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Abstract: Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in 
computer vision and next-generation core technology for robots, autonomous navigation and 
augmented reality. In augmented reality applications, fast camera pose estimation and true scale 
are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for 
real-time augmented reality applications in mobile devices. First, the SLAM system is implemented 
based on the visual–inertial odometry method that combines data from a mobile device camera and 
inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry 
method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM 
is implemented by presenting an adaptive execution module that dynamically selects visual–inertial 
odometry or optical-flow-based fast visual odometry. Experimental results show that the average 
translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the 
EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different 
level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile 
device sensors, and the results demonstrate the effectiveness of performance improvement using 
the proposed method. 

Keywords: monocular simultaneous localization and mapping; visual–inertial odometry; optical 
flow; adaptive execution; mobile device 

 

1. Introduction 

In recent years, the rapid development of mobile devices such as unmanned aerial vehicles, 
handhold mobile devices, and augmented reality (AR)/virtual reality (VR) headsets has provided a 
good platform for AR technology. Simultaneous localization and mapping (SLAM) has become a 
prominent issue in the field of computer vision and is the key next-generation technology for robots, 
autonomous driving and AR. 

SLAM is a low-level technology that provides map and location information to applications 
using it. Depending on the application, the requirements for the map and location accuracy are 
different. For example, if the application target is a robot that performs navigation tasks based on 
SLAM, it requires the entire map information and perceptible information about obstacles in the 
surrounding space. This results in a higher demand for SLAM mapping. In AR applications, the real-
time camera pose and the distance between the camera and the object are more important, and the 
accuracy of SLAM system mapping and global positioning is relatively low. 

Usually, the computing power and power consumption of mobile devices limit the use of SLAM 
in mobile devices, since the SLAM algorithm requires higher robustness and computational 
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efficiency. The performance and accuracy, and robustness is a trade-off relationship; hence, in AR 
applications, in order to obtain a real-time camera pose, the SLAM system must be optimized. 

In this paper, we propose an adaptive monocular visual–inertial SLAM for real-time AR 
applications in mobile devices. It includes modification and implementation based on the monocular 
ORB-SLAM, which is an oriented FAST and rotated BRIEF (ORB) [1] feature-based monocular SLAM 
[2]. First, we designed a visual–inertial odometry (VIO) method that combines a camera input and 
inertial measurement unit (IMU) sensor. By using this method, the distance between the object and 
the camera and size of the object can be easily calculated, which was used in AR applications to 
interact between real world and virtual objects. Second, to support real-time faster tracking of AR 
applications in the mobile device environment, an optical-flow-based fast visual odometry (VO) 
module was designed and combined with the existing ORB-SLAM system. Finally, we proposed an 
adaptive execution method that adaptively selects the tracking module according to the change in 
the IMU sensor value. 

We experimentally measured the time cost and accuracy of estimating the camera pose. In order 
to obtain the optimum performance and accuracy, we experimented with many cases to determine 
the best threshold for the adaptive SLAM algorithms to balance accuracy with processing speed. 

The remainder of this paper is organized as follows. In the following section, we describe the 
related work on monocular SLAM. In Section 3, we propose an adaptive monocular visual–inertial 
SLAM, and present four different level-set adaptive policies. In Section 4, we experiment with various 
cases to demonstrate the performance improvements. Finally, we provide our conclusions in Section 5. 

2. Related Work 

The general structure of a visual SLAM is divided into front-end and back-end. The front-end 
includes the VO [3] module and the mapping module, and the back-end has the optimization module. 
There may also be an additional loop-closure detection module [4]. 

 The VO module estimates the approximate 3D camera pose and structure from adjacent images 
to provide better optimization of the initial value for the back-end. Visual SLAM is divided into 
feature-based SLAM and appearance-based SLAM depending on whether the feature points are 
extracted in VO. 

 The mapping module creates a map that will be used mainly in SLAM, and can be used for 
navigation, visualization, and interaction. The map is divided into a metric map and topological 
map, according to the type of information. The metric map accurately represents the positional 
relationship of objects, which are usually divided into sparse and dense objects. 

 The optimization module estimates the trajectory and map state from noisy data. This can be 
viewed as a maximum a posteriori problem [5]. SLAM is divided into a filter-based SLAM and 
graph-optimization-based SLAM according to the optimization method at the back-end [6]. 

 The loop-closure detection module determines whether the camera arrives at a scene it has 
captured before. Loop-closure solves the problem of drifting of the estimated positions over time. 

Usually, the SLAM system is divided into feature-based SLAM and appearance-based SLAM 
according to whether the feature points are extracted. 

The feature-based SLAM extracts feature points and descriptors for the input image, calculates 
the camera pose by matching 2D–2D, 2D–3D and 3D–3D feature points, and performs mapping [7–
9]. If the entire image is processed, the computational burden is too high. Therefore, feature points 
can store important information of the image and reduce the amount of computation. 

In early algorithms, monocular visual SLAM was often implemented as a filter [10–12]. In that 
approach, stores the 3D coordinates of the camera pose and map points in a state vector, and 
expresses the uncertainty using a probability density function. The average and standard deviation 
of the last update vector are obtained using an observation model and recursive calculation. 
However, it has uncertainties owing to computational complexity and linearization. 

A filter-based SLAM estimates only the current state information, regardless of the previous 
state. In contrast, the nonlinear optimization method [13], which has been commonly used recently, 
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estimates the state by using the data of the entire time period. This method is superior to the 
traditional filter-based method [6] and is currently the most commonly used visual SLAM method. 
Parallel tracking and mapping (PTAM) [14] is a typical keyframe-based monocular visual SLAM and 
uses nonlinear optimization. PTAM uses a keyframe-based odometry method that separates tracking 
and mapping tasks into two independent modules and parallelizes them with threads. In the 
mapping module, the keyframes are selected sparsely in the mapping module and the map points 
observed by these keyframes are used for mapping. This module is very efficient and can easily 
calculate accurate 3D structures and optimize them using bundle adjustment [15]. The tracking 
module performs camera tracking tasks in the front-end and can quickly calculate the motion of the 
current frame. This achieves the necessary efficiency for real-time calculations. 

