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Abstract: Recently, various unicast routing protocols have been proposed to deliver measured data
from the sensor node to the sink node within the predetermined deadline in wireless sensor networks.
In parallel with their approaches, some applications demand the specific service, which is based on
broadcast to all nodes within the deadline, the feasible real-time traffic model and improvements in
energy efficiency. However, current protocols based on either flooding or one-to-one unicast cannot
meet the above requirements entirely. Moreover, as far as the authors know, there is no study for the
real-time broadcast protocol to support the application-specific traffic model in WSN yet. Based on
the above analysis, in this paper, we propose a new (m, k)-firm-based Real-time Broadcast Protocol
(FRBP) by constructing a broadcast tree to satisfy the (m, k)-firm, which is applicable to the real-time
model in resource-constrained WSNs. The broadcast tree in FRBP is constructed by the distance-based
priority scheme, whereas energy efficiency is improved by selecting as few as nodes on a tree possible.
To overcome the unstable network environment, the recovery scheme invokes rapid partial tree
reconstruction in order to designate another node as the parent on a tree according to the measured
(m, k)-firm real-time condition and local states monitoring. Finally, simulation results are given to
demonstrate the superiority of FRBP compared to the existing schemes in terms of average deadline
missing ratio, average throughput and energy consumption.

Keywords: (m, k)-firm real-time; broadcast; wireless sensor networks

1. Introduction

Wireless sensor networks (WSNs) have been revolutionizing the way that people interact with the
physical world by their diverse applications in different areas [1]. In an application-specific network
like WSNSs, applications are likely to need specific routing protocols according to the unique features
of generated data [2]. For instance, emergency-detecting applications need real-time routing protocols,
whereas state-monitoring applications require reliable routing protocols. Moreover, various types of
communications such as unicast, multicast and broadcast also need to be supported according to the
demands. In the case of fire alert application, for example, the detection of the fire may be delivered to
a base station by the real-time unicast protocol, transmitted to fire fighters by the real-time multicast
protocol and disseminated to all people in the local area for warning purposes by real-time broadcast
protocols. In these scenarios, real-time communication is one of the areas highly focused on to support
diverse and novel emerging sensor applications such as urgent data reporting and multimedia traffic
management. However, supporting real-time communication is also a challenging issue in WSNs
since the distinguishing features of WSNs as compared to traditional wired networks [3,4] lead to the
building of harsh network environments that are composed of a large number of resource-constrained
sensor nodes where their links are lossy and unstable. Therefore, WSNs naturally have dynamic
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environments such that states of nodes and links are easily changed. Moreover, the energy efficiency
problem is another challenge to increase the network lifetime.

In terms of real-time communications, in general, hard real-time is impractical in WSNs due to
the constrained resources and the dynamic network environment [5]. Thus, many studies propose
soft real-time protocols that try to improve the probability of successful real-time delivery through
probabilistic guarantee or heuristic algorithms. Soft real-time protocols, however, cannot guarantee the
consistent Quality of Service (QoS) related to real time. Unlike typical approaches based on the hard
and soft real-time model, recently, B. Li and K. Kim [6] suggest the (m, k)-firm-based Real-time Unicast
Protocol (FRUP), which sets the criterion between hard real-time and soft real-time. The concept
of (m, k)-firm real time is defined as at least m messages among any k consecutive messages have
to meet their real-time constraint from a real-time data stream. This (m, k)-firm real-time model
provides a more credible performance evaluation indicator than the simple probabilistic indicator, e.g.,
80% real-time success ratio. Technically, FRUP tries to satisfy the (m, k)-firm real-time requirement
by adjusting the data path in a way that reselects forwarding nodes by using two state indicators,
Distance-Based Priority (DBP) and Local State Indicator (LSI). In addition to FRUP, since all other
protocols for the (m, k)-firm real-time work are focused on one-to-one unicast, there is no existing
multicast and broadcast protocol to support the (i, k)-firm model yet. Thus, (m, k)-firm based real-time
unicast is required to be extended to multicast and network broadcast to apply this idea to various
real-time applications.

To accommodate the above demands, in this paper, we deal with the (1, k)-firm-based real-time
broadcast as the first step of the extension. From the point of view of efficiency, the current FRUP
cannot be simply applied to network broadcast for following reasons. If data packets are delivered to
each destination by FRUP in the case of network broadcasting (to all sensor nodes), many duplicated
packet transmissions may lead to wasting of energy, increasing of transmission delay and congestion.
Moreover, the algorithm to decide to rebroadcast in the original flooding and its variants need to be
changed to meet the (m, k)-firm requirement. Based on these analyses, we set our goals, which are to
support (m, k)-firm broadcast and improve energy efficiency.

