixels come out from the edge detector. The blue colour expresses
uncertainty because the combination of edge and asphalt beliefs is between the two thresholds of the

Sensors 2017, 17, 2588 13 of 25

hysteresis. In this latter situation, no change occurs in the status, i.e., the final output remains the same
of the one given for the previous frame. There is a difference between the right-most blue slot and
the others: in the bottom right slot, there is such an uncertainty because the vehicle has just arrived
and it is not integrated in the background yet as can be seen from the picture on the left. The asphalt
detection considers the background image (for stability reason), so only when the vehicle is part of it
(i.e., after about 30 frames) the colour will change to red. The uncertainty condition of the other three
slots are due to the partial occupation of the slot by entities that are not big enough to be classified as a
vehicle (e.g., a person walking in and parts of vehicles from alongside slots).

In order to evaluate the performance of the method various video sequences were acquired during
different times of the day (i.e., with different light conditions) and a comparison was made between
the log of algorithm output versus a manually annotated ground truth, i.e., acquired frames were
manually pointed out when a status change happened, that is an available parking lot became busy or
the contrary. The Overall Error Rate (OER) is the metric proposed in [25] and is defined as the ratio of
total errors (i.e., False Positive plus False Negative) and the total responses (i.e., False Positive plus
False Negative plus True Positive plus True Negative):

OER =
FP + FN

FP + FN + TP + TN
(5)

Notice that in an outdoor scenario (which is the setting of the experimentation carried out in
the paper), even in absence of parking status changes, there are a number of non stationary elements
that might interfere with the algorithm. These include for instance light changes, casted shadows
and temporary occlusions. Furthermore in order to compare the system with others that operate at
single frame level (their output is the state of each slot based on the analysis of a single image) it
seems reasonable to consider every single frame output as the complete set of the slots’ status; thus
the denominator of the ratio corresponds to the multiplication of the slots monitored and the total
frames considered:

ErrorRate =
∑TotalFrames

i=1 (FPi + FNi)

TotalFrames ·TotalSlots
(6)

where FPi + FNi is the total number of errors made when analyzing frame i.
In Table 1, the results of several sample acquired sequences from separate cameras are presented.

(a) (b)

Figure 6. Example of parking lot analysis: background model at time t (a) and real-time output at
time t (b).

Sensors 2017, 17, 2588 14 of 25

Table 1. Performance of parking lot monitoring of 5 separate devices.

Monitored Total False Hit Missed Total Total Error
Slots Frames Events Events FP FN Rate

CAM A 23 5357 10 24 238 594 0.675%
CAM B 22 5145 8 22 285 693 0.864%
CAM C 17 5260 7 14 156 396 0.617%
CAM D 16 5225 6 8 222 269 0.587%
CAM E 15 5305 6 5 211 197 0.513%

The average error rate based on five different cameras is 0.65%. Although a number of papers in
literature has been presented on the topic, an accurate comparison is difficult to be proposed, since
most of the approaches are far from being based on a “low-cost low-consumption embedded platform”,
yet their performance are not radically different from the one achieved by our method. A comparison
with some related work can be found in Table 2.

Table 2. Comparison of related work.

Reference Error Rate (%) Features

Wu et al., 2007 [61] 6.5 Color
Sastre et al., 2007 [22] 2.2 Gabor filters
Bong et al., 2008 [62] 7.0 Color
Hichihashi et al., 2009 [63] 2.0 PCA
Huang and Wang 2010 [17] 1.2 Color
DeAlmeida et al., 2015 [25] 0.4 Texture
Amato et al., 2016 [27] 0.4 CNN
Proposed method 0.65 Edge and color

In particular, up to the best of our knowledge [25] is considered to be the most performant
approach in the state of the art; it is based on complex features (LPB and LPL) and it is target for high
end computer. Recently [27] showed good result using deep learning on a smart camera based on
Raspberry Pi platform; nevertheless the training phase of the network has been executed offline with
performing hardware and the necessary memory size to use the Convolutional Neural Network is
ten times the one available on the visual sensor node proposed in this paper; furthermore the system
proposed in [27] needs about 15 s to analyze an image and calculate its output, while our system
achieves the result in 2 s.

