

Sensors 2017, 17, 2567; doi:10.3390/s17112567 www.mdpi.com/journal/sensors

Article

Adaptive Monocular Visual–Inertial SLAM for
Real-Time Augmented Reality Applications in
Mobile Devices
Jin-Chun Piao and Shin-Dug Kim *

Department of Computer Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
kumcun@yonsei.ac.kr
* Correspondence: sdkim@yonsei.ac.kr; Tel.: +82-02-2123-2718

Received: 23 August 2017; Accepted: 3 November 2017; Published: 7 November 2017

Abstract: Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in
computer vision and next-generation core technology for robots, autonomous navigation and
augmented reality. In augmented reality applications, fast camera pose estimation and true scale
are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for
real-time augmented reality applications in mobile devices. First, the SLAM system is implemented
based on the visual–inertial odometry method that combines data from a mobile device camera and
inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry
method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM
is implemented by presenting an adaptive execution module that dynamically selects visual–inertial
odometry or optical-flow-based fast visual odometry. Experimental results show that the average
translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the
EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different
level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile
device sensors, and the results demonstrate the effectiveness of performance improvement using
the proposed method.

Keywords: monocular simultaneous localization and mapping; visual–inertial odometry; optical
flow; adaptive execution; mobile device

1. Introduction

In recent years, the rapid development of mobile devices such as unmanned aerial vehicles,
handhold mobile devices, and augmented reality (AR)/virtual reality (VR) headsets has provided a
good platform for AR technology. Simultaneous localization and mapping (SLAM) has become a
prominent issue in the field of computer vision and is the key next-generation technology for robots,
autonomous driving and AR.

SLAM is a low-level technology that provides map and location information to applications
using it. Depending on the application, the requirements for the map and location accuracy are
different. For example, if the application target is a robot that performs navigation tasks based on
SLAM, it requires the entire map information and perceptible information about obstacles in the
surrounding space. This results in a higher demand for SLAM mapping. In AR applications, the real-
time camera pose and the distance between the camera and the object are more important, and the
accuracy of SLAM system mapping and global positioning is relatively low.

Usually, the computing power and power consumption of mobile devices limit the use of SLAM
in mobile devices, since the SLAM algorithm requires higher robustness and computational

Sensors 2017, 17, 2567 2 of 25

efficiency. The performance and accuracy, and robustness is a trade-off relationship; hence, in AR
applications, in order to obtain a real-time camera pose, the SLAM system must be optimized.

In this paper, we propose an adaptive monocular visual–inertial SLAM for real-time AR
applications in mobile devices. It includes modification and implementation based on the monocular
ORB-SLAM, which is an oriented FAST and rotated BRIEF (ORB) [1] feature-based monocular SLAM
[2]. First, we designed a visual–inertial odometry (VIO) method that combines a camera input and
inertial measurement unit (IMU) sensor. By using this method, the distance between the object and
the camera and size of the object can be easily calculated, which was used in AR applications to
interact between real world and virtual objects. Second, to support real-time faster tracking of AR
applications in the mobile device environment, an optical-flow-based fast visual odometry (VO)
module was designed and combined with the existing ORB-SLAM system. Finally, we proposed an
adaptive execution method that adaptively selects the tracking module according to the change in
the IMU sensor value.

We experimentally measured the time cost and accuracy of estimating the camera pose. In order
to obtain the optimum performance and accuracy, we experimented with many cases to determine
the best threshold for the adaptive SLAM algorithms to balance accuracy with processing speed.

The remainder of this paper is organized as follows. In the following section, we describe the
related work on monocular SLAM. In Section 3, we propose an adaptive monocular visual–inertial
SLAM, and present four different level-set adaptive policies. In Section 4, we experiment with various
cases to demonstrate the performance improvements. Finally, we provide our conclusions in Section 5.

2. Related Work

The general structure of a visual SLAM is divided into front-end and back-end. The front-end
includes the VO [3] module and the mapping module, and the back-end has the optimization module.
There may also be an additional loop-closure detection module [4].

 The VO module estimates the approximate 3D camera pose and structure from adjacent images
to provide better optimization of the initial value for the back-end. Visual SLAM is divided into
feature-based SLAM and appearance-based SLAM depending on whether the feature points are
extracted in VO.

 The mapping module creates a map that will be used mainly in SLAM, and can be used for
navigation, visualization, and interaction. The map is divided into a metric map and topological
map, according to the type of information. The metric map accurately represents the positional
relationship of objects, which are usually divided into sparse and dense objects.

 The optimization module estimates the trajectory and map state from noisy data. This can be
viewed as a maximum a posteriori problem [5]. SLAM is divided into a filter-based SLAM and
graph-optimization-based SLAM according to the optimization method at the back-end [6].

 The loop-closure detection module determines whether the camera arrives at a scene it has
captured before. Loop-closure solves the problem of drifting of the estimated positions over time.

Usually, the SLAM system is divided into feature-based SLAM and appearance-based SLAM
according to whether the feature points are extracted.

The feature-based SLAM extracts feature points and descriptors for the input image, calculates
the camera pose by matching 2D–2D, 2D–3D and 3D–3D feature points, and performs mapping [7–
9]. If the entire image is processed, the computational burden is too high. Therefore, feature points
can store important information of the image and reduce the amount of computation.

In early algorithms, monocular visual SLAM was often implemented as a filter [10–12]. In that
approach, stores the 3D coordinates of the camera pose and map points in a state vector, and
expresses the uncertainty using a probability density function. The average and standard deviation
of the last update vector are obtained using an observation model and recursive calculation.
However, it has uncertainties owing to computational complexity and linearization.

A filter-based SLAM estimates only the current state information, regardless of the previous
state. In contrast, the nonlinear optimization method [13], which has been commonly used recently,

Sensors 2017, 17, 2567 3 of 25

estimates the state by using the data of the entire time period. This method is superior to the
traditional filter-based method [6] and is currently the most commonly used visual SLAM method.
Parallel tracking and mapping (PTAM) [14] is a typical keyframe-based monocular visual SLAM and
uses nonlinear optimization. PTAM uses a keyframe-based odometry method that separates tracking
and mapping tasks into two independent modules and parallelizes them with threads. In the
mapping module, the keyframes are selected sparsely in the mapping module and the map points
observed by these keyframes are used for mapping. This module is very efficient and can easily
calculate accurate 3D structures and optimize them using bundle adjustment [15]. The tracking
module performs camera tracking tasks in the front-end and can quickly calculate the motion of the
current frame. This achieves the necessary efficiency for real-time calculations.

ORB-SLAM [2] is a relatively complete keyframe-based monocular SLAM released by Mur-
Artal, Montiel and Tardos in 2015. ORB-SLAM is based on PTAM basic architecture. In addition to
the tracking and mapping threads, a loop-closure detection [4,16] thread is added. Feature extraction
and mapping, sparse map generation, and place recognition are based on ORB feature points [1].
ORB-SLAM computes the value and weight using bags of words (BoW) [17] for all the image feature
points, and matches two images using BoW vector values. Experiments using the KITTI dataset [18]
demonstrate that the accuracy and robustness of this method are better than that of PTAM. ORB-
SLAM is relatively stable and accurate, can be adapted to various environments, such as
indoor/outdoor and large/small scale, and can be executed in real time on a PC. They released the
code as open source [19], and ORB-SLAM is a good reference for learning and studying SLAM
methods. ORB-SLAM supports automatic map initialization, and the keyframe and map point
management mechanisms are relatively comprehensive.