ORB-SLAM [2] is a relatively complete keyframe-based monocular SLAM released by Mur-
Artal, Montiel and Tardos in 2015. ORB-SLAM is based on PTAM basic architecture. In addition to 
the tracking and mapping threads, a loop-closure detection [4,16] thread is added. Feature extraction 
and mapping, sparse map generation, and place recognition are based on ORB feature points [1]. 
ORB-SLAM computes the value and weight using bags of words (BoW) [17] for all the image feature 
points, and matches two images using BoW vector values. Experiments using the KITTI dataset [18] 
demonstrate that the accuracy and robustness of this method are better than that of PTAM. ORB-
SLAM is relatively stable and accurate, can be adapted to various environments, such as 
indoor/outdoor and large/small scale, and can be executed in real time on a PC. They released the 
code as open source [19], and ORB-SLAM is a good reference for learning and studying SLAM 
methods. ORB-SLAM supports automatic map initialization, and the keyframe and map point 
management mechanisms are relatively comprehensive. 

Direct SLAM is a particular case of appearance-based SLAM. Direct SLAM can estimate the 
camera pose directly from the colors of the pixels of two images, without extracting and matching 
feature points. This ensures better robustness in situations where there are fewer minutiae or blurred 
images. The dense tracking and mapping DTAM [20] reconstructs the surrounding map information 
into a dense 3D depth map model. However, since the DTAM restores the dense map for each pixel 
and applies global optimization, the computational burden is very high. Engel et al. proposed LSD-
SLAM [21] and DSO [22] based on the direct method. Compared with DTAM, LSD-SLAM and DSO 
use fewer pixels, and, since each pixel depth is calculated independently, they are more efficient than 
DTAM. The direct-method-based SLAM has the following advantages: it does not extract feature 
points, it can be used even in the case of a small number of feature points or a blurred image, and it 
can generate depth map. However, it is ineffective for fast motion and changes in grayscale values, 
and requires higher hardware requirements for the camera. 

Monocular visual SLAM is low-cost and easy to implement. However, the monocular camera 
cannot obtain depth information. Owing to the uncertainty of depth, monocular visual SLAM has the 
following problems: the need for initialization; uncertainty of scale; and scale drift. 

With the development and dissemination of a variety of hardware sensors, SLAM technology is 
moving toward multi-sensor fusion, which leverages multiple complementary sensors to achieve 
higher accuracy and robustness. Mobile devices are usually equipped with a variety of sensors, such 
as a camera, IMU, and GPS. We focus on combining the standard monocular camera and IMU sensor 
in mobile devices to implement more accurate and stable SLAM systems. The methods for integrating 
visual information and IMU data are divided into loosely coupled [23,24] and tightly coupled [25–
28] methods, depending on whether image feature information is added to the state vector. The 
loosely coupled approach usually involves executing visual-based SLAM and inertial-based modules 
separately and combining the results to estimate the measurements. However, in a loosely coupled 
method, the monocular SLAM drift problem still exists. In a tightly coupled method, IMU bias can 
be corrected by adding image feature information to the state vector and the scale of the monocular 
SLAM can be estimated. This method is more accurate than the conventional single-visual-sensor-
based SLAM. 

In this study, we used a tightly coupled method to implement a more complete SLAM system. 
By tightly coupling and combining the standard monocular camera and inertial measurement unit 
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sensor in mobile devices, we implemented a more accurate and stable SLAM system to solve the 
existing problems for the commercialization of SLAM-based augmented reality applications. 

There are still many problems in commercializing SLAM-based AR applications: the various 
kinds of mobile devices, the rolling shutter problem of mobile device camera sensors, the uncertainty 
of scale and scale drift of single-camera-based SLAM, the capturing of blurred images by the camera 
sensor when moving fast, etc. The fusion of the inertial measurement units (IMU) sensor and camera 
sensor can solve some of these problems. In a previous study, we implemented an AR application 
based on marker-less object detection in real time on a mobile device [29]. We designed an object-
tracking method using IMU sensor data and image data. The tracking method uses a homography 
matrix [7], owing to mobile device performance limitations. This system shows good robustness to 
the translation motions of the camera, but it is ineffective against pure rotation. In order to overcome 
these limitations, we attempt to incorporate SLAM technology to improve the accuracy and 
robustness. 

We analyzed each SLAM system in the current research trends and selected ORB-SLAM, which 
is a monocular visual SLAM, as a reference model for the AR application environment. ORB-SLAM 
supports relatively high speed, accuracy, and robustness. 

3. Methodologies 

This section describes the basic structure of the visual–inertial SLAM and demonstrates the 
method of implementation of the adaptive method for the system. 

First, some abbreviations are defined for clear representation. Table 1 lists the abbreviations used 
in this paper. 

Table 1. Table of abbreviations. 

Abbreviations Definition
IMU Inertial measurement units 
VO Visual odometry 
VIO Visual–inertial odometry 

AVIO Adaptive visual–inertial odometry 
RMSE Root-mean-square error 

GT scale Match the ground-truth scale 
ROS Robot operating system 

The structural architecture of the adaptive visual–inertial SLAM in a mobile device is shown in 
Figure 1. As shown in the figure, the main architecture includes modules such as tracking, local 
mapping, and loop closing, consistent with the ORB-SLAM. 

 
Figure 1. Structural architecture of adaptive visual–inertial simultaneous localization and mapping 
(SLAM). 
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In this study, three methodologies are applied in the tracking module. 
First, we added the IMU preintegration module to integrate the image data with IMU sensor 

data, and implemented a visual–inertial integrated VIO method. By using this method, the distance 
between the object and the camera and size of the object can be easily calculated, which was used in 
AR applications to interact between real world and virtual objects. 

Second, we designed a fast VO method based on optical flow, which estimates the camera pose 
between the current frame and previous frame. The optical-flow-based fast VO module uses the traced 
feature points of the existing reference frame without extracting the feature points. Therefore, no 
additional feature extraction time is required, the execution time of the tracking module can be reduced. 