4.1.2. Traffic Flow Monitoring Tests

Traffic monitoring data were acquired using a temporary installation of the sensors on the same
site of the final deployment, so that test sequences acquired reflected the real conditions and traffic
typology. In the following Figure 7 an image acquired from one of the installed sensors shows the
monitored road with the RoIs highlighted for each lane. For the upper lane, vehicles are first passing
over R1, then after a time t they will pass over R2. The distance between the two RoIs is fixed and
known, thus a computation can be performed to establish the length and speed classes of each vehicle
following the algorithm presented in Section 3.2.2.

Sensors 2017, 17, 2588 15 of 25

Figure 7. Traffic flow analysis: view from sensor test set-up and example of vehicles transit in the field
of view of the sensor, which may cause occlusion to the upper lane.

In Figure 8 the example of a detected vehicle with the corresponding RoIs highlighted is shown.

(a) (b)

Figure 8. Traffic flow analysis: detected vechicle from sensor test set-up (a) and the same frame
processed with the RoIs highlighted (b).

The frame rate of the camera sensor is known and, considering the width of the RoI, it allows to
catch the entrance of a car and the empty space between two passing cars with a safe margin. Thus, each
vehicle can be detected individually, and independently from its length. As reported in the algorithm
in Figure 3, the main variable is the time t occurring between the transition from occupation of R1 to
occupation of R2 and then to the exit of R2. The analysis of the two RoIs is performed independently,
so that one can result in an occupied status while the other may result free.

The RoI for the traffic monitoring are two for each lane, and the distance among each RoI in the
same lane is measured at the road surface level and used in order to compute the vehicles speeds

Sensors 2017, 17, 2588 16 of 25

and length classes. Three speed classes and three length classes were used. Test sequences have been
acquired in real traffic conditions and then used for testing the algorithm. The ground-truth total for
these sequences was the following: 124 vehicles transited (70 along the lower lane, 54 on the upper
lane) and having the following length classes: 11 with length between 0 and 2 m (7 lower lane, 4 upper
lane); 98 with length between 2 and 5 m (55 lower lane, 43 upper lane); 15 with length 5 and more
metres (8 lower lane, 7 upper lane).

It is important to note, for the following results, that the lengths were inferred on the basis of
the recognition, by a human observer by sight, of the specific car models. Moreover, the algorithms
compute a speed class estimate, for this data the ground truth is based on preliminary tests made on
cars which were equipped with a GPS and recorded their own speeds. The total classification results
are shown in Table 3.

Table 3. Classification performance of the traffic flow monitoring.

Total Lower Lane Upper Lane

Total transited vehicles 124 70 54
Correctly identified vehicles 118 (95.2%) 69 (98.6%) 49 (90.7%)

False positives 3 (2.4%) 1 (1.4%) 2 (4%)

As it was expected, the results on the upper lane were slightly less precise; nevertheless the global
performance for this test has to be considered positive, yielding a percentage of more than 95% of
correct detections. Furthermore, a classification for the length classes is reported, where the 3 nominal
classes for length are shown in Table 4. As already stated, the lengths have been extracted from car
manufacturer data. Another test was made regarding speed classes, but in this case we did not have a
complete ground-truth data because the estimates were feasible only by eye-sight, thus we did decide
not to show the outcome of this test.

Table 4. Example of classification with respect to length (`). Analysis performed for lower lane data.

Length Class Ground Truth Correct Class. False Positive Efficiency

` ≤ 2 m 8 8 0 100%
2 < ` ≤ 5 m 57 56 1 96.6%
` > 5 m 5 5 0 100%

TOTAL 70 69 1 97.2%

In order to show the relevance of our proposal, we report, in the following Table 5,
a comparison with other state of the art algorithms, evaluated with respect to correct identification
rate (i.e., a performance index), and the computational power used for these solutions. Obviously,
an effective and complete comparison is impossible, due to the different tasks, goals, algorithms, case
studies used by each cited work.

Sensors 2017, 17, 2588 17 of 25

Table 5. Comparison of performances and computational power for different algorithms.