Direct SLAM is a particular case of appearance-based SLAM. Direct SLAM can estimate the
camera pose directly from the colors of the pixels of two images, without extracting and matching
feature points. This ensures better robustness in situations where there are fewer minutiae or blurred
images. The dense tracking and mapping DTAM [20] reconstructs the surrounding map information
into a dense 3D depth map model. However, since the DTAM restores the dense map for each pixel
and applies global optimization, the computational burden is very high. Engel et al. proposed LSD-
SLAM [21] and DSO [22] based on the direct method. Compared with DTAM, LSD-SLAM and DSO
use fewer pixels, and, since each pixel depth is calculated independently, they are more efficient than
DTAM. The direct-method-based SLAM has the following advantages: it does not extract feature
points, it can be used even in the case of a small number of feature points or a blurred image, and it
can generate depth map. However, it is ineffective for fast motion and changes in grayscale values,
and requires higher hardware requirements for the camera.

Monocular visual SLAM is low-cost and easy to implement. However, the monocular camera
cannot obtain depth information. Owing to the uncertainty of depth, monocular visual SLAM has the
following problems: the need for initialization; uncertainty of scale; and scale drift.

With the development and dissemination of a variety of hardware sensors, SLAM technology is
moving toward multi-sensor fusion, which leverages multiple complementary sensors to achieve
higher accuracy and robustness. Mobile devices are usually equipped with a variety of sensors, such
as a camera, IMU, and GPS. We focus on combining the standard monocular camera and IMU sensor
in mobile devices to implement more accurate and stable SLAM systems. The methods for integrating
visual information and IMU data are divided into loosely coupled [23,24] and tightly coupled [25–
28] methods, depending on whether image feature information is added to the state vector. The
loosely coupled approach usually involves executing visual-based SLAM and inertial-based modules
separately and combining the results to estimate the measurements. However, in a loosely coupled
method, the monocular SLAM drift problem still exists. In a tightly coupled method, IMU bias can
be corrected by adding image feature information to the state vector and the scale of the monocular
SLAM can be estimated. This method is more accurate than the conventional single-visual-sensor-
based SLAM.

In this study, we used a tightly coupled method to implement a more complete SLAM system.
By tightly coupling and combining the standard monocular camera and inertial measurement unit

Sensors 2017, 17, 2567 4 of 25

sensor in mobile devices, we implemented a more accurate and stable SLAM system to solve the
existing problems for the commercialization of SLAM-based augmented reality applications.

There are still many problems in commercializing SLAM-based AR applications: the various
kinds of mobile devices, the rolling shutter problem of mobile device camera sensors, the uncertainty
of scale and scale drift of single-camera-based SLAM, the capturing of blurred images by the camera
sensor when moving fast, etc. The fusion of the inertial measurement units (IMU) sensor and camera
sensor can solve some of these problems. In a previous study, we implemented an AR application
based on marker-less object detection in real time on a mobile device [29]. We designed an object-
tracking method using IMU sensor data and image data. The tracking method uses a homography
matrix [7], owing to mobile device performance limitations. This system shows good robustness to
the translation motions of the camera, but it is ineffective against pure rotation. In order to overcome
these limitations, we attempt to incorporate SLAM technology to improve the accuracy and
robustness.

We analyzed each SLAM system in the current research trends and selected ORB-SLAM, which
is a monocular visual SLAM, as a reference model for the AR application environment. ORB-SLAM
supports relatively high speed, accuracy, and robustness.

3. Methodologies

This section describes the basic structure of the visual–inertial SLAM and demonstrates the
method of implementation of the adaptive method for the system.

First, some abbreviations are defined for clear representation. Table 1 lists the abbreviations used
in this paper.

Table 1. Table of abbreviations.

Abbreviations Definition
IMU Inertial measurement units
VO Visual odometry
VIO Visual–inertial odometry

AVIO Adaptive visual–inertial odometry
RMSE Root-mean-square error

GT scale Match the ground-truth scale
ROS Robot operating system

The structural architecture of the adaptive visual–inertial SLAM in a mobile device is shown in
Figure 1. As shown in the figure, the main architecture includes modules such as tracking, local
mapping, and loop closing, consistent with the ORB-SLAM.

Figure 1. Structural architecture of adaptive visual–inertial simultaneous localization and mapping
(SLAM).

Sensors 2017, 17, 2567 5 of 25

In this study, three methodologies are applied in the tracking module.
First, we added the IMU preintegration module to integrate the image data with IMU sensor

data, and implemented a visual–inertial integrated VIO method. By using this method, the distance
between the object and the camera and size of the object can be easily calculated, which was used in
AR applications to interact between real world and virtual objects.

Second, we designed a fast VO method based on optical flow, which estimates the camera pose
between the current frame and previous frame. The optical-flow-based fast VO module uses the traced
feature points of the existing reference frame without extracting the feature points. Therefore, no
additional feature extraction time is required, the execution time of the tracking module can be reduced.

Finally, we proposed an adaptive execution module. In this module, the IMU preintegration
value is used to predict the state of motion between the current frame and the previous frame. It is
dynamically selected through VIO or optical-flow-based fast VO for current frame tracking according
to the state of motion. We also designed adaptive policies at different levels.

Specifically, the algorithm can be simplified to decrease the amount of calculation and resource
overhead.

3.1. Visual–Inertial Odometry

Cameras and IMU sensors are a common sensor combination in mobile devices. Usually, IMU
sensors have much higher frequency than camera sensors. The visual-based VO has high accuracy,
but when the camera moves quickly, the image becomes blurred and feature points cannot be
extracted or the camera position cannot be tracked. In contrast, the IMU sensor is highly accurate
when the camera moves rapidly. Therefore, the VIO method combines the characteristics of these two
types of sensors to obtain complementary results.

We implemented a real-time VIO method based on the monocular ORB-SLAM. The structure is
shown in Figure 2. First, the camera and IMU sensor data are pre-processed through IMU
preintegration. The camera pose is estimated using the fused data. In the back-end stage, the loop-
closure detection and the pose-graph optimization for the keyframe are performed to optimize the
global map. Furthermore, we perform visual–inertial initialization for VIO in the system initialization
phase. In the optimization phase, the loop-closure detection and pose-graph optimization modules
can be lightly executed in the back-end and switched on/off, depending on the situation.

Figure 2. Structure of visual–inertial odometry.

In general, mobile devices are equipped with cameras and IMU sensors. Therefore, the visual–
inertial SLAM can be generally divided into the world coordinate system (World), IMU coordinate
system (Body), and camera coordinate system (Camera). There are transformation relations between
the coordinate systems. The visual-based systems have coordinate transformations between only the

Sensors 2017, 17, 2567 6 of 25

camera and world coordinate systems. The coordinate transformation relation can be expressed as
TCW = [RCW|tCW]. In a visual–inertial SLAM, the connection between the IMU and camera is usually
assumed to be rigid. The conversion relation between the IMU and camera coordinate systems can
be expressed as TCB = [RCB|tCB], which can be obtained via calibration in multi-sensor systems [30,31].