Finally, we proposed an adaptive execution module. In this module, the IMU preintegration 
value is used to predict the state of motion between the current frame and the previous frame. It is 
dynamically selected through VIO or optical-flow-based fast VO for current frame tracking according 
to the state of motion. We also designed adaptive policies at different levels. 

Specifically, the algorithm can be simplified to decrease the amount of calculation and resource 
overhead. 

3.1. Visual–Inertial Odometry 

Cameras and IMU sensors are a common sensor combination in mobile devices. Usually, IMU 
sensors have much higher frequency than camera sensors. The visual-based VO has high accuracy, 
but when the camera moves quickly, the image becomes blurred and feature points cannot be 
extracted or the camera position cannot be tracked. In contrast, the IMU sensor is highly accurate 
when the camera moves rapidly. Therefore, the VIO method combines the characteristics of these two 
types of sensors to obtain complementary results. 

We implemented a real-time VIO method based on the monocular ORB-SLAM. The structure is 
shown in Figure 2. First, the camera and IMU sensor data are pre-processed through IMU 
preintegration. The camera pose is estimated using the fused data. In the back-end stage, the loop-
closure detection and the pose-graph optimization for the keyframe are performed to optimize the 
global map. Furthermore, we perform visual–inertial initialization for VIO in the system initialization 
phase. In the optimization phase, the loop-closure detection and pose-graph optimization modules 
can be lightly executed in the back-end and switched on/off, depending on the situation. 

 
Figure 2. Structure of visual–inertial odometry. 

In general, mobile devices are equipped with cameras and IMU sensors. Therefore, the visual–
inertial SLAM can be generally divided into the world coordinate system (World), IMU coordinate 
system (Body), and camera coordinate system (Camera). There are transformation relations between 
the coordinate systems. The visual-based systems have coordinate transformations between only the 
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camera and world coordinate systems. The coordinate transformation relation can be expressed as 
TCW = [RCW|tCW]. In a visual–inertial SLAM, the connection between the IMU and camera is usually 
assumed to be rigid. The conversion relation between the IMU and camera coordinate systems can 
be expressed as TCB = [RCB|tCB], which can be obtained via calibration in multi-sensor systems [30,31]. 

3.1.1. IMU Preintegration 

The IMU motion model below includes a formula for calculating the subsequent moment state 
using the current state values and IMU measurement data: 

R(t + Δt) = R(t)Exp(( ( ) − ( ) − ( ))Δt), 

v(t + Δt) = v(t) + gΔt + R(t)( ( )  − ( )  − ( ))Δt 

p(t + Δt) = p(t) + v(t)Δt + gΔ  + R(t)( ( ) − ( ) − ( ))Δ , 

(1) 

where R is the camera rotation, v is the motion velocity, p is the camera position, η is the IMU noise, 
and ba and bg are the IMU accelerometer bias and gyroscope bias, respectively. These difference 
equations explain the constraint relationship between IMU data at two different time points. 

In order to incorporate the IMU sensor data into the optimization-method-based SLAM 
algorithm, IMU information is added as a constraint item to the objective function to be optimized. 
However, since the IMU sampling rate is very high, the dimension of the variable will be too large if 
it is optimized for the IMU poses at each time point. Therefore, inertial measurements are usually 
integrated between frames to constitute relative motion constraints. We used the IMU preintegration 
[32] method to solve the computational complexity problem of the optimization-method-based 
visual–inertial SLAM and repeating the integration when the bias estimate changes, and we 
integrated the IMU preintegration in the original ORB-SLAM. 

As shown in Figure 3, the preintegration method integrates all the IMU measurements between 
two frames i and j to represent the motion model. The formula is expressed as follows. 

R  = R Exp(( − − )Δt) 

v  = v  +  gΔt  +  R (  −   −  )Δt 

p  = p +  [ v Δt + 
12 gΔ  +

12 R ( − − )Δt ] 
(2) 

where Δ ≐ ∑ Δt and (∙) ≐ (∙)( ). Equation (2) provides an estimate of the motion between 
time ti and tj. 

 
Figure 3. Diagram of the IMU preintegration method. 
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According to the above formula, the measurement model between the two frames is derived. 
The following relative motion increments that are independent of the pose and velocity at ti: 

∆  ≐  = Exp(( − − )Δt) 

∆  ≐   −  − gΔt  =  R (  −   − )Δt 

∆  ≐   −   −  v Δt  − 12 gΔ = [ ∆v Δt +
12Δ ( −  −  )Δt ] 

(3) 

where Δ ≐  and Δ ≐ (  − − gΔt ). We can calculate the right side of Equation (3) 
directly from the inertial measurement between the two frames, that is, the relative motion 
increments between the two frames can be obtained by solving the above equation. 

As shown in the above formula in [32], the constraints between the two frames can be expressed 
using only IMU data; furthermore, they can be expressed according to the states of the two frames. 
Therefore, we can define the residuals between the observation and state, construct the least-squares 
solution, and optimize the pose. 

If the IMU preintegration value is small, the camera movement changes only slightly, and the 
parallax between the two images is also small. Such images are relatively unimportant in the SLAM 
module. As shown in Figure 4, if the IMU preintegration value −∆ij between the current frame j and 
the previous frame i is calculated and this value is less than the threshold value, we mark the current 
frame j as unimportant and subsequently estimate the camera pose using our fast VO module. This 
frame is not processed by the SLAM module. Using this method, we can select the VO module 
adaptively at run time. 

 
Figure 4. Fusion model of IMU preintegration and the SLAM module. The IMU preintegration value 
is used to determine the importance of the frame in the SLAM module. 

However, this preprocessing method cannot be applied directly to the monocular ORB-SLAM. 
This is because the motion between two consecutive frames is assumed to be uniform movement in 
the monocular ORB-SLAM. In other words, when performing the pose optimization of the current 
frame, the initial value of the current-frame pose is obtained by using the velocity and pose of the 
previous frame. If the gap between frames is not constant, this assumption is not accurate, which 
affects the performance and can even cause the tracking to fail. = ×  (4) 

Visual–inertial SLAM is not affected by this problem because it uses IMU measurements as the 
initialization data. Therefore, our methodology is only suitable for visual–inertial SLAM. 
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3.1.2. Initialization 

In the IMU preintegration phase, we can estimate the pose from the IMU. However, as shown 
in the formula below, the IMU measurement data are affected by noise and bias. ( ) = ω( ) + ( ) + ( ) (5) ( ) = (t)( ( ) − ) + ( ) + ( ) (6) 

In general, noise can be calculated when performing IMU calibration. In the system initialization 
phase, the IMU accelerometer bias and gyroscope bias should be estimated. The bias is estimated 
only once in the initialization phase and is not recomputed until the system has changed significantly. 