To achieve these two goals, we propose a novel real-time network broadcast routing based on
the (m, k)-firm real-time protocol, called the (m, k)-firm-based Real-time Broadcast Protocol (FRBP).
The proposed scheme constructs a real-time broadcast tree by electing only some sensor nodes
satisfying the real-time condition as intermediate transmission nodes to satisfy the first goal, the
real-time constraint. Other sensor nodes, i.e., leaf nodes, only receive packets, but do not transmit
them to other nodes for energy efficiency. Each sensor node can receive the data within the desired
time deadline since each path (the source-intermediate node(s)-destination) over the tree that satisfies
the real-time condition defined in SPEED [5]. The real-time broadcast tree also improves energy
efficiency by avoiding network-wide flooding in which every sensor node has to transmit packets.
To reduce energy consumption, the real-time broadcast tree is constructed in a way that includes as
few intermediate nodes as possible. However, states of links and nodes can be changed anytime and
anywhere due to the dynamic characteristics of WSNs. To deal with this unstable problem in the
wireless link, the proposed scheme needs to include a recovery mechanism to deal with the state
changes. For this, each intermediate node figures out local states such as node failure, link quality
and real-time condition. Based on Distance-Based Priority (DBP) and local monitoring, the proposed
scheme can avoid or recover real-time failures promptly by partial tree reconstruction. Moreover, the
source node reconstructs the whole tree only in the worst case that local recovery schemes cannot
guarantee the (m, k)-firm requirement. The performance of FRBP is evaluated by simulation scenarios in
various conditions. Simulation results show that FRBP can satisfy the (m, k)-firm real-time requirement
with reasonable energy consumption in various environments.

The rest of this paper is organized as follows. In Section 2, we summarize and analyze the related
work. The details of FRBP are explained and described in the next section. The performance evaluation
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through simulation results is described in Section 4. Finally, the conclusion and further work are given
in Section 5.

2. Related Work

To the best of our knowledge, the real-time approach for broadcast is not well explored yet.
Therefore, this section summarizes related real-time protocols and broadcast protocols in WSNs.
Since the proposed scheme uses geographic routing as the underlying routing protocol, we organize
related work that is also based on geographic routing.

2.1. Real-Time Protocols

SPEED [5] is a well-known soft real-time unicast routing protocol that tries to probabilistically
satisfy the real-time constraint in a hop-by-hop manner. It estimates the required transmission speed
based on the desired time deadline and the end-to-end distance. Each intermediate forwarding node
selects a next-hop node only among neighbors satistfying the required transmission speed. In other
words, SPEED delivers a packet faster than the required transmission speed by forwarding the packet
faster than the required transmission speed in every single hop. This concept is applicable in a wireless
multi-hop network where the end-to-end delay is proportional to the physical distance the packet
travels, unlike wired networks. Many studies propose variants of SPEED including FRUP and the
proposed scheme in this work, FRBP. Multipath Multi-SPEED (MMSPEED) [7] is extended to provide
a multipath and multilevel real-time routing protocol. Real-time Power-Aware Routing (RPAR) [8],
Scalable Hierarchical Power Efficient Routing (SHPER) [9] and Power-Efficient Multimedia Routing
(PEMuR) [10] raise the issue of energy efficiency with the real-time requirement in their respective
fields. Fault-Tolerant SPEED (FT-SPEED) [11] deals with the void area problem of SPEED. In addition
to unicast, Multicast Protocol for Real-time data Dissemination (MPRD) [12] proposes a real-time
multicast protocol that constructs a novel multicast tree with the real-time constraint. Soft real-time
protocols, however, cannot guarantee the consistent QoS related to the real-time requirement, but make
their best effort. The consequent information of real-time delivery cannot be fed back to upstream
nodes, and forwarding nodes discard packets when they do not find appropriate next-hop nodes.

The firm-based Real-Time (FRT) model [13] has similar features to both hard and soft real-time
model in that it allows for infrequently missed deadlines while the system can survive task failures
so long as they are adequately spaced. In the FRT model, the concept of (m, k)-firm real time is
well defined, that is at least m messages among any k consecutive messages have to meet their
real-time constraint from a real-time data stream. Figure 1 shows an example of state transition for the
(2, 3)-firm real-time requirement. Each state represents that recent k messages meet or miss the deadline.
For example, MMm denotes the state where the most recent message missed its deadline and the
two before it met their deadlines. With this state information, FRT mediates among multiple real-time
streams. Each stream maintains the recent history, a state in Figure 1, and the system gives priorities
to streams according to their states. If a stream is in a failing state (i.e., one of the shaded states in
Figure 1), then a high priority is assigned to the stream.

FRUP [6] applies the (m, k)-firm model to real-time multi-hop unicast. In other words, FRUP uses
the (m, k)-firm requirement to provide a consistent guarantee of real-time data delivery in multi-hop
networks, whereas FRT uses it to mediate among multiple real-time streams in single-hop networks.
FRUP tries to satisfy their (m, k)-firm real-time requirement by adjusting the data path, which reselects
forwarding nodes by using two state indicators, DBP and LSI. DBP is an integer value that denotes the
state of current real-time performance. A positive DBP value stands for meeting the (m, k)-firm
requirement, while a negative DBP means the real-time failure state. DBP is calculated by the
destination and fed back to upstream nodes and the source. FRUP also proposes LSI, which is
calculated by each forwarding node to indicate the local condition of transmission. With two indicators,
DBP and LSI, FRUP can perform a prompt fault recovery mechanism working at each forwarding
node. FRUP however cannot be simply applied to network broadcast. If data packets are delivered
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to each destination by FRUP in the case of network broadcast (to all sensor nodes), many duplicated
packet transmissions may lead to wasting of energy, increasing of transmission delay and congestion.
Moreover, DBP feedback is impractical since DBP reporting messages from all sensor nodes also cause
the same problems.