3.1.1. IMU Preintegration

The IMU motion model below includes a formula for calculating the subsequent moment state
using the current state values and IMU measurement data:

R(t + Δt) = R(t)Exp((() − () − ())Δt),

v(t + Δt) = v(t) + gΔt + R(t)(() − () − ())Δt

p(t + Δt) = p(t) + v(t)Δt + gΔ + R(t)(() − () − ())Δ ,

(1)

where R is the camera rotation, v is the motion velocity, p is the camera position, η is the IMU noise,
and ba and bg are the IMU accelerometer bias and gyroscope bias, respectively. These difference
equations explain the constraint relationship between IMU data at two different time points.

In order to incorporate the IMU sensor data into the optimization-method-based SLAM
algorithm, IMU information is added as a constraint item to the objective function to be optimized.
However, since the IMU sampling rate is very high, the dimension of the variable will be too large if
it is optimized for the IMU poses at each time point. Therefore, inertial measurements are usually
integrated between frames to constitute relative motion constraints. We used the IMU preintegration
[32] method to solve the computational complexity problem of the optimization-method-based
visual–inertial SLAM and repeating the integration when the bias estimate changes, and we
integrated the IMU preintegration in the original ORB-SLAM.

As shown in Figure 3, the preintegration method integrates all the IMU measurements between
two frames i and j to represent the motion model. The formula is expressed as follows.

R = R Exp((− −)Δt)

v = v + gΔt + R (− −)Δt

p = p + [v Δt +
12 gΔ +

12 R (− −)Δt]
(2)

where Δ ≐ ∑ Δt and (∙) ≐ (∙)(). Equation (2) provides an estimate of the motion between
time ti and tj.

Figure 3. Diagram of the IMU preintegration method.

Sensors 2017, 17, 2567 7 of 25

According to the above formula, the measurement model between the two frames is derived.
The following relative motion increments that are independent of the pose and velocity at ti:

∆ ≐ = Exp((− −)Δt)

∆ ≐ − − gΔt = R (− −)Δt

∆ ≐ − − v Δt − 12 gΔ = [∆v Δt +
12Δ (− −)Δt]

(3)

where Δ ≐ and Δ ≐ (− − gΔt). We can calculate the right side of Equation (3)
directly from the inertial measurement between the two frames, that is, the relative motion
increments between the two frames can be obtained by solving the above equation.

As shown in the above formula in [32], the constraints between the two frames can be expressed
using only IMU data; furthermore, they can be expressed according to the states of the two frames.
Therefore, we can define the residuals between the observation and state, construct the least-squares
solution, and optimize the pose.

If the IMU preintegration value is small, the camera movement changes only slightly, and the
parallax between the two images is also small. Such images are relatively unimportant in the SLAM
module. As shown in Figure 4, if the IMU preintegration value −∆ij between the current frame j and
the previous frame i is calculated and this value is less than the threshold value, we mark the current
frame j as unimportant and subsequently estimate the camera pose using our fast VO module. This
frame is not processed by the SLAM module. Using this method, we can select the VO module
adaptively at run time.

Figure 4. Fusion model of IMU preintegration and the SLAM module. The IMU preintegration value
is used to determine the importance of the frame in the SLAM module.

However, this preprocessing method cannot be applied directly to the monocular ORB-SLAM.
This is because the motion between two consecutive frames is assumed to be uniform movement in
the monocular ORB-SLAM. In other words, when performing the pose optimization of the current
frame, the initial value of the current-frame pose is obtained by using the velocity and pose of the
previous frame. If the gap between frames is not constant, this assumption is not accurate, which
affects the performance and can even cause the tracking to fail. = × (4)

Visual–inertial SLAM is not affected by this problem because it uses IMU measurements as the
initialization data. Therefore, our methodology is only suitable for visual–inertial SLAM.

Sensors 2017, 17, 2567 8 of 25

3.1.2. Initialization

In the IMU preintegration phase, we can estimate the pose from the IMU. However, as shown
in the formula below, the IMU measurement data are affected by noise and bias. () = ω() + () + () (5) () = (t)(() −) + () + () (6)

In general, noise can be calculated when performing IMU calibration. In the system initialization
phase, the IMU accelerometer bias and gyroscope bias should be estimated. The bias is estimated
only once in the initialization phase and is not recomputed until the system has changed significantly.

The data measured by the IMU accelerometer can be viewed as the sum of its own acceleration
and the earth's gravitational acceleration. Therefore, it is difficult to separate these two accelerations
and the error is large. Thus, we proceed with the system initialization using a more accurate gyroscope.

In the initialization phase, we carry out the following steps. First, we estimate the gyroscope
bias. With two consecutive keyframes, the initial gyroscope bias can be easily computed and
subsequently optimized using the Gauss–Newton method [33]. Subsequently, we update the
gyroscope bias and pre-integration values for the keyframes in the local window and approximately
estimate the scale of the system and the gravity vector. The scale is the magnification ratio between
the system map and the ground-truth, and the gravity vector is a vector of gravity values with a
magnitude of approximately 9.8. Finally, we estimate the accelerometer bias using the exact gravity
magnitude value as a constraint, and refine the scale and gravity direction.

The IMU biases in the initialization phase are used in the IMU preintegration. The rotation,
velocity, and position between two frames can be estimated using Equation (3).

3.1.3. Pose Estimation

In VIO, pose, velocity, and IMU biases can be calculated for every frame. The camera pose of the
current frame is predicted using the IMU motion model, and subsequently the map points of the local
map are projected onto the current frame and matched with the keypoints of the current frame. The
pose is optimized for the current frame by minimizing the projection error of all the matched feature
points and the IMU error.

Figure 5. Comparison of the original visual-based VO factor graph and visual–inertial-based VIO
factor graph.

Sensors 2017, 17, 2567 9 of 25

In order to estimate the pose, the state variable is first determined. In tightly coupled visual–
inertial SLAMs, the target state value is often used to estimate values such as pose, velocity and IMU
biases. The state variable is a 15-dimensional value and is defined as follows: ≐ , , , , ∈ ℝ , (7)

where R, p, and v represent the IMU rotation, position, and velocity, respectively; ba and bg are the IMU
accelerometer bias and gyroscope bias, respectively; Pose (R, p) belongs to SE(3); and v, ba, bg ∈ ℝ3.

In the bundle adjustment, we replace the existing 6-dimensional pose with a 15-dimensional
pose and add the preintegrated IMU data as a constraint to the visual–inertial-based VIO factor graph
as shown in Figure 5. We solve this optimization problem using the Levenberg–Marquardt algorithm
[34] implemented in g2o [35].

3.2. Optical-Flow-Based Fast Visual Odometry

As described above, in the feature-based SLAM method, the feature points are extracted and the
description is calculated for every frame. This operation is time consuming. For example, the ORB
feature point extraction and description operations in ORB-SLAM require approximately 10 ms or
more. Moreover, SLAM performs tasks such as feature point matching, pose calculation from
matching feature points, and local map updating for each frame [2].

Therefore, we propose an optical-flow-based fast VO to quickly calculate the relative pose
between the current frame and the previous frame. Using the IMU, the motion change between the
two frames is calculated in the IMU preintegration step. The fast VO method is used for frames with
relatively low significance and operations such as mapping of SLAM and creation of keyframes are
omitted. This method reduces the computational complexity of SLAM, thereby rendering it suitable
for the fast calculation of location information, such as in an AR application environment. Since the
fast VO method is performed when the IMU preintegration value is small, it exhibits a better effect
when the camera motion is relatively slow.