The data measured by the IMU accelerometer can be viewed as the sum of its own acceleration 
and the earth's gravitational acceleration. Therefore, it is difficult to separate these two accelerations 
and the error is large. Thus, we proceed with the system initialization using a more accurate gyroscope. 

In the initialization phase, we carry out the following steps. First, we estimate the gyroscope 
bias. With two consecutive keyframes, the initial gyroscope bias can be easily computed and 
subsequently optimized using the Gauss–Newton method [33]. Subsequently, we update the 
gyroscope bias and pre-integration values for the keyframes in the local window and approximately 
estimate the scale of the system and the gravity vector. The scale is the magnification ratio between 
the system map and the ground-truth, and the gravity vector is a vector of gravity values with a 
magnitude of approximately 9.8. Finally, we estimate the accelerometer bias using the exact gravity 
magnitude value as a constraint, and refine the scale and gravity direction. 

The IMU biases in the initialization phase are used in the IMU preintegration. The rotation, 
velocity, and position between two frames can be estimated using Equation (3). 

3.1.3. Pose Estimation 

In VIO, pose, velocity, and IMU biases can be calculated for every frame. The camera pose of the 
current frame is predicted using the IMU motion model, and subsequently the map points of the local 
map are projected onto the current frame and matched with the keypoints of the current frame. The 
pose is optimized for the current frame by minimizing the projection error of all the matched feature 
points and the IMU error. 

 
Figure 5. Comparison of the original visual-based VO factor graph and visual–inertial-based VIO 
factor graph. 
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In order to estimate the pose, the state variable is first determined. In tightly coupled visual–
inertial SLAMs, the target state value is often used to estimate values such as pose, velocity and IMU 
biases. The state variable is a 15-dimensional value and is defined as follows:  ≐ , , , , ∈ ℝ , (7) 

where R, p, and v represent the IMU rotation, position, and velocity, respectively; ba and bg are the IMU 
accelerometer bias and gyroscope bias, respectively; Pose (R, p) belongs to SE(3); and v, ba, bg ∈ ℝ3. 

In the bundle adjustment, we replace the existing 6-dimensional pose with a 15-dimensional 
pose and add the preintegrated IMU data as a constraint to the visual–inertial-based VIO factor graph 
as shown in Figure 5. We solve this optimization problem using the Levenberg–Marquardt algorithm 
[34] implemented in g2o [35]. 

3.2. Optical-Flow-Based Fast Visual Odometry 

As described above, in the feature-based SLAM method, the feature points are extracted and the 
description is calculated for every frame. This operation is time consuming. For example, the ORB 
feature point extraction and description operations in ORB-SLAM require approximately 10 ms or 
more. Moreover, SLAM performs tasks such as feature point matching, pose calculation from 
matching feature points, and local map updating for each frame [2]. 

Therefore, we propose an optical-flow-based fast VO to quickly calculate the relative pose 
between the current frame and the previous frame. Using the IMU, the motion change between the 
two frames is calculated in the IMU preintegration step. The fast VO method is used for frames with 
relatively low significance and operations such as mapping of SLAM and creation of keyframes are 
omitted. This method reduces the computational complexity of SLAM, thereby rendering it suitable 
for the fast calculation of location information, such as in an AR application environment. Since the 
fast VO method is performed when the IMU preintegration value is small, it exhibits a better effect 
when the camera motion is relatively slow.  

Figure 6 shows a flowchart of the optical-flow-based fast VO, which is divided into three steps. 

 
Figure 6. Flowchart of the optical-flow-based fast VO. 

In the first step, when tracking the optical-flow-based fast VO in the tracking module, matching 
feature points are acquired between the previous frame and the local map. These points are used as 
valid tracking keypoints and the previous frame is set as the reference frame.  

In the second step, a tracking operation based on an advanced Kanade-Lucas-Tomasi (KLT) 
feature tracking algorithm is performed on the current frame. 
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In the third step, the relative pose between two frames is calculated using the eight-point [8] 
algorithm each time using the matched keypoints. If the subsequent frame continues to perform the 
optical-flow-based fast VO, only steps 2 and 3 are executed. 

3.2.1. Advanced KLT Feature Tracking Algorithm 

The optical flow method calculates the motion of a pixel between frames over time. When the 
camera moves, the position of the pixel in the frame also changes. An optical low method can track 
the motion of a pixel. 

The calculation method for all the pixels is a dense optical flow and the calculation method for 
some pixels is a sparse optical flow. KLT [36] is a representative sparse optical flow algorithm for 
feature tracking. We use this method to track the feature points between consecutive frames. 

The optical flow method assumes constant grayscale values. In other words, the grayscale value 
of the same spatial point pixel does not change over all the frames. As shown in Figure 7, when a 
pixel at position (x, y) at time t moves to position (x + dx, y + dy) at time t + dt, the grayscale value of 
the two pixels is the same. 

 
Figure 7. Diagram of the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm. 