Performance Hardware/Processing Notes

Messelodi et al., 2005 [35] 82.8% Hardware not reported
not an embed. platform

Ottlik&Nagel 2008 [36] 83% Hardware not reported
off-line processing

Saunier&Sayed 2006 [37] 88.4% Hardware not reported
off-line processing

Chen et al., 2011 [38] 97%
DM642 DSP-based
embed. platform

600 MHz-32 MB DRAM

Rad&Jamzad 2005 [39] 96% Pentium II 800 MHz
processing 11fps

Lai et al., 2008 [40] 89% Hardware not reported
but processing 2.5 fps

Semertzidis et al., 2010 [41] 91% Hardware not reported
but processing <5 fps

Chen et al., 2012 [42] 96% Hardware not reported
off-line processing

Proposed method 95.2% ARM Architecture
454 MHz-64 MB SDRAM

4.2. Evaluation of Middleware Capabilities

This section reports the ICSI Middleware performance evaluation in a laboratory testbed.
The main purpose of such a campaign is to evaluate the middleware capabilities in a controlled
environment. In the following of the section, the laboratory testbed is first described, then the
middleware performance are reported in terms of event notification delay, by considering both event
composition and data encoding techniques required for the transmission of M2M messages. Moreover,
since ideally the middleware is targeted to constrained devices, a feasibility assessment is reported
considering the actual networking component board introduced in Section 3.1.

The testbed setup is reported in Figure 9. It is mainly composed of three visual sensor nodes, a
border router (BR) device able to gather data from the roadside network, a proxy able to translate
CoAP messages in the HTTP format, and system able to receive HTTP messages from the proxy
while supporting the Gateway Service Capability Layer (GSCL) component defined in the ETSI M2M
architecture. In the picture the arrows labeled with the Observe method describe the monitoring
relationships involving the three visual sensor nodes. In detail Node A is configured to monitor
only local events, while Node B monitors event locally and receives event notifications generated
by Node C. In Node B an event composition is performed, the basic events are aggregated by the
RPE and sent to the GSCL through the proxy as new aggregated resource. The proxy and the GSCL
are hosted on the same laptop. The measured transmission latency in event notification is reported
in Table 6, it includes the time required to: (i) compose the event, (ii) compress and send the event
as M2M message, (iii) convert the in-network message in the HTTP format before sending it to the
GSCL component. In the table the overall event notification delay is reported as a function of the
message dimension, considering the number of data packets in which it must be divided. As it is
easy to expect, the delay increases as a function of the message dimension, and it is mainly due by
transmission and encoding latencies, while with the implemented event composition logic (weighted
averaging function) the RPE delay is negligible. Increasing the size of the message bigger delays can
be experienced. However, the resulting delay is fully compatible with the dynamics of the considered
ITS applications.

Sensors 2017, 17, 2588 18 of 25

Figure 9. Experimental setup in the laboratory testbed.

Table 6. Event notification latency.

Message Size [Bytes] Number of Messages Sensor to GSCL [ms]

104 2 176.01 ± 0.27

155 3 227.79 ± 0.42

228 5 287.06 ± 0.38

The middleware feasibility assessment of the proposed middleware solution has been analyzed
for the networking component device, the SEED-EYE board [47]. Such a device is characterized
by 512 Kbyte of Flash memory and 128 Kbyte of RAM memory. The whole middleware requires
44.80% of the ROM memory and only 26.50% of the RAM, leaving a significant space available for the
user-defined event composition functions.

4.3. Experimentation in the Field

The final deployment of the visual sensor network has been arranged in a specific area of the city
of Pisa featuring an important commuter parking lot and a main road for accessing both the parking
facility and the city center. In order to have an autonomous system, all the mounted sensor nodes were
equipped with photovoltaic panels and batteries for long term duration.

In Figure 10 two of the sensor nodes of the installed network are shown. It is important to notice
that in the installation only normal poles were used for fixing the sensors that, being completely
wireless, did not require any further work for cabling. The full installation required less than two days
of work of a team constituted by 2 technicians and 2 computer scientists taking care of sensor fixing
and configuration.

A long term monitoring has been performed on both traffic flow and parking lot monitoring,
the results span over a period of two months. Each of the test sets used different metrics and evaluation
methods, in particular, the parking lot tests analysed the occupancy ratio daily rates and trends, while
the flow monitoring tests analysed the traffic flow rate on daily and global basis as well as the average
speeds and the cumulative vehicle count curves (i.e., N-curves).

Sensors 2017, 17, 2588 19 of 25

Figure 10. Picture showing the final field test installation.