Figure 6 shows a flowchart of the optical-flow-based fast VO, which is divided into three steps.

Figure 6. Flowchart of the optical-flow-based fast VO.

In the first step, when tracking the optical-flow-based fast VO in the tracking module, matching
feature points are acquired between the previous frame and the local map. These points are used as
valid tracking keypoints and the previous frame is set as the reference frame.

In the second step, a tracking operation based on an advanced Kanade-Lucas-Tomasi (KLT)
feature tracking algorithm is performed on the current frame.

Sensors 2017, 17, 2567 10 of 25

In the third step, the relative pose between two frames is calculated using the eight-point [8]
algorithm each time using the matched keypoints. If the subsequent frame continues to perform the
optical-flow-based fast VO, only steps 2 and 3 are executed.

3.2.1. Advanced KLT Feature Tracking Algorithm

The optical flow method calculates the motion of a pixel between frames over time. When the
camera moves, the position of the pixel in the frame also changes. An optical low method can track
the motion of a pixel.

The calculation method for all the pixels is a dense optical flow and the calculation method for
some pixels is a sparse optical flow. KLT [36] is a representative sparse optical flow algorithm for
feature tracking. We use this method to track the feature points between consecutive frames.

The optical flow method assumes constant grayscale values. In other words, the grayscale value
of the same spatial point pixel does not change over all the frames. As shown in Figure 7, when a
pixel at position (x, y) at time t moves to position (x + dx, y + dy) at time t + dt, the grayscale value of
the two pixels is the same.

Figure 7. Diagram of the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm.

According to the assumption of grayscale constant, the formula is (+ d , + d , + d) = (, ,). (8)

By performing Taylor expansion and retaining the first-order term, we obtain (+ d , + d , + d) ≈ (, ,) + d + d + d . (9)

Substituting Equation (8) into Equation (9), we obtain d + d + d = 0. (10)

Dividing both sides by dt, we obtain the optical flow constraint equation: + = − , (11)

where dx/dt is the motion velocity of the pixel along the x-axis, and dy/dt is the motion velocity along
the y-axis, which are denoted as u and v, respectively. Further, ∂I/∂x is the gradient of the pixel in the
x-direction and ∂I/∂y is the gradient of the pixel in the y-direction, which are denoted as Ix and Iy,
respectively. Furthermore, ∂I/∂t is the change in the image grayscale over time, which is denoted as
It. The above expression can be written as [] = − . (12)

The above equation is a linear equation with two variables, and cannot be solved only by one
pixel. In the KLT method, it is assumed that the motion of the pixels in the window of size (m, n)
around the pixel is the same. We obtain m × n number of equations

Sensors 2017, 17, 2567 11 of 25

[] = − , = 1, … , . (13)

A and b are defined as follows:

= []⋮[] , = ⋮ . (14)

Substituting Equation (14) into Equation (13), we obtain = − . (15)

In order to obtain the components u and v of the motion velocity of the pixel, the least-square
solution of the overdetermined linear equation is calculated as follows: ∗ = −() . (16)

Thus, we can obtain the motion vector of the pixel to calculate the position of the tracking
keypoint in the current frame.

However, if the image resolution is large or the distance over which camera moving is far, the
motion of the points in the window may be different, which will result in a larger computational
error. Thus, we use the pyramid KLT algorithm to reduce the computational error, in order to
improve the accuracy and robustness of the optical flow calculation. The pyramid KLT algorithm
involves the detection of different resolution images—From the image with the smallest resolution
at the top, gradually increase the resolution to the original image at the bottom.

In order to consider the effects of real-time problems, we use a three-layer pyramid. From the
uppermost layer, the KLT algorithm is used to calculate the motion of the pixel, and after the scale
transformation, it is used as the initial value of the subsequent layer; higher accuracy is calculated at
the subsequent layer, and finally the motion of the pixel is calculated in the original image.

The optical flow method is very fast when a small number of tracking keypoints is used. For
example, if the number is less than 100, the execution time is short and the efficiency is high. If 500
feature points per frame are used in tracking, there are approximately 100 matching points between
two consecutive frames. Therefore, we use the keypoints obtained in step 1 to track the current frame,
as shown in Figure 7, and subsequently delete any keypoint that fails to be tracked in the current
frame. A keypoint that has been successfully tracked is stored with the current frame, and the current
frame is set as the new reference frame. If the subsequent frame continues to execute the optical-flow-
based fast VO, step 2 is immediately executed without executing step 1.

If the number of successfully tracked keypoints is less than the threshold, tracking fails. In this
case, the current frame exits from optical-flow-based fast VO module and attempts to retrace itself
back to the VIO module.

The optical flow method may not be accurate if the grayscale-invariance assumption is violated
when the surrounding environment changes or the camera exposure parameter changes. Since the
method proposed in this paper uses only a few consecutive frames each time for tracking, it is not
significantly influenced by this problem.

3.2.2. Pose Estimation

In optical-flow-based fast VO, the relative pose between two frames can be estimated in epipolar
geometry [37] using 2D–2D image matching. In epipolar geometry, we generally estimate the
essential matrix from the matching point and recover R and t from the essential matrix.

If tracking is successful in step 2, the matching point between the two frames can be obtained.
We use the eight-point algorithm based on random sample consensus (RANSAC) [38] to estimate the
essential matrix of two images.

Figure 8 illustrates the epipolar constraint. The projection of spatial point P at frame1 is p1 and
the projection at frame2 is p2. K represents the intrinsic camera intrinsic parameters. The normalized
coordinates are defined as follows:

Sensors 2017, 17, 2567 12 of 25

= , = (17)

where x1 and x2 satisfy the following homogeneous relation: = + . (18)

The epipolar constraint can be derived as follows: ^ = 0. (19)

If the essential matrix E is defined as = ^ , (20)

We obtain = 0. (21)

In other words, the pose can be estimated by calculating the essential matrix E. E is a 3 × 3 matrix
with eight degrees of freedom (DoFs), and a constant factor. Therefore, the essential matrix E between
two frames can be estimated using the eight-point algorithm based on RANSAC.

Figure 8. Diagram of the epipolar constraint.

Subsequently, we can recover the camera rotation and translation matrix T = [R|t] from the
estimated essential matrix E by using singular value decomposition (SVD) [39]. ∼ ⋅ [|] (22)

Since the camera’s intrinsic parameters K are known, we can use the world-camera projection
relationship in the above equation to calculate the position change (u, v) of the spatial point in the frame.

3.3. Adaptive Execution Module

In the adaptive execution module, the IMU preintegration value is used to predict the state of
motion between the current frame and the previous frame. It is adaptively selected from VIO or
optical-flow-based fast VO for current-frame tracking according to the state of motion.

In ORB-SLAM, each frame is compared with the local map. However, in a limited computing
resource environment, the mapping thread may not be able to complete the task before the
subsequent input frame arrives. Consequently, the local map information for tracking will not be
ready and tracking fails, thus reducing the accuracy and robustness of the SLAM system.

ORB-SLAM will perform feature point extraction and tracking for each input image even if the
camera is not moving. In other words, it performs unnecessary calculations and wastes computing
power. This is a critical issue in environments with limited computing resources, such as mobile
devices.