According to the assumption of grayscale constant, the formula is ( + d , + d , + d ) = ( , , ). (8) 

By performing Taylor expansion and retaining the first-order term, we obtain ( + d , + d , + d ) ≈ ( , , ) + d + d + d . (9) 

Substituting Equation (8) into Equation (9), we obtain d + d + d = 0. (10) 

Dividing both sides by dt, we obtain the optical flow constraint equation: + = − , (11) 

where dx/dt is the motion velocity of the pixel along the x-axis, and dy/dt is the motion velocity along 
the y-axis, which are denoted as u and v, respectively. Further, ∂I/∂x is the gradient of the pixel in the 
x-direction and ∂I/∂y is the gradient of the pixel in the y-direction, which are denoted as Ix and Iy, 
respectively. Furthermore, ∂I/∂t is the change in the image grayscale over time, which is denoted as 
It. The above expression can be written as [ ] = − . (12) 

The above equation is a linear equation with two variables, and cannot be solved only by one 
pixel. In the KLT method, it is assumed that the motion of the pixels in the window of size (m, n) 
around the pixel is the same. We obtain m × n number of equations 
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[ ] = − , = 1, … , . (13) 

A and b are defined as follows: 

= [ ]⋮[ ] , = ⋮ . (14) 

Substituting Equation (14) into Equation (13), we obtain = − . (15) 

In order to obtain the components u and v of the motion velocity of the pixel, the least-square 
solution of the overdetermined linear equation is calculated as follows: ∗ = −( ) . (16) 

Thus, we can obtain the motion vector of the pixel to calculate the position of the tracking 
keypoint in the current frame. 

However, if the image resolution is large or the distance over which camera moving is far, the 
motion of the points in the window may be different, which will result in a larger computational 
error. Thus, we use the pyramid KLT algorithm to reduce the computational error, in order to 
improve the accuracy and robustness of the optical flow calculation. The pyramid KLT algorithm 
involves the detection of different resolution images—From the image with the smallest resolution 
at the top, gradually increase the resolution to the original image at the bottom. 

In order to consider the effects of real-time problems, we use a three-layer pyramid. From the 
uppermost layer, the KLT algorithm is used to calculate the motion of the pixel, and after the scale 
transformation, it is used as the initial value of the subsequent layer; higher accuracy is calculated at 
the subsequent layer, and finally the motion of the pixel is calculated in the original image. 

The optical flow method is very fast when a small number of tracking keypoints is used. For 
example, if the number is less than 100, the execution time is short and the efficiency is high. If 500 
feature points per frame are used in tracking, there are approximately 100 matching points between 
two consecutive frames. Therefore, we use the keypoints obtained in step 1 to track the current frame, 
as shown in Figure 7, and subsequently delete any keypoint that fails to be tracked in the current 
frame. A keypoint that has been successfully tracked is stored with the current frame, and the current 
frame is set as the new reference frame. If the subsequent frame continues to execute the optical-flow-
based fast VO, step 2 is immediately executed without executing step 1. 

If the number of successfully tracked keypoints is less than the threshold, tracking fails. In this 
case, the current frame exits from optical-flow-based fast VO module and attempts to retrace itself 
back to the VIO module. 

The optical flow method may not be accurate if the grayscale-invariance assumption is violated 
when the surrounding environment changes or the camera exposure parameter changes. Since the 
method proposed in this paper uses only a few consecutive frames each time for tracking, it is not 
significantly influenced by this problem. 

3.2.2. Pose Estimation 

In optical-flow-based fast VO, the relative pose between two frames can be estimated in epipolar 
geometry [37] using 2D–2D image matching. In epipolar geometry, we generally estimate the 
essential matrix from the matching point and recover R and t from the essential matrix. 

If tracking is successful in step 2, the matching point between the two frames can be obtained. 
We use the eight-point algorithm based on random sample consensus (RANSAC) [38] to estimate the 
essential matrix of two images. 

Figure 8 illustrates the epipolar constraint. The projection of spatial point P at frame1 is p1 and 
the projection at frame2 is p2. K represents the intrinsic camera intrinsic parameters. The normalized 
coordinates are defined as follows: 
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= , =  (17) 

where x1 and x2 satisfy the following homogeneous relation: = + . (18) 

The epipolar constraint can be derived as follows: ^ = 0. (19) 

If the essential matrix E is defined as = ^ , (20) 

We obtain = 0. (21) 

In other words, the pose can be estimated by calculating the essential matrix E. E is a 3 × 3 matrix 
with eight degrees of freedom (DoFs), and a constant factor. Therefore, the essential matrix E between 
two frames can be estimated using the eight-point algorithm based on RANSAC. 

 
Figure 8. Diagram of the epipolar constraint. 

Subsequently, we can recover the camera rotation and translation matrix T = [R|t] from the 
estimated essential matrix E by using singular value decomposition (SVD) [39]. ∼ ⋅ [ | ] (22) 

Since the camera’s intrinsic parameters K are known, we can use the world-camera projection 
relationship in the above equation to calculate the position change (u, v) of the spatial point in the frame. 

3.3. Adaptive Execution Module 

In the adaptive execution module, the IMU preintegration value is used to predict the state of 
motion between the current frame and the previous frame. It is adaptively selected from VIO or 
optical-flow-based fast VO for current-frame tracking according to the state of motion. 

In ORB-SLAM, each frame is compared with the local map. However, in a limited computing 
resource environment, the mapping thread may not be able to complete the task before the 
subsequent input frame arrives. Consequently, the local map information for tracking will not be 
ready and tracking fails, thus reducing the accuracy and robustness of the SLAM system. 

ORB-SLAM will perform feature point extraction and tracking for each input image even if the 
camera is not moving. In other words, it performs unnecessary calculations and wastes computing 
power. This is a critical issue in environments with limited computing resources, such as mobile 
devices. 

The goal of this module is to reduce the tracking time and reduce the demand for computing 
resources. 
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3.3.1. Adaptive Selection Visual Odometry 

As shown in Figure 9, in the adaptive execution module, we first verify the system state and 
tracking state of the previous frame. Subsequently, we verify that the number of keypoints tracked 
in the previous frame satisfies the minimum number of keypoints required for tracking. Thereafter, 
the preprocessing data calculated by the IMU preintegration module are used as a condition for 
selecting an adaptive module. In Equation (3), we can calculate the changes in rotation, velocity, and 
position between the current frame and the previous frame, namely ΔR, Δv, and Δp, respectively. If 
the IMU measurement value is smaller than the set threshold value, the motion change is small. In 
other words, the parallax between the current frame and the previous frame is small. Finally, if all 
the conditions are satisfied, we execute the optical-flow-based fast VO module. Otherwise, we 
execute the VIO module. 

 
Figure 9. Flowchart of the adaptive execution module. 