4.3.1. Parking Lot Monitoring Tests

A total number of 71 slots (66 regular, 4 disabled people, 1 e-car charging) were monitored by
installing 12 sensor nodes. About 20 slots were in the field of view of more than one sensor in order to
test and validate cooperative sensing functionalities of ICSI middleware. In particular, for each of these
slots, event composition was performed aggregating the measures produced by each sensor in charge
of its monitoring. As in Section 4.2, weighted average was used in aggregation: each sensor contributed
to the average with a weight proportional to the area in pixel of the region in the image corresponding
to the monitored slot. By evaluation of the log of the network, it resulted that event composition
leads to a reduced number of fluctuation, allowing to filter out events due to temporary occlusions in
the field of views. In addition, event composition allowed to cope with failure of one of the nodes.
Indeed, tests have been executed switching off artificially a sensor in the network. The visual sensor
network was able both to reconfigure itself building new routes when needed as well as for publishing
aggregated notification regarding parking lot status.

In the following Table 7 a resume of the cooperative monitoring performance is reported.
The monitoring regards the slots which are surveilled by two sample cameras (i.e., 12 slots), comparing
each individual camera results (i.e., columns CAM A and CAM B) only for the slots monitored by
both, versus the cooperative weighted results (i.e., shown in the column COOP.). As it can be seen the
worse results from single cameras are heavily increased, as the error rates drop from 6% and almost
5% down to only 1% of errors, counting on a total of 78, 840 events on which the occupancy detection
algorithm is called, computed as the product of every slot in each acquired frame.

Table 7. Cooperative monitoring results.

CAM A CAM B COOP.

ERRORS 4870 3674 804

% 6.2% 4.7% 1.0%

Besides these technological consideration, the network was able to collect useful data for
understanding the dynamics of parking lot access and usage. A typical working day scenario is
reported in Figure 11 where the occupancy status recorded every 15 min is shown for each of the
slots categories (i.e., Reg-Occ: regular slots; Dis-Occ: disabled people slots; EC-Occ: e-Charging slots;
TOTAL: Total % of available slots).

Sensors 2017, 17, 2588 20 of 25

Figure 11. Percentage of parking occupancy on December 14.

A more extensive assessment of these results is given by the monthly aggregated data, for the
whole months of November and December until the last day of the year. Obtained results confirm
the usage of the selected parking lot as a typical long-stay swapping parking used also for mobility
exchange reasons (e.g., fast bus stop link to centre and train station). In fact, the occupancy ratio
reaches its highest values early and quickly in the morning and only decreases slowly in the afternoon
to get to its minimum close to the office closing time. Another relevant information regards weekends
and Christmas holiday period (last week of December) low usage of the parking (i.e., never exceeding
35% of the capacity). One more suggestion comes looking at the peculiar behaviour during the week
before Christmas (i.e., December 21–23); there is yet a decrease in the total occupancy, and an increase
in the latter time slots (e.g., 14–18), a possible explanation of this can be inherent to a higher flow of
people staying longer in the city centre for Christmas shopping.

4.3.2. Traffic Flow Monitoring Tests

The long term flow monitoring tests were performed along Via Pietrasantina (the north access
way to the city of Pisa). Data acquired covered different aspects: the amount of vehicles, the average
speed categories detected, and the aggregation of these data on time slots and daily basis. The first
data analysed is the traffic flow rate on a single working day. Data are evaluated on a 15 min basis.

As it was expected the flow ratios, in a normal working day, have the highest values in the early
morning hours to quickly decrease at around 10:00, to increase again during lunch-time (i.e., that is
also around closing time of schools). A rapid decrease happens around 14:00, increasing again but to
a slightly lower value, after 16:00 for the closing office time, which is more distributed in time (e.g.,
spanning from 16:00 till 20:00). Another interesting data is the total amount of vehicles: in that day the
amount was 2749, which considering the over 95% correct identification ratio confirms to be in range
of the typical working day data available from the Pisa mobility agency.

The comprehensive results obtained during the two months monitoring are given, by means of
monthly views of the vehicles-per-hour data aggregated by time slots (example in Figure 12 showing
the month of December).