The goal of this module is to reduce the tracking time and reduce the demand for computing
resources.

Sensors 2017, 17, 2567 13 of 25

3.3.1. Adaptive Selection Visual Odometry

As shown in Figure 9, in the adaptive execution module, we first verify the system state and
tracking state of the previous frame. Subsequently, we verify that the number of keypoints tracked
in the previous frame satisfies the minimum number of keypoints required for tracking. Thereafter,
the preprocessing data calculated by the IMU preintegration module are used as a condition for
selecting an adaptive module. In Equation (3), we can calculate the changes in rotation, velocity, and
position between the current frame and the previous frame, namely ΔR, Δv, and Δp, respectively. If
the IMU measurement value is smaller than the set threshold value, the motion change is small. In
other words, the parallax between the current frame and the previous frame is small. Finally, if all
the conditions are satisfied, we execute the optical-flow-based fast VO module. Otherwise, we
execute the VIO module.

Figure 9. Flowchart of the adaptive execution module.

3.3.2. Adaptive Execution Policies

We also designed different levels of adaptive execution policies for different scenarios.
First, we analyzed the performance of the monocular ORB-SLAM via experiments. Figures 10

and 11 show the relationships between performance, accuracy, and robustness when different
numbers of features are applied in SLAM when running the EuRoC dataset [40].

A direct way to reduce the average tracking time is to reduce the number of features used in
each image. Figures 10 and 11 show that the average tracking time is reduced when the number of
features is reduced. Simultaneously, the translation RMSE [41] value of the keyframe trajectory
increases, and the number of lost tracking frames increases. There is a trade-off between the number
of features used in the SLAM system and its accuracy and robustness.

Figure 10. Average tracking time and the translation RMSE of the keyframe trajectory versus the
number of features used in the monocular ORB-SLAM when running the EuRoC datasets.

Sensors 2017, 17, 2567 14 of 25

Figure 11. Average tracking time and the number of lost tracking frames versus the number of
features used in the monocular ORB-SLAM when running the EuRoC datasets.

An analysis of the results obtained using the EuRoC dataset shows that the accuracy and stability
are significantly lowered when the number of features is less than 500. In order to ensure the
efficiency of the computation, we use 500 features in the adaptive execution policy method.
Subsequently, four modes are designed for additional execution policies, as listed in Table 2. The
adaptive execution policies can be selected according to the performance of the mobile device in the
system initialization step, or the user can preset the mode according to the application situation.

Table 2. Table of adaptive execution policies.

Mode Modules Characteristics
Level 0 Visual–inertial odometry SLAM Accuracy priority, no adaptive module

Level 1 Visual–inertial odometry and optical-flow-based fast visual odometry Balance, suitable for all scenes

Level 2 Visual–inertial odometry and optical-flow-based fast visual odometry
Speed priority, suitable for easy and

medium scenes

Level 3 Visual–inertial odometry and optical-flow-based fast visual odometry
Speed priority, suitable for only easy

scenes

In addition to the optical-flow-based fast VO, several methods can be used to improve the
performance of the adaptive execution module. Examples include reducing the local window size,
modifying keyframe decisions and cullinlg policies, and reducing the number of DoFs of the pose in
graph optimization.

In order to demonstrate the results more intuitively, we only use the proposed optimization
methods.

4. Experiments and Results

In this section, we evaluate the proposed adaptive visual–inertial SLAM system focusing on two
main goals. One is a comparison of the SLAM system using the proposed VIO with the existing ORB-
SLAM system. The accuracy and robustness of the SLAM system are improved because the IMU
measurement data is added to the pose optimization process. However, this requires additional
operations and time. The other goal is to achieve real-time operation efficiency and accuracy of the
visual–inertial SLAM system using the proposed adaptive execution module. The adaptive execution
module improves the performance by dynamically applying the optical-flow-based fast VO in tracking.

We implemented and analyzed the proposed system in a PC environment. We compared the
keyframe trajectory of the SLAM system with the ground-truth data and calculated the translation
RMSE [42,43] of the keyframe trajectory for each sequence. We further analyzed the accuracy and the
number of lost frames. Finally, we simulated the system using actual mobile device data by
transmitting sensor data measured in real time from an Android smartphone to PC. The structural
architecture of the simulation is shown in Figure 12. Our system only runs on a CPU and does not
use any hardware acceleration methods.

Sensors 2017, 17, 2567 15 of 25

Figure 12. Structural architecture of the simulation.

Table 3 provides the specifications for the desktop, mobile devices, and development software
environment. We experimented with the PC environment, and conducted experiments using the
EuRoC dataset. The EuRoC dataset [40] has a total of 11 sequences and is recorded using a micro
aerial vehicle. Sequences are measured in a machine hall and two different rooms, and classified into
easy, medium, and difficult levels according to the illumination, texture, and motion speed. The
EuRoC dataset provides stereo images, microelectromechanical systems IMU, ground-truth data, etc.
The imaging system uses a global shutter camera, supports the size of 752 × 480, and the image data
frequency of 20 FPS, and IMU data supports the data frequency of 200 Hz. The ground-truth data is
used for comparison when analyzing the accuracy of the SLAM estimated trajectory. Therefore, the
EuRoC dataset is widely used for benchmarking SLAM systems.

Moreover, we used the OpenCV 3.2.0 library [44] and the ROS indigo toolkits [45]. ROS indigo
default support for OpenCV 2.4 version, but OpenCV 2.4 version and 3.2 version do not support
simultaneous use. Therefore, we use the OpenCV 3.2 version to recompile the ROS indigo cv_bridge
package.

Table 3. Experiment environments.

Desktop Specification
CPU Intel Core i7-6700K
RAM SDRAM 16 GB

OS Ubuntu 14.04
Phone Specification

Model name Nexus 6
Android version 7.0 Nougat
Development Software Environment

OpenCV 3.2.0 version
ROS version ROS Indigo

Benchmark dataset EuRoC dataset

4.1. Monocular ORB-SLAM Evaluation

We first analyzed the effect of the average tracking time, SLAM system accuracy and robustness
when using features of different sizes in each frame in the monocular ORB-SLAM.

Table 4 provides the results of execution of all the sequences of the EuRoC dataset when features
of different sizes are applied in the monocular ORB-SLAM. The results show the average tracking time,
translation RMSE of the keyframe trajectory, and number of total lost tracking frames. The unit of
measurement for the average tracking time is millisecond, and the unit of translation RMSE is meter.

Sensors 2017, 17, 2567 16 of 25

Table 4. Average tracking time, translation RMSE of the keyframe trajectory, and number of lost tracking frames versus the number of features used in the monocular ORB-
SLAM with EuRoC dataset.