Figure 1. State transition diagram example of (2,3)-firm [6] where M and m represent deadline meet
and miss, respectively.

2.2. Broadcast Routing Protocols

To achieve broadcast, flooding [14] is a simple approach in that it provides fast broadcast even
though it does not consider real-time requirements. The source node broadcasts a data packet, and
then, the neighbors located within one hop from the source node receive the packet. Each neighbor
rebroadcasts the packet to its own neighbors, but does not broadcast the same packet received before.
This process is repeated until all sensor nodes receive the packet. Flooding is simple and fast since
fast nodes are naturally selected to forward the packets. At each hop, a node receiving and processing
the packet first can forward it immediately. However, frequent flooding can be a huge burden on the
networks since it consumes many network resources. In flooding, all sensor nodes have to transmit
the packet once and receive many duplicated packets from their all neighbors. Therefore, without any
consideration for real-time service, this broadcast storm problem may lead to the increase of delay;,
collision and congestion, which adversely affect real-time performance.

As for energy-efficient broadcast, existing geographic broadcast protocols [15-17] try to minimize
the number of forwarding nodes. Since the problem of minimizing the number of forwarding nodes
is known to be NP-hard [18], they solve the problem by heuristic-based or topology-based plans.
Sprinkler [15] reduces the number of forwarding nodes with the topology-based plan. It embeds
a virtual grid structure over the network to separate sensor nodes in a suitable range for one-hop
broadcast. Only one sensor node per cell becomes a forwarding node, and others only receive the
packets. Moreover, construction of a virtual grid does not incur the transmitting and receiving costs
since it is constructed by only the computation of each node. However, detouring paths of Sprinkler are
a critical problem for real-time communication. In addition, V. Madhusudhana and S. P. Gururaj [16]
decrease the number of forwarding nodes by a probability-based algorithm, one of the heuristic-based
strategies. They made the observation that if the node has more siblings, there is a higher likelihood
that its child nodes receive a packet, even if it does not forward the packet instantly. In this way, the
more siblings a node has, the more its forwarding likelihood may be diminished. Meanwhile, if a
node has numerous child nodes, it needs to forward the packet with a higher likelihood. Therefore,
forwarding likelihood corresponds to the quantity of child nodes and conversely relative to the
quantity of sibling nodes. S chakraborty et al. [17] propose the tree-based broadcast protocol, one of
the topology-based plans. They construct a spanning tree out of all nodes in the network rooted at
the source of the broadcast. The broadcast tree eventually becomes a Breadth-First Search (BES) tree
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where each node maintains the shortest path to the root. This protocol also reduces the number of
forwarding nodes. However, it is less effective than others since the first goal is the shortest path. As
mentioned above, these broadcast protocols focus on energy efficiency, not the real-time requirement.
In other words, they do not consider the node’s delay for electing forwarding nodes, so this can lead to
real-time performance being unsatisfied.

In addition to the mentioned approach, there are some research works to improve the
broadcast routing protocol by introducing the opportunistic flooding algorithm in WSN. First,
S. Guo et al. [19] proposed opportunistic flooding in low-duty-cycle networks with unreliable
wireless links and predetermined working schedules. Here, a new forwarder selection method
is presented to resolve simultaneous forwarding operations through the hidden terminal problem and
a link-quality-based backoff method. D. Chang et al. [20] present a probabilistic and opportunistic
flooding algorithm that controls rebroadcasts and retransmissions opportunistically. The sender
controls the number of retransmissions opportunistically according to error rate at its neighbors.
Another interesting extension of opportunistic flooding is presented in [21]. They propose the
contribution-level-based opportunistic flooding to achieve outstanding transmission efficiency and
reliability to handle the failure case of the broadcast packet at the relay node. ]. Luo et al. [22]
address the network lifetime issue of the opportunistic flooding algorithm. Their approach called
Energy Saving via Opportunistic Routing (ENS_OR) ensures minimum power cost during data relay
and protects the nodes with relatively low residual energy. Moreover L. Zhang et al. [23] present
a performance evaluation framework for the opportunistic flooding algorithm. They focus on two
mechanisms based on acknowledgments and probabilistic retransmissions and analyze the behavior
of the two mechanisms in different environments. Finally, Mayank Sharma et al. [24] present a
comparative analysis for opportunistic routing in wireless sensor networks in terms of power usage,
data aggregation, scalability and the data delivery model. These opportunistic broadcast protocols
also do not consider real-time communication. Furthermore, opportunistic broadcast protocols tend
to show longer delay than geographic broadcast protocols since they use the back-off delay plan for
neighbor contention.