Sensors 2017, 17, 2588 21 of 25

0 50 100 150 200 250 300 350 400

10/12/2015

11/12/2015

12/12/2015

13/12/2015

14/12/2015

15/12/2015

16/12/2015

17/12/2015

18/12/2015

19/12/2015

20/12/2015

21/12/2015

22/12/2015

23/12/2015

24/12/2015

25/12/2015

26/12/2015

27/12/2015

28/12/2015

29/12/2015

30/12/2015

31/12/2015

Monthly Aggregated view V/h

08:00-10:00 10:00-12:00 12:00-14:00 14:00-16:00 16:00-18:00

Figure 12. Aggregated vehicles per hour data by time slots for the latter 3 weeks (reduced only for a
better readability) of December 2015.

A brief analysis of the results brings to some remarks: differently from the parking lot tests,
the traffic flow shows large decrease only on Sundays and holidays, while Saturdays see a traffic flow
comparable to other working days. Sundays and holidays (i.e., 8 December, 25 and 26 December)
report the average traffic flow ratio to drop more than 50%. Moreover, alike the parking lot scenario,
during Christmas holidays (i.e., after 23 December) there is a decrease around 30% of the traffic flow.

5. Conclusions

In this paper, a prototype of visual sensor network has been presented where each
camera-equipped node embeds special vision logics to understand urban mobility and extract relevant
real-time data for its analysis. Globally, the network is endowed with an IoT middleware that enables
cooperative sensing by offering the possibility to perform event composition at network level. In this
way, the network is insensitive to hardware failure as well as to temporary occlusion in the field of
view of some nodes. Besides the lab, the capability of the network has been demonstrated in a field test
that has highlighted the suitability of the proposed solution in dealing with parking and traffic flow
monitoring and providing high quality real-time information. Indeed, the network was able to capture
and measure variations in urban mobility produced under special circumstances such as festivities;
such altered patterns would have been difficult to collect at large scale without an IoT solution for
the smart city as the one proposed in this paper. Furthermore, thanks to great applicability of vision,
the visual sensor network can support the collection of data in other smart city contexts simply by
extending the already developed vision logics.

Acknowledgments: This work has been partially supported by EU FP7 project “ICSI” – Intelligent Cooperative
Sensing for Improved traffic efficiency – Contract (GA) number 317671.

Author Contributions: Riccardo Leone participated in the design of computer vision algorithm for parking lot
monitoring and in their validation, as well as in paper preparation. Davide Moroni contributed to the design of
network architecture, sensor realization and study of computer vision methods. He dealt also with validation on
the field and paper preparation. Gabriele Pieri participated in the development of the computer vision logics for
traffic flow control, to activities for field trials, as well as in paper preparation. Matteo Petracca participated in the
design and development of the middleware solution, as well as in paper preparation. The work inside the project
has been done when he was affiliated at the Scuola Superiore Sant’Anna of Pisa. Ovidio Salvetti has promoted the
ideas behind this paper and has participated in the design of this research. Andrea Azzarà participated in the
design and development of the middleware solution. Francesco Marino participated in the integration and testing
of the middleware solution.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2017, 17, 2588 22 of 25

References

1. Shoup, D.C. Cruising for parking. Transp. Policy 2006, 13, 479–486.
2. Van Ommeren, J.N.; Wentink, D.; Rietveld, P. Empirical evidence on cruising for parking. Transp. Res. Part A

Policy Pract. 2012, 46, 123–130.
3. Zheng, N.; Geroliminis, N. Modeling and optimization of multimodal urban networks with limited parking

and dynamic pricing. Transp. Res. Part B Methodol. 2016, 83, 36–58.
4. Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An information framework for creating a smart city

through internet of things. IEEE Internet Things J. 2014, 1, 112–121.
5. Liu, H.; Chen, S.; Kubota, N. Intelligent video systems and analytics: A survey. IEEE Trans. Ind. Inform. 2013,

9, 1222–1233.
6. Goldhammer, M.; Strigel, E.; Meissner, D.; Brunsmann, U.; Doll, K.; Dietmayer, K. Cooperative multi

sensor network for traffic safety applications at intersections. In Proceedings of the 2012 15th International
IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012;
pp. 1178–1183.

7. Redondi, A.; Cesana, M.; Tagliasacchi, M.; Filippini, I.; Dán, G.; Fodor, V. Cooperative image analysis
in visual sensor networks. Ad Hoc Netw. 2015, 28, 38–51.