Feature MH_01_e MH_02_eV1_01_eV2_01_eMH_03_mV1_02_mV2_02_mMH_04_dMH_05_dV1_03_dV2_03_d

300
22.8 22.3 20.5 19.0 22.0 19.2 19.5 21.5 20.9 17.7 X
0.057 0.052 0.093 0.057 0.064 0.069 0.087 0.216 0.150 0.131 X
220 0 72 114 63 25 68 263 225 99 X

400
23.2 22.1 20.8 19.9 22.5 19.9 19.7 20.9 21.1 18.0 X
0.043 0.047 0.094 0.060 0.045 0.065 0.071 0.147 0.054 0.146 X

16 0 0 110 62 0 67 261 26 64 X

500
23.4 23.0 21.5 20.1 23.3 20.5 21.2 21.4 21.6 19.5 20.0
0.042 0.041 0.094 0.057 0.046 0.059 0.058 0.081 0.052 0.072 0.095

0 0 0 109 0 0 67 0 0 59 250

600
25.1 24.6 23.1 21.0 23.6 21.3 22.7 21.9 22.1 20.6 19.2
0.046 0.037 0.095 0.059 0.039 0.064 0.056 0.076 0.052 0.064 0.104

0 0 0 109 0 0 67 0 0 58 146

800
27.8 26.0 26.2 22.4 25.5 23.3 26.0 23.2 23.6 22.3 23.3
0.043 0.036 0.097 0.057 0.041 0.064 0.056 0.087 0.068 0.064 0.097

0 0 0 108 0 0 67 0 0 58 143

1000
29.5 28.4 28.8 24.2 27.2 25.2 27.4 25.6 24.5 23.0 24.3
0.046 0.036 0.095 0.060 0.038 0.063 0.058 0.056 0.052 0.066 0.123

0 0 0 108 0 0 0 0 0 117 121

1250
32.3 30.9 32.2 27.9 29.5 27.7 31.1 27.8 27.5 26.5 26.7
0.044 0.035 0.095 0.058 0.039 0.064 0.058 0.062 0.050 0.071 0.119

0 0 0 108 0 0 0 0 0 52 136

1500
33.5 32.9 33.6 29.4 31.4 29.7 32.0 29.3 29.3 27.8 28.3
0.044 0.035 0.096 0.056 0.038 0.064 0.057 0.051 0.050 0.071 0.128

0 0 0 108 0 0 0 0 0 55 127

Sensors 2017, 17, 2567 17 of 25

If the RMSE value is small, the SLAM system accuracy is high. If the number of lost tracking
frames is small, the robustness is high. If this value is more than a certain percentage of the total
number of frames, it indicates that the tracking has failed. In the experimental results, the tracking
failure case is marked as X.

The movement of the V2_03_difficult sequence is extreme; hence, when the feature size is set to
less than 500, the tracking fails, and if it is set to 500, the number of lost tracking frames is 250.

At the end of the V2_01_easy sequence, the camera is covered by the object and the tracking is
lost. The resulting data shows that the number of lost tracking frames is approximately 108. This is
noise data which is not required to reflect the actual SLAM performance. Therefore, we removed the
data from this part when evaluating the performance.

Figures 10 and 11 show the relationship between the performance, accuracy, and robustness
when different number of features are applied in SLAM when running the EuRoC dataset.

Experimental results show that increasing the number of features used in each frame increases
the average tracking time and also increases the system accuracy and robustness accordingly. A direct
way to reduce the average tracking time is to reduce the number of features used in each image.
Simultaneously, the translation RMSE of the keyframe trajectory increases and the number of lost
tracking frames also increases. There is a trade-off between the number of features used in the SLAM
system and the accuracy and robustness. Moreover, if the experimental results are classified into
three different levels and analyzed, the higher the level, the greater the influence on accuracy and
robustness. Moreover, we can observe that the difficult level is significantly affected by the number
of feature points.

An analysis of the results on the EuRoC dataset shows that the accuracy and stability are
significantly lowered when the number of features is less than 500. In order to ensure the efficiency
of the computation, we use 500 features in our proposed methods for testing.

4.2. Visual–Inertial Odometry SLAM Evaluation

We implemented the proposed VIO method and compared the visual–inertial SLAM with the
monocular ORB-SLAM using the EuRoC dataset.

The accuracy of the result of initialization has a decisive influence on the accuracy of the entire
SLAM system. In our proposed VIO method, we estimated the IMU biases and local 3D map scale at
a certain amount of visual–inertial initialization time in the initialization step. We confirmed via the
experiment that the visual–inertial initialization method is relatively stable, with a scale error
typically less than 1.5% for the EuRoC dataset when the initialization time is set as 15 s.

Table 5 and Figure 13 illustrate the comparison of the performances of the VIO-based SLAM and
the monocular ORB-SLAM. The experimental results for the EuRoC dataset are shown in the same
experimental environment with 500 features.

Sensors 2017, 17, 2567 18 of 25

Table 5. Evaluation of VIO-based SLAM and comparison with the monocular ORB-SLAM.

 ORB-SLAM (500) VIO-SLAM (500)

Dataset ORB Average
Tracking Time (ms)

ORB RMSE (m)/
GT Scale

Lost Tracking
Frame Count

VIO Average
Tracking Time (ms)

VIO RMSE (m)/
GT Scale Scale Error VIO RMSE (m) Lost Tracking

Frame Count
MH_01_easy 23.4 0.042 0 26.6 0.031 1.3% 0.067 0
MH_02_easy 23.0 0.041 0 26.5 0.030 0.6% 0.040 0
V1_01_easy 21.5 0.094 0 23.5 0.093 0.3% 0.093 0
V2_01_easy 20.1 0.057 109 23.9 0.058 1.2% 0.065 108
Easy level 22.0 0.058 109 25.1 0.053 0.86% 0.066 108

MH_03_medium 23.3 0.046 0 24.7 0.044 1.1% 0.063 0
V1_02_medium 20.5 0.059 0 25.2 0.062 0.5% 0.063 0
V2_02_medium 21.2 0.058 67 25.6 0.066 0.2% 0.066 0
Medium level 21.7 0.055 67 25.2 0.057 0.61% 0.064 0

MH_04_difficult 21.4 0.081 0 23.3 0.080 0.4% 0.085 0
MH_05_difficult 21.6 0.052 0 25.0 0.065 0% 0.065 0
V1_03_difficult 19.5 0.072 59 20.5 0.064 0.1% 0.064 0
V2_03_difficult X X X X X X X X
Difficult level 20.8 0.068 59 22.9 0.070 0.18% 0.071 0

Total 21.6 0.060 235 24.5 0.059 0.58% 0.067 108

Sensors 2017, 17, 2567 19 of 25

Figure 13. Evaluation of VIO-based SLAM and comparison with the monocular ORB-SLAM.

The existing monocular SLAM cannot calculate the true scale value. Therefore, to compare the
keyframe trajectory with the ground-truth data, data preprocessing must be performed to match the
ground-truth scale. The result of this comparison shows the accuracy of the monocular SLAM system,
but it does not include scale information and therefore includes a scale error.

In order to compare the visual–inertial SLAM system with the monocular ORB-SLAM system,
we divided the test results into the translation RMSE with GT scale and the translation RMSE without
GT scale according to ground-truth scale matching.

Since the motion of the V2_03_difficult sequence is extreme, the proposed method and the
monocular ORB-SLAM result in tracking failure.

Experimental results show that the average accuracy of the proposed VIO-based SLAM
increases by 1.6% compared to the existing monocular ORB-SLAM, and the mean scale error of the
proposed VIO-based SLAM is 0.58%.However, the average tracking time increases by 13.6% owing
to the addition of IMU measurement data. The mean translation RMSE value is 0.067 m when the
ground-truth scale matching is not applied to the estimated keyframe trajectory in the VIO-based
SLAM, and is reduced by 13.2% compared to the translation RMSE value using the ground-truth
scale matching. Simultaneously, the system robustness improves and shows good effects with a
blurred image and pure rotation.