In wireless sensor networks, many communication protocols and applications rely on flooding
for various networking purposes. Prior efforts focus on how to design efficient flooding algorithms;
that is, they seek to achieve full reliability while reducing the number of redundant broadcasting
across the network. To achieve efficient flooding, most of the existing protocols try to reduce the
number of transmissions, which is decided without considering any online transmission result. In this
paper, we propose a probabilistic and opportunistic flooding algorithm that controls rebroadcasts and
retransmissions opportunistically. It seeks to achieve a target reliability required by an application.
For this purpose, it makes a given node select only the subset of its one-hop neighbors to rebroadcast
the same message. It considers node relations such as link error rates among nodes in selecting eligible
neighbors to rebroadcast. The sender controls the number of retransmissions opportunistically by
tracking the current status of message reception at its neighbors. Simulation is carried out to reveal
that our proposed scheme achieves the given target reliability with less overhead than other flooding
algorithms in most cases, thus prolonging the network lifetime.

3. Proposed Scheme: FRBP

To achieve two goals, real time and energy efficiency, the proposed scheme constructs a real-time
broadcast tree to support the application-specific (m, k)-firm model. However, since states of links and
nodes could be changed anytime and anywhere due to the dynamic characteristics of wireless sensor
networks, the proposed scheme includes a recovery mechanism based on DBP and local monitoring to
deal with state changes. The FRBP includes a procedure to construct and maintain the broadcast tree
in a local and global way according to the current DBP value.
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3.1. Real-Time Broadcast Tree Construction

The real-time broadcast tree is composed of three major components: root (source node),
intermediate nodes and leaf nodes. To satisfy the (i, k)-firm real-time constraint, the tree construction
scheme employs transmission speed estimation, which is the main idea of SPEED [5]. In other words,
intermediate nodes in a tree are elected among sensor nodes satisfying the transmission speed. If all
intermediate nodes are composed by nodes with a faster speed, then leaf nodes can receive data
packets within the deadline consequentially. For energy efficiency, the tree construction scheme tries
to elect as few intermediate nodes as possible. The more the leaf nodes, the less energy is consumed
since leaf nodes, unlike intermediate nodes, only receive packets, but not transmit them to other nodes.
The details are described as follows.

The source node generates a Real-time Broadcast Tree Construction (RBTC) message and
disseminates it throughout the network by flooding [14]. The RBTC message includes source location,
required transmission speed, sender location, sender transmission speed, sender’s parent location
and hop count. The information is used for intermediate nodes’ election and recovery mechanism.
The required transmission speed is calculated by the source node with the desired time deadline
and the distance between the source node and the farthest destination. We assume that the source
node is aware of the approximated network location since the application-specific property implies
planned deployment. The source node measures the farthest network edge from itself as the farthest
destination. The hop count means the number of hop counts from the source node and also the level
of the broadcast tree.

Each sensor node elects its own parent within the neighbors with the election rules related to
the tree construction goals. After a node receives the RBTC message, the node performs the parent
election process. As described in Algorithm 1, the node excludes neighbors located farther than itself
from the source node from being parent candidates. The node also excludes neighbors that do not
satisfy the transmission speed for real-time data dissemination. All remaining neighbors could be
parent candidates since they satisfy the real-time condition. The node then elects a parent among the
candidates with additional rules for energy efficiency. The node compares the hop counts and holds
candidates having the least hop count. Lastly, the furthest candidate from the source node is elected as
a parent node. These last two rules could contribute to reducing the number of intermediate nodes.
Figure 2 shows an illustration of the process. After the parent election process is completed, child
nodes announce child information to their parents. Unelected sensor nodes become leaf nodes and
do not participate in the real-time broadcast. Each node maintains the information of neighbors for
recovery mechanism, even though the neighbors are eliminated from being parent candidates.

The real-time data packets are disseminated along the real-time broadcast tree. The packets could
arrive at all sensor nodes since every intermediate node satisfies the required transmission speed. The
real-time broadcast tree could reduce energy consumption in comparison with flooding since leaf
nodes do not transmit packets, unlike flooding where all nodes transmit packets.
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Algorithm 1 Real-time broadcasting tree construction

1: Dist(i, j): distance between node i and j
2: SDig%leI(;Io;'ﬂDglgy(l?, j): singledhop delay during data transmission from i to j
3: : desired delivery spee
4: NS;: neighbors’ set of node i
5. PCS; < {n € NS;|Dist(src,i) — Dist(src,n) > 0} > parent candidate set closer to a source than
node i "y
6: PCSRB; < {j € PCS,'|W%M > DDS} i parent candidate set for real-time broadcasting
7. if PCSRB; == then - p>ifnodeihas no candidate satisfying a desired speed
8. parentNode; < arg max{ W%LM} > designate a parent node having the maximum
jEPCS; h ’
delivery speed
9: end if

10: T < {t € PCSRB;|min(HopCount(t))}
11: parentNode; < arg max{Dist(src,t)}
teT

.........................