8. ICSI. Intelligent Cooperative Sensing for Improved Traffic Efficiency, 2016. Available online: http://www.
ict-icsi.eu/ (accessed on 8 November 2017).

9. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.K.R.; Dlodlo, M. From Cloud to Fog Computing: A Review
and a Conceptual Live VM Migration Framework. IEEE Access 2017, 5, 8284–8300.

10. Banerjee, S.; Choudekar, P.; Muju, M.K. Real time car parking system using image processing. In Proceedings
of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India,
8–10 April 2011; Volume 2, pp. 99–103.

11. Al-Kharusi, H.; Al-Bahadly, I. Intelligent Parking Management System Based on Image Processing. World J.
Eng. Technol. 2014, 2, 55–67.

12. Alessandrelli, D.; Azzarà, A.; Petracca, M.; Nastasi, C.; Pagano, P. ScanTraffic: Smart Camera Network
for Traffic Information Collection. In Wireless Sensor Networks, Proceedings of the 9th European Conference,
EWSN 2012, Trento, Italy, 15–17 February 2012; Picco, G.P., Heinzelman, W., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 196–211.

13. Baroffio, L.; Bondi, L.; Cesana, M.; Redondi, A.E.; Tagliasacchi, M. A visual sensor network for parking
lot occupancy detection in Smart Cities. In Proceedings of the 2015 IEEE 2nd World Forum on Internet
of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 745–750.

14. Eriksson, E.; Dan, G.; Fodor, V. Radio and Computational Resource Management for Fog Computing
Enabled Wireless Camera Networks. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps),
Washington, DC, USA, 4–8 December 2016; pp. 1–6.

15. Mainetti, L.; Patrono, L.; Stefanizzi, M.L.; Vergallo, R. A Smart Parking System based on IoT protocols
and emerging enabling technologies. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), Milan, Italy, 14–16 December 2015; pp. 764–769.

16. Bielsa, A. Smart City Project in Santander to Monitor Parking Free Slots. Available online: http://www.
libelium.com/smart_santander_parking_smart_city (accessed on 8 November 2017).

17. Huang, C.C.; Wang, S.J. A hierarchical bayesian generation framework for vacant parking space detection.
IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1770–1785.

18. Viola, P.; Jones, M.J.; Snow, D. Detecting pedestrians using patterns of motion and appearance. Int. J.
Comput. Vis. 2005, 63, 153–161.

19. Magrini, M.; Moroni, D.; Nastasi, C.; Pagano, P.; Petracca, M.; Pieri, G.; Salvadori, C.; Salvetti, O. Visual sensor
networks for infomobility. Pattern Recognit. Image Anal. 2011, 21, 20–29.

20. Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. In Proceedings
of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins,
CO, USA, 23–25 June 1999; Volume 2, pp. 246–252.

http://www.ict-icsi.eu/
http://www.ict-icsi.eu/
http://www. libelium. com/smart_santander_parking_smart_city
http://www. libelium. com/smart_santander_parking_smart_city

Sensors 2017, 17, 2588 23 of 25

21. Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-time foreground—Background segmentation
using codebook model. Real-Time Imaging 2005, 11, 172–185.

22. Sastre, R.L.; Jimenez, P.G.; Acevedo, F.J.; Bascon, S.M. Computer algebra algorithms applied to computer
vision in a parking management system. In Proceedings of the 2007 IEEE International Symposium
on Industrial Electronics, ISIE 2007, Vigo, Spain, 4–7 June 2007; pp. 1675–1680.

23. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987.

24. Ojansivu, V.; Heikkilä, J. Blur insensitive texture classification using local phase quantization. In Proceedings
of the 3rd International Conference Image and Signal Processing, ICISP 2008, Cherbourg-Octeville, France,
1–3 July 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 236–243.

25. De Almeida, P.R.; Oliveira, L.S.; Britto, A.S.; Silva, E.J.; Koerich, A.L. PKLot—A robust dataset for parking
lot classification. Expert Syst. Appl. 2015, 42, 4937–4949.

26. Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 1.
27. Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C.; Vairo, C. Car parking occupancy detection using smart camera

networks and deep learning. In Proceedings of the 2016 IEEE Symposium on Computers and Communication
(ISCC), Messina, Italy, 27–30 June 2016; pp. 1212–1217.