3.3.2. Adaptive Execution Policies 

We also designed different levels of adaptive execution policies for different scenarios. 
First, we analyzed the performance of the monocular ORB-SLAM via experiments. Figures 10 

and 11 show the relationships between performance, accuracy, and robustness when different 
numbers of features are applied in SLAM when running the EuRoC dataset [40]. 

A direct way to reduce the average tracking time is to reduce the number of features used in 
each image. Figures 10 and 11 show that the average tracking time is reduced when the number of 
features is reduced. Simultaneously, the translation RMSE [41] value of the keyframe trajectory 
increases, and the number of lost tracking frames increases. There is a trade-off between the number 
of features used in the SLAM system and its accuracy and robustness. 

 
Figure 10. Average tracking time and the translation RMSE of the keyframe trajectory versus the 
number of features used in the monocular ORB-SLAM when running the EuRoC datasets. 
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Figure 11. Average tracking time and the number of lost tracking frames versus the number of 
features used in the monocular ORB-SLAM when running the EuRoC datasets. 

An analysis of the results obtained using the EuRoC dataset shows that the accuracy and stability 
are significantly lowered when the number of features is less than 500. In order to ensure the 
efficiency of the computation, we use 500 features in the adaptive execution policy method. 
Subsequently, four modes are designed for additional execution policies, as listed in Table 2. The 
adaptive execution policies can be selected according to the performance of the mobile device in the 
system initialization step, or the user can preset the mode according to the application situation. 

Table 2. Table of adaptive execution policies. 

Mode Modules Characteristics 
Level 0 Visual–inertial odometry SLAM Accuracy priority, no adaptive module 

Level 1 Visual–inertial odometry and optical-flow-based fast visual odometry Balance, suitable for all scenes 

Level 2 Visual–inertial odometry and optical-flow-based fast visual odometry 
Speed priority, suitable for easy and 

medium scenes 

Level 3 Visual–inertial odometry and optical-flow-based fast visual odometry 
Speed priority, suitable for only easy 

scenes 

In addition to the optical-flow-based fast VO, several methods can be used to improve the 
performance of the adaptive execution module. Examples include reducing the local window size, 
modifying keyframe decisions and cullinlg policies, and reducing the number of DoFs of the pose in 
graph optimization. 

In order to demonstrate the results more intuitively, we only use the proposed optimization 
methods. 

4. Experiments and Results 

In this section, we evaluate the proposed adaptive visual–inertial SLAM system focusing on two 
main goals. One is a comparison of the SLAM system using the proposed VIO with the existing ORB-
SLAM system. The accuracy and robustness of the SLAM system are improved because the IMU 
measurement data is added to the pose optimization process. However, this requires additional 
operations and time. The other goal is to achieve real-time operation efficiency and accuracy of the 
visual–inertial SLAM system using the proposed adaptive execution module. The adaptive execution 
module improves the performance by dynamically applying the optical-flow-based fast VO in tracking. 

We implemented and analyzed the proposed system in a PC environment. We compared the 
keyframe trajectory of the SLAM system with the ground-truth data and calculated the translation 
RMSE [42,43] of the keyframe trajectory for each sequence. We further analyzed the accuracy and the 
number of lost frames. Finally, we simulated the system using actual mobile device data by 
transmitting sensor data measured in real time from an Android smartphone to PC. The structural 
architecture of the simulation is shown in Figure 12. Our system only runs on a CPU and does not 
use any hardware acceleration methods. 
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Figure 12. Structural architecture of the simulation. 

Table 3 provides the specifications for the desktop, mobile devices, and development software 
environment. We experimented with the PC environment, and conducted experiments using the 
EuRoC dataset. The EuRoC dataset [40] has a total of 11 sequences and is recorded using a micro 
aerial vehicle. Sequences are measured in a machine hall and two different rooms, and classified into 
easy, medium, and difficult levels according to the illumination, texture, and motion speed. The 
EuRoC dataset provides stereo images, microelectromechanical systems IMU, ground-truth data, etc. 
The imaging system uses a global shutter camera, supports the size of 752 × 480, and the image data 
frequency of 20 FPS, and IMU data supports the data frequency of 200 Hz. The ground-truth data is 
used for comparison when analyzing the accuracy of the SLAM estimated trajectory. Therefore, the 
EuRoC dataset is widely used for benchmarking SLAM systems. 

Moreover, we used the OpenCV 3.2.0 library [44] and the ROS indigo toolkits [45]. ROS indigo 
default support for OpenCV 2.4 version, but OpenCV 2.4 version and 3.2 version do not support 
simultaneous use. Therefore, we use the OpenCV 3.2 version to recompile the ROS indigo cv_bridge 
package. 

Table 3. Experiment environments. 

Desktop Specification
CPU Intel Core i7-6700K 
RAM SDRAM 16 GB 

OS Ubuntu 14.04 
Phone Specification

Model name Nexus 6 
Android version 7.0 Nougat 
Development Software Environment 

OpenCV 3.2.0 version 
ROS version ROS Indigo 

Benchmark dataset EuRoC dataset 

4.1. Monocular ORB-SLAM Evaluation 

We first analyzed the effect of the average tracking time, SLAM system accuracy and robustness 
when using features of different sizes in each frame in the monocular ORB-SLAM. 

Table 4 provides the results of execution of all the sequences of the EuRoC dataset when features 
of different sizes are applied in the monocular ORB-SLAM. The results show the average tracking time, 
translation RMSE of the keyframe trajectory, and number of total lost tracking frames. The unit of 
measurement for the average tracking time is millisecond, and the unit of translation RMSE is meter.
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Table 4. Average tracking time, translation RMSE of the keyframe trajectory, and number of lost tracking frames versus the number of features used in the monocular ORB-
SLAM with EuRoC dataset. 