DDS: 30m/s @

55m/s

Src ,,’
3 33m/s l,’l pdrent O
% 26mls / eléction
35m/s |

"* transmission range

* election target area

O parent candidate node
O sensor node

Node i’s neighbor table
Node ID | Progress (m) | Delay (s) S}I))ezlciiv(?lrl}/,s‘) Hop Count
a 22 0.4 55 4
b 20 0.6 33 3
c 13 0.5 26 2
d 25 0.7 35 2

Figure 2. An example of parent election through Desired Delivery Speed (DDS).
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3.2. Data Transmission through the Real-Time Broadcast Tree

The header of each data packet includes the following information: source node information,
sequence number, path information, sender ID, delay information of a sender and location information
of a sender. The sequence number of the data prevents duplicated reception by comparing the
value in the cache. Delay information and location information of a sender are used for delivery
speed estimation.

Fundamentally, when a source node generates a data packet, the data are forwarded by broadcast.
Neighbor nodes of a sender listen to the data and match up the ID of the sender with their parents’
ID. If the IDs are matched, corresponding neighbor nodes rebroadcast the data. Then, the data packet
is spread to all nodes downstream of the pre-constructed real-time broadcast tree. To measure the
(m, k)-firm requirement, each node maintains DBP and real-time transmission information at each data
transmission for local monitoring as presented in Equation (1).

DBPyy = ks — mg — n(ssd)/ 1)

where DBP,; is the measured DBP value of stream s at destination d, ks and m; come from the
(m, k)-firm real-time requirement of stream s, sy; denotes the current (m, k)-firm state of stream s
at destination d and n(ss;) means the number of packets missing their deadline in state s;4. The
(m, k)-firm state is mentioned above in Figure 1. A positive DBP value, including zero, stands for
meeting the (m, k)-firm requirement, while a negative DBP means the real-time failure state.

When a child node receives data, the node calculates a delivery speed by a sender’s delay and
distance between the sender and each child. In real-time broadcast, since every sensor node is a
destination, all of them need to maintain their own DBP value. If the measured speed exceeds the
real-time delivery constraint, it increases the DBP value of the child node. Otherwise, the node
decreases the DBP value. According to the result of the DBP value update, the node determines fault
reporting upstream. Furthermore, intermediate nodes have the responsibility to support a series of
child nodes downstream, and thus, the node deals with delivery speed for each transmission even if
its own DBP status is fine. The detailed concerns about the local monitoring will be discussed in the
next subsection.

3.3. Local Real-Time Failure Avoidance and Recovery

Subtree or whole tree reconstruction naturally incurs a high cost. Thus, intermediate nodes avoid
real-time broadcast faults by local monitoring. In this section, we describe the local avoidance and
recovery mechanism to deal with this issue.

In firm-based real-time routing, destinations maintain their DBPs with the history of success or
failure of real-time data delivery. firm real-time unicast maintains DBP at sources and destinations,
and forwarding nodes on the paths between both are aware of the related information for real-time
data delivery. Meanwhile, in real-time broadcasting, each destination, i.e., each sensor node in the case
of network broadcast, maintains its own DBP. That is to say, it is possible to monitor the surroundings
at all times. Thus, if DBP values are negative, the relevant node starts the fault recovery process. In the
tree structure, real-time failures of intermediate nodes could lead to a number of failures downstream.
Intermediate real-time failures are caused by node failure, link failure and increased delay at their
parents. In the last case, even though the intermediate node receives data packets within the deadline,
it could lead to real-time failures of downstream nodes. Intermediate nodes therefore monitor local
states related to real-time data delivery including their parents. Note that intermediate nodes cannot
obtain DBPs from downstream nodes in the normal case.

An intermediate node regards its parent as real-time failure in three cases: (i) it does not receive a
periodic beacon from the parent; (ii) it does not receive the data packet; and (iii) the transmission speed
of the parent becomes lower than the required transmission speed. If a parent node is temporarily
down or occupied by a full data packet queue due to congestion, it could not send a beacon or data.
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However, since this kind of failure might be recovered shortly, the child nodes replace the parent with
the second-best node in their parent candidate set until the parent becomes stable. If the parent is
permanently depleted, the second-best node continues its parent role.

The transmission speed of the parent could be obtained from both the beacon message and the
header of the data packet. The intermediate node then re-elects another parent. The reelection rules are
exactly the same as the parent election rules in real-time broadcast tree construction. If the re-elected
parent is a leaf node, the parent operates as an intermediate node after election. The new parent may
not cover all leaf nodes of the previous parent, but this problem could be solved by DBP-based local
failure recovery. This local monitoring and recovery process by intermediate nodes could result in
real-time failure avoidance or resilient real-time failure recovery on the condition that intermediate
nodes cannot obtain DBPs of downstream nodes.

When this avoidance mechanism works normally, the DBP value of each node could maintain a
fine condition. Though the value is shown to be negative, it would return to the normal condition by
substitution of intermediate nodes. Only in the case of an abnormal state is which there is no qualified
nodes for substitution parents or some area suffers from bad conditions due to the congestion repeats
after the repetition of fault avoidance, DBP values would be worse. That is to say, if the avoidance
mechanism works properly, such situations would rarely occur.