28. Grassi, G.; Jamieson, K.; Bahl, V.; Pau, G. ParkMaster: An in-vehicle, edge-based video analytics service
for detecting open parking spaces in urban environments. In Proceedings of the 2nd ACM/IEEE Symposium
on Edge Computing, San Jose, CA, USA, 12–14 October 2017.

29. Wang, X.; Zheng, X.; Zhang, Q.; Wang, T.; Shen, D. Crowdsourcing in ITS: The state of the work
and the networking. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1596–1605.

30. Alt, F.; Shirazi, A.S.; Schmidt, A.; Kramer, U.; Nawaz, Z. Location-based crowdsourcing:
Extending crowdsourcing to the real world. In Proceedings of the 6th Nordic Conference
on Human-Computer Interaction: Extending Boundaries, Orlando, FL, USA, 9–14 July 2010; pp. 13–22.

31. Grazioli, A.; Picone, M.; Zanichelli, F.; Amoretti, M. Collaborative mobile application and advanced
services for smart parking. In Proceedings of the 2013 IEEE 14th International Conference on Mobile Data
Management (MDM), Milan, Italy, 3–6 June 2013; Volume 2, pp. 39–44.

32. Loce, R.P.; Bernal, E.A.; Wu, W.; Bala, R. Computer vision in roadway transportation systems: A survey.
J. Electron. Imaging 2013, 22, doi:10.1117/1.JEI.22.4.041121.

33. Buch, N.; Velastin, S.A.; Orwell, J. A review of computer vision techniques for the analysis of urban traffic.
IEEE Trans. Intell. Transp. Syst. 2011, 12, 920–939.

34. Unzueta, L.; Nieto, M.; Cortés, A.; Barandiaran, J.; Otaegui, O.; Sánchez, P. Adaptive multicue background
subtraction for robust vehicle counting and classification. IEEE Trans. Intell. Transp. Syst. 2012, 13, 527–540.

35. Messelodi, S.; Modena, C.M.; Zanin, M. A computer vision system for the detection and classification
of vehicles at urban road intersections. Pattern Anal. Appl. 2005, 8, 17–31.

36. Ottlik, A.; Nagel, H.H. Initialization of model-based vehicle tracking in video sequences of inner-city
intersections. Int. J. Comput. Vis. 2008, 80, 211–225.

37. Saunier, N.; Sayed, T. A feature-based tracking algorithm for vehicles in intersections. In Proceedings
of the 3rd Canadian Conference on Computer and Robot Vision, Quebec, QC, Canada, 7–9 June 2006; p. 59.

38. Chen, Y.L.; Wu, B.F.; Huang, H.Y.; Fan, C.J. A real-time vision system for nighttime vehicle detection
and traffic surveillance. IEEE Trans. Ind. Electron. 2011, 58, 2030–2044.

39. Rad, R.; Jamzad, M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognit.
Lett. 2005, 26, 1597–1607.

40. Lai, A.N.; Yoon, H.; Lee, G. Robust background extraction scheme using histogram-wise for real-time
tracking in urban traffic video. In Proceedings of the 2008 8th IEEE International Conference on Computer
and Information Technology, CIT 2008, Sydney, Australia, 8–11 July 2008; pp. 845–850.

41. Semertzidis, T.; Dimitropoulos, K.; Koutsia, A.; Grammalidis, N. Video sensor network for real-time traffic
monitoring and surveillance. IET Intell. Transp. Syst. 2010, 4, 103–112.

Sensors 2017, 17, 2588 24 of 25

42. Chen, Z.; Ellis, T.; Velastin, S.A. Vehicle detection, tracking and classification in urban traffic. In Proceedings
of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), Anchorage,
AK, USA, 16–19 September 2012; pp. 951–956.

43. Wang, G.; Tao, L.; Di, H.; Ye, X.; Shi, Y. A scalable distributed architecture for intelligent vision system.
IEEE Trans. Ind. Inform. 2012, 8, 91–99.

44. Magrini, M.; Moroni, D.; Pieri, G.; Salvetti, O. Intelligent Transport Systems: Technologies and Applications;
Chapter Smart Cameras for ITS in Urban Environment; John Wiley & Sons: Hoboken, NJ, USA, 2015;
pp. 167–188.