Feature MH_01_e MH_02_eV1_01_eV2_01_eMH_03_mV1_02_mV2_02_mMH_04_dMH_05_dV1_03_dV2_03_d

300 
22.8  22.3  20.5  19.0  22.0  19.2  19.5  21.5  20.9  17.7  X 
0.057  0.052  0.093 0.057 0.064  0.069  0.087  0.216  0.150  0.131 X 
220 0 72 114 63 25 68 263 225 99 X 

400 
23.2  22.1  20.8  19.9  22.5  19.9  19.7  20.9  21.1  18.0  X 
0.043  0.047  0.094 0.060 0.045  0.065  0.071  0.147  0.054  0.146 X 

16 0 0 110 62 0 67 261 26 64 X 

500 
23.4  23.0  21.5  20.1  23.3  20.5  21.2  21.4  21.6  19.5  20.0  
0.042  0.041  0.094 0.057 0.046  0.059  0.058  0.081  0.052  0.072 0.095 

0 0 0 109 0 0 67 0 0 59 250 

600 
25.1  24.6  23.1  21.0  23.6  21.3  22.7  21.9  22.1  20.6  19.2  
0.046  0.037  0.095 0.059 0.039  0.064  0.056  0.076  0.052  0.064 0.104 

0 0 0 109 0 0 67 0 0 58 146 

800 
27.8  26.0  26.2  22.4  25.5  23.3  26.0  23.2  23.6  22.3  23.3  
0.043  0.036  0.097 0.057 0.041  0.064  0.056  0.087  0.068  0.064 0.097 

0 0 0 108 0 0 67 0 0 58 143 

1000 
29.5  28.4  28.8  24.2  27.2  25.2  27.4  25.6  24.5  23.0  24.3  
0.046  0.036  0.095 0.060 0.038  0.063  0.058  0.056  0.052  0.066 0.123 

0 0 0 108 0 0 0 0 0 117 121 

1250 
32.3  30.9  32.2  27.9  29.5  27.7  31.1  27.8  27.5  26.5  26.7  
0.044  0.035  0.095 0.058 0.039  0.064  0.058  0.062  0.050  0.071 0.119 

0 0 0 108 0 0 0 0 0 52 136 

1500 
33.5  32.9  33.6  29.4  31.4  29.7  32.0  29.3  29.3  27.8  28.3  
0.044  0.035  0.096 0.056 0.038  0.064  0.057  0.051  0.050  0.071 0.128 

0 0 0 108 0 0 0 0 0 55 127 
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If the RMSE value is small, the SLAM system accuracy is high. If the number of lost tracking 
frames is small, the robustness is high. If this value is more than a certain percentage of the total 
number of frames, it indicates that the tracking has failed. In the experimental results, the tracking 
failure case is marked as X. 

The movement of the V2_03_difficult sequence is extreme; hence, when the feature size is set to 
less than 500, the tracking fails, and if it is set to 500, the number of lost tracking frames is 250. 

At the end of the V2_01_easy sequence, the camera is covered by the object and the tracking is 
lost. The resulting data shows that the number of lost tracking frames is approximately 108. This is 
noise data which is not required to reflect the actual SLAM performance. Therefore, we removed the 
data from this part when evaluating the performance. 

Figures 10 and 11 show the relationship between the performance, accuracy, and robustness 
when different number of features are applied in SLAM when running the EuRoC dataset. 

Experimental results show that increasing the number of features used in each frame increases 
the average tracking time and also increases the system accuracy and robustness accordingly. A direct 
way to reduce the average tracking time is to reduce the number of features used in each image. 
Simultaneously, the translation RMSE of the keyframe trajectory increases and the number of lost 
tracking frames also increases. There is a trade-off between the number of features used in the SLAM 
system and the accuracy and robustness. Moreover, if the experimental results are classified into 
three different levels and analyzed, the higher the level, the greater the influence on accuracy and 
robustness. Moreover, we can observe that the difficult level is significantly affected by the number 
of feature points. 

An analysis of the results on the EuRoC dataset shows that the accuracy and stability are 
significantly lowered when the number of features is less than 500. In order to ensure the efficiency 
of the computation, we use 500 features in our proposed methods for testing. 

4.2. Visual–Inertial Odometry SLAM Evaluation 

We implemented the proposed VIO method and compared the visual–inertial SLAM with the 
monocular ORB-SLAM using the EuRoC dataset. 

The accuracy of the result of initialization has a decisive influence on the accuracy of the entire 
SLAM system. In our proposed VIO method, we estimated the IMU biases and local 3D map scale at 
a certain amount of visual–inertial initialization time in the initialization step. We confirmed via the 
experiment that the visual–inertial initialization method is relatively stable, with a scale error 
typically less than 1.5% for the EuRoC dataset when the initialization time is set as 15 s. 

Table 5 and Figure 13 illustrate the comparison of the performances of the VIO-based SLAM and 
the monocular ORB-SLAM. The experimental results for the EuRoC dataset are shown in the same 
experimental environment with 500 features.
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Table 5. Evaluation of VIO-based SLAM and comparison with the monocular ORB-SLAM. 

 ORB-SLAM (500) VIO-SLAM (500)

Dataset ORB Average  
Tracking Time (ms) 

ORB RMSE (m)/
GT Scale 

Lost Tracking 
Frame Count 

VIO Average  
Tracking Time (ms) 

VIO RMSE (m)/
GT Scale Scale Error VIO RMSE (m) Lost Tracking  

Frame Count 
MH_01_easy 23.4  0.042  0 26.6  0.031  1.3% 0.067  0 
MH_02_easy 23.0  0.041  0 26.5  0.030  0.6% 0.040  0 
V1_01_easy 21.5  0.094  0 23.5  0.093  0.3% 0.093  0 
V2_01_easy 20.1  0.057  109 23.9  0.058  1.2% 0.065  108 
Easy level 22.0 0.058 109 25.1 0.053 0.86% 0.066 108

MH_03_medium 23.3  0.046  0 24.7  0.044  1.1% 0.063  0 
V1_02_medium 20.5  0.059  0 25.2  0.062  0.5% 0.063  0 
V2_02_medium 21.2  0.058  67 25.6  0.066  0.2% 0.066  0 
Medium level 21.7 0.055 67 25.2 0.057 0.61% 0.064 0

MH_04_difficult 21.4  0.081  0 23.3  0.080  0.4% 0.085  0 
MH_05_difficult 21.6  0.052  0 25.0  0.065  0% 0.065  0 
V1_03_difficult 19.5  0.072  59 20.5  0.064  0.1% 0.064  0 
V2_03_difficult X X X X X X X X 
Difficult level 20.8 0.068 59 22.9 0.070 0.18% 0.071 0

Total 21.6  0.060  235 24.5  0.059  0.58% 0.067  108 
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Figure 13. Evaluation of VIO-based SLAM and comparison with the monocular ORB-SLAM. 