Since leaf nodes have no child nodes, they focus on their own real-time data reception.
Thus, they measure only their own DBP, and the fault avoidance mechanism works based on DBP.
In the case of a DBP value falling down to a negative one, a relevant leaf node designates a parent
as in the case of intermediate nodes. However, since it might recover shortly after due to the DBP
characteristics, it causes an unnecessary reporting process whenever the values are negative. When a
leaf node shows temporal fluctuation, DBP reflects its historical characteristics, and we expect that will
be recovered after a while. As discussed above, since network-wide broadcast by DBP reporting causes
severe energy consumption, the reporting process should be kept to a minimum. In this paper, we
assume that the report condition of node i is DBP; < [—m/2]. Algorithm 2 shows the entire procedure
for failure avoidance at each node.

At this point, each intermediate node also determines whether it uploads received DBP-Based
Fault Reporting (DBFR) messages through upstream by policies of a parent. In this paper, we assume
that intermediate nodes upload DBFR even if one DBER is received. In order to prevent reporting
excessive DBFR messages, each intermediate node uploads aggregated DBFR toward a source.

Through the described procedure, the source could be aware of how many DBP faults occur.
The source also expects flexible recovery through the avoidance because of the high cost of tree
reconstruction. In the meantime, when the number of DBFR message exceeds a predefined threshold,
broadcasting tree reconstruction might be conducted according to administration policies. Namely, the
source regards such a situation as unsatisfactory for the goal of real-time broadcasting and performs the
tree reconstruction. Additionally, if the reconstruction is frequently performed, it is considered that the
entire network could not provide real-time broadcasting capacity; though in such bad circumstances,
data delivery is needed, it temporarily runs the flooding method.
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Algorithm 2 Real-time failure avoidance

PCSRB;: parent candidate set for real-time broadcasting
DBP;: DBP value of node i
DDS: desired delivery speed
DS: delivery speed between two nodes
if parentNode; == then > if a current parent node of i is in the case of node or link failure
T < {t € PCSRB;|min(HopCount(t))}
parentNode; <— arg max{Dist(src,])}
jeT
8: else if DeliverySpeed(i, parentNode;) < DDS then > if a current parent node of i is in the case
of bad DS

9: if numChildNode; > 0 then > if node i is an intermediate node

10: T < {t € PCSRB;|DBP; > 0}

11: if T == then

12: T < {t € PCSRB;}

13: if T == then

14: T « {t € PCS;|DBP; > 0}

15: end if

16: end if

17: parentNode; —  argmax  {DeliverySpeed(i,j)} > the second best node
JET j#parentNode;

18: else > if node i is a leaf node

19: T < {t € PCSRB;|DBP; > 0}

20: if T == then

21: T < {t € PCS;|DBP; > 0}

22: if T == then

23: T < {t € PCSRB;}

24: end if

25: end if

26: parentNode; <—  argmax  {DeliverySpeed(i,j)} > the second best node
JET,j#parentNode;

27 end if

28: else if DBP; < L"’T’"J then > if the DBP value of node i is poor

29: T <+ {t € PCSRB;|DBP; > 0}

30: parentNode; <—  argmax  {DeliverySpeed(i,j)} > the second best node

JET,j#parentNode;
31: end if

4. Performance Evaluation

In this section, we compare the performance of the proposed FRBP with four other protocols:
flooding [14], Sprinkler [15], the Probability-based Energy-efficient Broadcast Protocol (PEBP) [16]
and the Opportunistic Energy-efficient Broadcast Protocol (OEBP) [21]. For the performance evaluation,
we do not use FRUP due to the wide gap between the unicast and broadcast protocol. This implies
that real-time data delivery to all sensor nodes by FRUP is still unreasonable in WSNs. Since there
was no previous real-time broadcast protocol, four target protocols are chosen among the broadcast
protocols. They are known as the most suitable broadcast protocols to compare with FRBP for the two
goals, real-time broadcast and energy efficiency. Flooding ideally broadcasts packets more rapidly,
whereas Sprinkler is a more energy-efficient broadcast protocol. PEBP and OEBP are the most recent
broadcast protocols based on geographic routing and opportunistic routing, respectively.

These protocols were implemented in NS-3 [25], one of the widely-used open source network
simulators in the research community. We deploy 1000 sensor nodes in a 500 m x 500 m area, and
then, each sensor has several neighbors probabilistically. Sensor nodes follow the specification of
MICAZ2 [26]. We conduct 20 rounds to obtain average result values. In each round, a source is randomly
determined among sensor nodes, and the source sends data 80 turns for generating the data stream.
We set a desired delivery time deadline to 10 s, and thus, a desired delivery speed is derived at 70 m/s
to cover the whole network area. The experiments are conducted under the (4, 5)-firm real-time
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requirement. Furthermore, average hop delay is set to 0.4 s, and the delay is randomly determined
with the values range of + 0.2 s. The delay varies with the random value in the range mentioned
earlier and the random period (from 1-10 turns). Each link and each node have failed in every turn
with a low probability, 0.5%. Unlike node failures, sensor nodes recover from link failures after random
turns. Summarized simulation parameters are depicted in Table 1.