45. Magrini, M.; Moroni, D.; Palazzese, G.; Pieri, G.; Leone, G.; Salvetti, O. Computer Vision on Embedded
Sensors for Traffic Flow Monitoring. In Proceedings of the 2015 IEEE 18th International Conference
on Intelligent Transportation Systems (ITSC), Gran Canaria, Spain, 15–18 September 2015; pp. 161–166.

46. Chatzigiannakis, I.; Vitaletti, A.; Pyrgelis, A. A privacy-preserving smart parking system using an IoT 791
elliptic curve based security platform. Comput. Commun. 2016, 89, 165–177.

47. SEED-EYE Board. Available online: http://www.evidence.eu.com/products/seed-eye.html (accessed on 8
November 2017).

48. Lee, D.S. Effective Gaussian mixture learning for video background subtraction. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 827–832.

49. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698,
doi:10.1109/TPAMI.1986.4767851.

50. Azzara, A.; Petracca, M.; Pagano, P. The ICSI M2M middleware for IoT-based intelligent transportation
systems. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation
Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 155–160.

51. ETSI TS 102 690. Machine-to-Machine Communications (M2M); Functional Architecture; Available online:
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
(accessed on 8 November 2017).

52. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the IEEE International Conference on Local Computer Networks, Wuhan, China,
13–15 December 2004.

53. Kushalnagar, N.; Montenegro, G.; Schumacher, C. IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs): Overview, Assumptions, Problem Statement, and Goals; Technical Report, RFC 4919 (Informational);
Internet Engineering Task Force: Fremont, CA, USA, 2007.

54. Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet; John Wiley & Sons: Hoboken, NJ, USA,
2011; Volume 43.

55. Winter, T. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks; Internet Engineering Task Force:
Fremont, CA, USA, 2012.

56. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); Internet Engineering Task
Force: Fremont, CA, USA, 2014.

57. Richardson, L.; Ruby, S. RESTful Web Services; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008.
58. Hall, D. PyMite: A Flyweight Python Interpreter for 8-bit Architectures. In Proceedings of the First Python

Community Conference, Washington, DC, USA, 26–28 March 2003.
59. Pacini, F.; Aderohunmu, F.; Azzarà, A.; Bocchino, S.; Pagano, P.; Petracca, M. Performance Analysis of Data

Serialization Formats in M2M Wireless Sensor Networks. In Proceedings of the European Conference
on Wireless Sensor Networks, Porto, Portugal, 9–11 February 2015.

60. Alessandrelli, D.; Petracca, M.; Pagano, P. T-res: Enabling reconfigurable in-network processing in IoT-based
WSNs. In Proceedings of the 2013 IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS), Cambridge, MA, USA, 20–23 May 2013.

61. Wu, Q.; Huang, C.; Wang, S.Y.; Chiu, W.; Chen, T. Robust parking space detection considering inter-space
correlation. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing,
China, 2–5 July 2007; pp. 659–662.

http://www.evidence.eu.com/products/seed-eye.html
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf

Sensors 2017, 17, 2588 25 of 25

62. Bong, D.B.L.; Ting, K.C.; Lai, K.C. Integrated approach in the design of car park occupancy information
system. IAENG Int. J. Comput. Sci. 2008, 35, 1–8.

63. Ichihashi, H.; Notsu, A.; Honda, K.; Katada, T.; Fujiyoshi, M. Vacant Parking Space Detector for Outdoor
Parking Lot by Using Surveillance Camera and FCM Classifier. In Proceedings of the 18th International
Conference on Fuzzy Systems, FUZZ-IEEE’09, Jeju Island, Korea, 20–24 August 2009; IEEE Press: Piscataway,
NJ, USA, 2009; pp. 127–134.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	System Architecture and Components
	System Architecture and Visual Sensor Prototype
	Embedded Vision Logics for Visual Sensor Networks
	Parking Lot Availability Scenario
	Traffic Flow Monitoring Scenario

	IoT Middleware for Event Composition

	Results
	Evaluation of Embedded Vision Logics
	Parking Lot Availability Tests
	Traffic Flow Monitoring Tests

	Evaluation of Middleware Capabilities
	Experimentation in the Field
	Parking Lot Monitoring Tests
	Traffic Flow Monitoring Tests

	Conclusions