The following is the classification and analysis for different levels. At the easy level, the accuracy
improves by 9.2% and the average tracking time increases by 14.2%. At the medium level, the
accuracy reduces by 4.9% and the average tracking time increases by 16.2%. At the difficult levels,
accuracy reduces by 2.1% and the average tracking time increases by 10.1%. Moreover, the system
robustness increases at all levels.

When the proposed method is compared to the monocular SLAM, the accuracy is observed to
slightly increase, because the accuracy of the IMU sensor currently used in mobile devices is lower
than the accuracy of the camera sensor. The reason for the increase in the average tracking time in
the VIO method is that IMU measurement data are additionally applied for pose optimization.

4.3. Adaptive Visual–Inertial Odometry SLAM Evaluation

First, the time required for tracking by the optical-flow-based fast VO method and the VIO
method was measured and compared in the AVIO-based SLAM. Table 6 provides the average
execution time of the two odometry methods of AVIO-based SLAM for the MH_01_easy sequence
when the level 1 adaptive execution policy is applied.

Experimental results show that the optical-flow-based fast VO method is 3.85 times faster than
the VIO method. In other words, the higher the proportion of the optical-flow-based fast VO among
the total tracking, the faster the average tracking time.

Sensors 2017, 17, 2567 20 of 25

Table 6. Comparison of the average execution time between optical-flow-based fast VO method and
VIO method.

Optical-Flow-Based Fast Visual Odometry Mean Time (ms) Visual–Inertial Odometry Mean Time (ms)
Obtain keypoints 0.16 ORB extraction 20.85

Advanced KLT tracking 2.53 Initial Pose Estimation with IMU 5.09
Pose Estimation 6.13 TrackLocalMap with IMU 8.02

Total 8.82 33.96

Table 7 and Figure 14 illustrate the experimental results for the proposed four adaptive execution
policies. We can observe that the execution time can be significantly reduced by using the adaptive
execution method. In the level 1 policy, the average tracking time is reduced by 7.8% compared to
level 0, whereas the RMSE value increased by 8.5%. In the level 2 policy, the average tracking times
are reduced by 17.5% and 8.3% for the easy dataset and medium dataset, respectively, compared to
level 0. In the level 3 policy, the average tracking time is reduced by 18.8% for the easy dataset
compared to level 0.

Moreover, the adaptive execution module also affects the other modules, such as mapping and
optimization. Therefore, in order to analyze the impact of AVIO method on the entire SLAM system,
we tested it in a single-core single-threaded environment. Furthermore, because the performance of this
environment limits the SLAM system to run in real time, while leading to SLAM performance
degradation.

Figure 14. Comparison of the average tracking time and translation RMSE of keyframe trajectory with
different level-sets of AVIO-based SLAM.

Table 8 and Figure 15 illustrate the experimental results for different level-sets of AVIO-based
SLAM in a single-core single-threaded environment. The experimental results show that, in the level
1 policy, the average tracking time and RMSE value are reduced by 10.0% and 1.5% compared to level
0, respectively. In the level 2 policy, the average tracking times are reduced by 29.8% and 14.2% for
the easy dataset and medium dataset, respectively, compared to level 0. In the level 3 policy, the
average tracking time is reduced by 32.6% for the easy dataset compared to level 0.

Sensors 2017, 17, 2567 21 of 25

Table 7. Evaluation of AVIO-based SLAM.

 VIO (500)-L0 AVIO-L1 (Suitable for All) AVIO-L2 (Suitable for Easy & Medium) AVIO-L3 (Suitable for Easy)

Dataset Level 0 Average
Tracking Time (ms)

Level 0 RMSE (m)/
GT Scale

Level 1 Average
Tracking Time (ms)

Level 1 RMSE (m)/
GT Scale

Level 2 Average
Tracking Time (ms)

Level 2 RMSE (m)/
GT Scale

Level 3 Average
Tracking Time (ms)

Level 3 RMSE (m)/
GT Scale

MH_01_easy 26.6 0.031 21.6 0.032 19.7 0.032 19.1 0.036
MH_02_easy 26.5 0.030 20.2 0.034 20.0 0.031 18.6 0.036
V1_01_easy 23.5 0.093 24.3 0.096 22.0 0.094 21.5 0.094
V2_01_easy 23.9 0.058 20.7 0.066 21.2 0.054 20.4 0.066
Easy level 25.1 0.053 21.7 0.057 20.7 0.053 19.9 0.058

MH_03_medium 24.7 0.044 22.8 0.039 22.5 0.044 X X
V1_02_medium 25.2 0.062 23.3 0.059 23.2 0.058 X X
V2_02_medium 25.6 0.066 24.5 0.073 23.6 0.063 X X
Medium level 25.2 0.057 23.5 0.057 23.1 0.055 X X

MH_04_difficult 23.3 0.080 21.9 0.092 X X X X
MH_05_difficult 25.0 0.065 24.1 0.086 X X X X
V1_03_difficult 20.5 0.064 22.9 0.068 X X X X
V2_03_difficult X X X X X X X X
Difficult level 22.9 0.070 23.0 0.082 X X X X

Total 24.5 0.059 22.6 0.064 21.9 0.054 19.9 0.058

Table 8. Evaluation of AVIO-based SLAM in a single-core single-threaded environment.

 VIO (500)-L0 AVIO-L1 (Suitable for All) AVIO-L2 (Suitable for Easy & Medium) AVIO-L3 (SUITABLe for Easy)

Dataset
Level 0 Average

Tracking Time (ms) Level 0 RMSE (m)/GT Scale
Level 1 Average

Tracking Time (ms)
Level 1 RMSE (m)/

GT Scale
Level 2 Average

Tracking Time (ms)
Level 2 RMSE (m)/

GT Scale
Level 3 Average

Tracking Time (ms)
Level 3 RMSE (m)/

GT Scale
MH_01_easy 49.6 0.033 36.0 0.032 31.3 0.036 30.4 0.032
MH_02_easy 46.1 0.032 35.5 0.041 29.9 0.033 29.9 0.036
V1_01_easy 51.1 0.093 46.0 0.094 39.1 0.093 37.6 0.094
V2_01_easy 42.5 0.060 35.3 0.055 32.5 0.062 29.5 0.062
Easy level 47.3 0.054 38.2 0.055 33.2 0.056 31.9 0.056

MH_03_medium 46.4 0.041 39.7 0.045 34.5 0.045 X X
V1_02_medium 39.4 0.083 45.8 0.059 38.8 0.070 X X
V2_02_medium 43.3 0.085 42.3 0.077 37.3 0.070 X X
Medium level 43.0 0.070 42.6 0.060 36.9 0.062 X X

MH_04_difficult 37.2 0.080 37.4 0.061 X X X X
MH_05_difficult 40.4 0.089 38.5 0.118 X X X X
V1_03_difficult X X X X X X X X
V2_03_difficult X X X X X X X X
Difficult level 38.8 0.085 38.0 0.090 X X X X

Total 44.0 0.066 39.6 0.065 34.8 0.059 31.9 0.056

Sensors 2017, 17, 2567 22 of 25

Figure 15. Comparison of the average tracking time and translation RMSE of keyframe trajectory with
different level-sets of AVIO-based SLAM in a single-core single-threaded environment.