Table 1. Summary of simulation parameters.

Parameter Value
Simulator NS-3
Transmission range 30m

MAC layer IEEE 802.11 b
Network size 500 m x 500 m
The default number of nodes 1000
Transmitting /receiving power 312 uJ/2.34
Desired delivery time deadline 10s

Desired delivery speed 70m/s
Real-time requirement (4, 5)-firm

The number of simulation rounds 20
The number of packets in around 80
Packet generation rate Constant Bit Rate (CBR), 1 packet/s

The Deadline Missed Ratio (DMR) is the ratio of the number of hitting the (m, k)-firm real-time
requirement to the number of data packets delivered for a destination. Average DMR (ADMR) therefore
means the average value of deadline missed ratios for all destinations. Energy consumption means the
total energy consumed by all sensor nodes during one round of simulation. Throughput is the number
of received Packets Per Second (PPS) for a destination. Average throughput means the Average value
of BPS (APPS) for all destinations. Each destination starts calculating BPS when it receives the first
packet. The three factors are the average values of 20 rounds of simulation.

Figure 3 shows the ADMR with respect to the number of sensor nodes. The increment of the
number of sensor nodes means the increment of the number of destinations in network broadcast.
The number of sensor nodes also indicates the density since the area of the network is fixed.
Flooding shows better performance than others, but ADMR exponentially increases as the number of
sensor nodes increases. In flooding, high density leads to collisions and congestions since all sensor
nodes have to transmit packets. This problem consequently causes the increase of hop delay and
real-time failures. Other protocols are nearly impervious to the number of sensor nodes because they
just select proper next-hop nodes in each path regardless of the number of neighbors. The ADMR
of OEBP shows the highest value due to the back-off delay for neighbor contention. The ADMR of
Sprinkler is a little higher than the PEBP due to the detouring paths. Note that the end-to-end delay is
proportional to the physical distance the packet travels in a wireless multi-hop network. PEBP, OEBP
and Sprinkler show worse performance than FRBP, the proposed protocol, since they do not consider
the node’s delay for electing forwarding nodes. The ADMR of FRBP slightly increases due to the
increase of signaling messages for the tree construction and fault recovery. The amount of increase
however is much less than flooding.

Figure 4 represents the energy consumption depending on the number of sensor nodes. We do
not take beacon signaling into account since it is the same among the five protocols. Flooding
consumes much more energy than comparative protocols since all sensor nodes have to transmit
packets and each node has to receive packets from all neighbors even though it discards most
packets. OEBP and Sprinckler consume less energy than others since they do not need to generate
any signaling messages for topology construction and recovery. They are also unaffected by the
density level for the same reason. FRBP consumes a little more energy than PEBP due to the
recovery process for real-time failure. PEBP has a recovery process for communication failure, but
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does not recover real-time failure. The number of forwarding nodes of FRBP is unaffected by the
density level since neighbors of an intermediate node become leaf nodes, which do not forward
data packets. The energy consumption of FRBP however slightly increases due to the increase of
signaling messages for the tree construction and fault recovery process.

0.35 ‘ L
—*—Flooding

0.3 |~ Sprinkler 4
8 PEBP
& 5| | OEBP
w927 = FRrBp
R
=
o 0.2
£
°
80_15:% — e Vg 7
0}
(@] e
© 0.1 .
()] B
>
<

0.057 ]

O | | | | | |
400 600 800 1000 1200 1400 1600 1800

The Number of Sensor Nodes

Figure 3. Deadline missed ratio impacted by the number of nodes. PEBP, Probability-based
Energy-efficient Broadcast Protocol; OEBP, Opportunistic EBP; FRBP, (m, k)-firm-based Real-time
Broadcast Protocol.
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Figure 4. Average energy consumption impacted by the number of nodes.

Figure 5 shows the average throughput depending on the number of sensor nodes. The graph
pattern is similar to the opposite shape of Figure 3. The average throughput of flooding exponentially
decreases as the number of sensor nodes increases because high density leads to critical packet loss by
collisions and congestions in flooding. This figure shows that decrease of throughput (i.e., increase of
packet loss) leads to the decrease of real-time performance.
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Figure 6 illustrates the ADMR with respect to the average single hop delay. The increase of
hop delay means the degradation of the network environment, which leads to failure of delivery
within the deadline. The ADMR of OEBP, PEBP and Sprinkler increases more than the other two
protocols according to the increase of average single hop delay. Since they do not consider the real-time
constraint, the probability of electing time-consuming nodes increases as average single hop delay
increases. The ADMR of Sprinkler is higher than that of PEBP due to the detouring paths, and the
ADMR of OEBP is higher than that of PEBP due to the back-off delay for neighbor election. After the
average single hop delay meets 0.5, flooding and FRBP have difficulty, and their ADMR increases
rapidly. When the network environment gets worse, the furthest destinations may fail to receive
packets within the time deadline at first. In the case of flooding and FRBP, the further the location from
the source, the greater the number of destinations. The gradients of increase therefore grow less as the
average single hop delay increases more.
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Figure 5. Average throughput impacted by the number of nodes.
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Figure 6. Deadline missed ratio impacted by single hop delay.
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Figure 7 represents the energy consumption depending on the average single hop delay. It is
certain that flooding consumes much energy. Four protocols except FRBP are nearly impervious to the
hop delay since they do not perform any operation against real-time failure. The energy consumption
of FRBP however slightly increases as hop delay increases especially after 0.5 due to the fault avoidance
and recovery process.
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Figure 7. Energy consumption impacted by single hop delay.

Figure 8 shows the ADMR with respect to the node failure ratio. In simulation, each node has
failed in every turn with a low probability and does not recover since node failure is primarily caused
by exhaustion of energy and physical destruction. After a node has failed, the DMR of the node is not
included in ADMR. As the node failure ratio increases, the ADMR of Sprinkler increases exponentially.
The failures of non-forwarding nodes do not affect ADMR, but the failure of a forwarding node leads
to consecutive real-time failures of downstream nodes. The consecutive failures moreover do not
recover. PEBP has same problems, but could probabilistically recover the situation. PEBP therefore
shows better performance than Sprinkler. FRBP recovers the failures of intermediate nodes, as well as
downstream nodes by local real-time failure avoidance. FRBP recognizes a failed node as a node that
does not satisfy the real-time constraint. Therefore, the ADMR of FRBP marginally increases, but is not
critically affected by the node failures. Flooding is nearly impervious to the node failure ratio since
it does not elect forwarding nodes, and every node forwards packets. Even when a node has failed,
its neighbors can receive packets from other nodes. OEBP is also unaffected by the node failure since
forwarding nodes are elected among neighbors that actually receive the packet. A failed node has no
chance of being elected. However, OEBP still shows worse performance than the others due to the
election process.

Figure 9 represents the energy consumption depending on the node failure ratio. Flooding,
Sprinkler and OEBP are almost unaffected by the node failure ratio since Sprinkler does not have any
recovery process, and flooding and OEBP do not need it. The energy consumption of Sprinkler rather
decreases slightly since downstream nodes of a failed node stop forwarding packets. Against node
failures, PEBP and FRBP perform local failure recovery processes that cause energy consumption for
signaling. The energy consumption of PEBP and FRBP therefore increases according to the increase
of the node failure ratio, but signaling cost is much lower compared with data delivery cost. PEBP
consumes a little more energy than PEBP since it performs the recovery process against not only node
failures, but also real-time failures.
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Figure 8. Deadline missed ratio impacted by the node failure ratio.
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Figure 9. Average energy consumption impacted by the node failure ratio.

Figures 10 and 11 show ADMR and energy consumption with respect to the link failure ratio,
respectively. Unlike node failures, link failures are recovered since they are caused by temporary
troubles. The two graphs show a similar pattern as shown in Figures 8 and 9. The increase of ADMR
in Sprinkler however is a little more gradual than Figure 8 due to the recoveries of link failures.
Figure 8 also shows that FRBP can handle the link failures, as well as node failures in an efficient way.

According to the performance evaluation, our main observations are as follows. Flooding is
generally efficient for real-time broadcasting except dense networks, but uses too much energy.
Broadcast storming is also a well-known problem of flooding. The proposed protocol, FRBP, has
better performance for real-time broadcasting than the other three protocols in various situations.
FRBP consumes a little more energy than the three protocols, but we consider that this is reasonable;
because the other protocols do not consider the real-time constraint and do not have any avoidance or
recovery processes for real-time failures.
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Figure 10. Deadline missed ratio impacted by the link failure ratio.
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Figure 11. Average energy consumption impacted by the link failure ratio.

5. Conclusions and Further Work

In this paper, we proposed FRBP, a real-time network broadcast protocol for the (m, k)-firm
real-time model, that is applicable in WSNs. FRBP operates over the real-time broadcast tree that
consists of only some sensor nodes satisfying the real-time condition as intermediate transmission
nodes for the real-time constraint. In the broadcast tree, leaf nodes only receive packets, but do
not transmit them for energy efficiency. While constructing the broadcast tree, FRBP considers two
major inherent characteristics of WSNs, resource-constrained sensor nodes and an unstable network
environment. For resource-constrained sensor nodes, FRBP tries to elect as few intermediate nodes as
possible in the tree. To overcome the unstable network environment, FRBP performs local real-time
failure avoidance and recovery based on DBP by measuring (i, k)-firm real-time conditions, as well as
monitoring local states. Finally, simulation results demonstrated that FRBP can satisfy the (m, k)-firm
real-time requirement with reasonable energy consumption in various environments. In summary,
FRBP consumes on average 26% the energy of flooding, and its deadline missed ratio is on average
58% that of the other three protocols.
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The remaining further work will be focusing on extending FRBP to support multicast as group
communications. In addition, practical applications such as real-time mobile event tracking and its
deployment issues will be studied. Moreover, extensive simulation studies will be conducted by
analyzing the impact of multiple (1, k)-firm streams.
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