4.4. Experiments of the Adaptive Visual–Inertial Odometry SLAM with Mobile Device Sensors

First, we use the OpenCV library to resize and convert the acquired camera image to RGB format
on an Android smartphone. The image data and IMU data are transferred to the PC in real time under
WiFi connection using the ROS toolkit. We obtained a 15 fps image of size 640 × 480 and 100 Hz IMU
data on a Nexus 6 smartphone. After the camera-IMU calibration, the proposed method was tested
in a PC environment. Figure 16 shows a screenshot of the proposed AVIO-based SLAM with real
mobile device sensor data in a PC environment.

When we tested the proposed system using actual mobile device sensor data, the average
tracking time was 23.2 ms. However, since the smartphone used in the experiment uses a low-priced
rolling shutter camera and the image frequency is relatively low, moving it slightly faster will cause
the image to be blurred and tracking to be lost. Although it can be solved to some extent with the
VIO method, this system still has not achieved the desired robustness.

Figure 16. Screenshot of the proposed AVIO-based SLAM with real mobile device sensor data in a PC
environment.

5. Conclusions

Sensors 2017, 17, 2567 23 of 25

In this paper, we presented an adaptive monocular visual–inertial SLAM for real-time AR
applications in mobile devices. First, we designed a VIO method that combines a camera and IMU
sensor. Second, to support real-time faster tracking of AR applications in a mobile device
environment, an optical-flow-based fast VO module was designed and combined with the existing
ORB-SLAM system. Finally, we present an adaptive execution method that adaptively selected the
tracking module according to the change in the IMU sensor value.

Experimental results show that the proposed technique achieves up to 18.8% of performance
improvement, while reducing the accuracy slightly. Therefore, our methods can be adapted to
improve the performance of SLAM for real-time AR applications in mobile devices.

Author Contributions: J.-C.P. and S.-D.K. conceived and designed the experiments; J.-C.P. performed the
experiments; J.-C.P. and S.-D.K. analyzed the data; and J.-C.P. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. Orb: An efficient alternative to sift or surf. In Proceedings
of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–
2571.

2. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. Orb-SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robot. 2015, 31, 1147–1163.

3. Nistér, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004.

4. Angeli, A.; Filliat, D.; Doncieux, S.; Meyer, J.-A. Fast and incremental method for loop-closure detection
using bags of visual words. IEEE Trans. Robot. 2008, 24, 1027–1037.

5. Greig, D.M.; Porteous, B.T.; Seheult, A.H. Exact maximum a posteriori estimation for binary images. J. R.
Stat. Soc. Ser. B 1989, 51, 271–279.

6. Strasdat, H.; Montiel, J.M.; Davison, A.J. Visual SLAM: Why filter? Image Vis. Comput. 2012, 30, 65–77.
7. Faugeras, O.D.; Lustman, F. Motion and structure from motion in a piecewise planar environment. Int. J.

Pattern Recognit. Artif. Intell. 1988, 2, 485–508.
8. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press:

Cambridge, UK, 2004.
9. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.:

Sebastopol, CA, USA, 2008.
10. Davison, A.J. Real-time simultaneous localisation and mapping with a single camera. In Proceedings of the

Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; p. 1403.
11. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. Mono SLAM: Real-time single camera SLAM. IEEE Trans.

Pattern Anal. Mach. Intell. 2007, 29, 1052–1067.
12. Civera, J.; Davison, A.J.; Montiel, J.M. Inverse depth parametrization for monocular SLAM. IEEE Trans.

Robot. 2008, 24, 932–945.
13. Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and

Beyond; MIT Press: Cambridge, MA, USA, 2002.
14. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007

6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16
November 2007; pp. 225–234.

15. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In
International Workshop on Vision Algorithms; Springer: Berlin/Heidelberg, Germany, 1999; pp. 298–372.

16. Mur-Artal, R.; Tardós, D. Fast relocalisation and loop closing in keyframe-based SLAM. In Proceedings of
the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–
7 June 2014; pp. 846–853.

17. Gálvez-López, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE
Trans. Robot. 2012, 28, 1188–1197.

Sensors 2017, 17, 2567 24 of 25

18. Geiger, A.; Lenz, P. Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

19. Mur-Artal, R. ORB_SLAM2. Available online: https://github.com/raulmur/ORB_SLAM2 (accessed on 19
January 2017).

20. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. Dtam: Dense tracking and mapping in real-time. In
Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November
2011; pp. 2320–2327.

21. Engel, J.; Schöps, T.; Cremers, D. Lsd- SLAM: Large-scale direct monocular SLAM. In Computer Vision—
ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 834–849.

22. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017,
doi:10.1109/TPAMI.2017.2658577.

23. Weiss, S.; Achtelik, M.W.; Lynen, S.; Chli, M.; Siegwart, R. Real-time onboard visual-inertial state
estimation and self-calibration of mavs in unknown environments. In Proceedings of the 2012 IEEE
International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 957–964.

24. Fang, W.; Zheng, L.; Deng, H.; Zhang, H. Real-time motion tracking for mobile augmented/virtual reality
using adaptive visual-inertial fusion. Sensors 2017, 17, 1037.

25. Li, M. Visual-Inertial Odometry on Resource-Constrained Systems. Ph.D. Thesis, University of California,
Riverside, CA, USA, 2014.

26. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct ekf-based
approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 298–304.

27. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based Visual-Inertial odometry
using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334.

28. Mur-Artal, R.; Tardós, J.D. Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2017,
2, 796–803.

29. Piao, J.-C.; Jung, H.-S.; Hong, C.-P.; Kim, S.-D. Improving performance on object recognition for real-time
on mobile devices. Multimedia Tool. Appl. 2015, 75, 9623–9640.

30. Yang Z.; Shen, S. Monocular visual-inertial state estimation with online initialization and camera-imu
extrinsic calibration. IEEE Trans. Autom. Sci. Eng. 2017, 14, 39–51.

31. Furgale, P.; Rehder, J.; Siegwart, R. Unified temporal and spatial calibration for multi-sensor systems. In
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013; pp. 1280–1286.

32. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-manifold preintegration for real-time visual-inertial
odometry. IEEE Trans. Robot. 2016, 33, 1–21.

33. Bertsekas, D.P. Nonlinear Programming; Athena scientific: Belmont, MA, USA, 1999.
34. Moré, J.J. The levenberg-marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer:

Berlin/Heidelberg, Germany, 1978; pp. 105–116.
35. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G20: A general framework for graph

optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011; pp. 3607–3613.

36. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In
Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada,
24–28 August 1981; pp. 674–679.

37. Rives, P. Visual servoing based on epipolar geometry. In Proceedings of the 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan, 31 October–5 November
2000; pp. 602–607.

38. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395.

39. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Numer. Math. 1970, 14,
403–420.

40. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The euroc
micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163.

Sensors 2017, 17, 2567 25 of 25

41. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against
avoiding rmse in the literature. Geosci. Model Dev. 2014, 7, 1247–1250.

42. Horn, B.K. Closed-form solution of absolute orientation using unit quaternions. JOSA A 1987, 4, 629–642.
43. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D

SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 573–580.

44. Bradski, G. The OpenCV Library. Available online: http://www.drdobbs.com/open-source/the-opencv-
library/184404319 (accessed on 7 November 2017).

45. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
robot operating system. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–
17 May 2009.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