The existing monocular SLAM cannot calculate the true scale value. Therefore, to compare the 
keyframe trajectory with the ground-truth data, data preprocessing must be performed to match the 
ground-truth scale. The result of this comparison shows the accuracy of the monocular SLAM system, 
but it does not include scale information and therefore includes a scale error. 

In order to compare the visual–inertial SLAM system with the monocular ORB-SLAM system, 
we divided the test results into the translation RMSE with GT scale and the translation RMSE without 
GT scale according to ground-truth scale matching. 

Since the motion of the V2_03_difficult sequence is extreme, the proposed method and the 
monocular ORB-SLAM result in tracking failure. 

Experimental results show that the average accuracy of the proposed VIO-based SLAM 
increases by 1.6% compared to the existing monocular ORB-SLAM, and the mean scale error of the 
proposed VIO-based SLAM is 0.58%.However, the average tracking time increases by 13.6% owing 
to the addition of IMU measurement data. The mean translation RMSE value is 0.067 m when the 
ground-truth scale matching is not applied to the estimated keyframe trajectory in the VIO-based 
SLAM, and is reduced by 13.2% compared to the translation RMSE value using the ground-truth 
scale matching. Simultaneously, the system robustness improves and shows good effects with a 
blurred image and pure rotation. 

The following is the classification and analysis for different levels. At the easy level, the accuracy 
improves by 9.2% and the average tracking time increases by 14.2%. At the medium level, the 
accuracy reduces by 4.9% and the average tracking time increases by 16.2%. At the difficult levels, 
accuracy reduces by 2.1% and the average tracking time increases by 10.1%. Moreover, the system 
robustness increases at all levels. 

When the proposed method is compared to the monocular SLAM, the accuracy is observed to 
slightly increase, because the accuracy of the IMU sensor currently used in mobile devices is lower 
than the accuracy of the camera sensor. The reason for the increase in the average tracking time in 
the VIO method is that IMU measurement data are additionally applied for pose optimization. 

4.3. Adaptive Visual–Inertial Odometry SLAM Evaluation 

First, the time required for tracking by the optical-flow-based fast VO method and the VIO 
method was measured and compared in the AVIO-based SLAM. Table 6 provides the average 
execution time of the two odometry methods of AVIO-based SLAM for the MH_01_easy sequence 
when the level 1 adaptive execution policy is applied. 

Experimental results show that the optical-flow-based fast VO method is 3.85 times faster than 
the VIO method. In other words, the higher the proportion of the optical-flow-based fast VO among 
the total tracking, the faster the average tracking time. 
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Table 6. Comparison of the average execution time between optical-flow-based fast VO method and 
VIO method. 

Optical-Flow-Based Fast Visual Odometry Mean Time (ms) Visual–Inertial Odometry Mean Time (ms) 
Obtain keypoints 0.16 ORB extraction 20.85 

Advanced KLT tracking 2.53 Initial Pose Estimation with IMU 5.09 
Pose Estimation 6.13 TrackLocalMap with IMU 8.02 

Total 8.82 33.96 

Table 7 and Figure 14 illustrate the experimental results for the proposed four adaptive execution 
policies. We can observe that the execution time can be significantly reduced by using the adaptive 
execution method. In the level 1 policy, the average tracking time is reduced by 7.8% compared to 
level 0, whereas the RMSE value increased by 8.5%. In the level 2 policy, the average tracking times 
are reduced by 17.5% and 8.3% for the easy dataset and medium dataset, respectively, compared to 
level 0. In the level 3 policy, the average tracking time is reduced by 18.8% for the easy dataset 
compared to level 0. 

Moreover, the adaptive execution module also affects the other modules, such as mapping and 
optimization. Therefore, in order to analyze the impact of AVIO method on the entire SLAM system, 
we tested it in a single-core single-threaded environment. Furthermore, because the performance of this 
environment limits the SLAM system to run in real time, while leading to SLAM performance 
degradation. 

 
Figure 14. Comparison of the average tracking time and translation RMSE of keyframe trajectory with 
different level-sets of AVIO-based SLAM. 

Table 8 and Figure 15 illustrate the experimental results for different level-sets of AVIO-based 
SLAM in a single-core single-threaded environment. The experimental results show that, in the level 
1 policy, the average tracking time and RMSE value are reduced by 10.0% and 1.5% compared to level 
0, respectively. In the level 2 policy, the average tracking times are reduced by 29.8% and 14.2% for 
the easy dataset and medium dataset, respectively, compared to level 0. In the level 3 policy, the 
average tracking time is reduced by 32.6% for the easy dataset compared to level 0. 
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Table 7. Evaluation of AVIO-based SLAM. 

 VIO (500)-L0 AVIO-L1 (Suitable for All) AVIO-L2 (Suitable for Easy & Medium) AVIO-L3 (Suitable for Easy) 

Dataset Level 0 Average  
Tracking Time (ms) 

Level 0 RMSE (m)/
GT Scale 

Level 1 Average  
Tracking Time (ms) 

Level 1 RMSE (m)/
GT Scale 

Level 2 Average  
Tracking Time (ms) 

Level 2 RMSE (m)/
GT Scale 

Level 3 Average  
Tracking Time (ms) 

Level 3 RMSE (m)/ 
GT Scale 

MH_01_easy 26.6 0.031 21.6 0.032 19.7 0.032 19.1 0.036 
MH_02_easy 26.5 0.030 20.2 0.034 20.0 0.031 18.6 0.036 
V1_01_easy 23.5 0.093 24.3 0.096 22.0 0.094 21.5 0.094 
V2_01_easy 23.9 0.058 20.7 0.066 21.2 0.054 20.4 0.066 
Easy level 25.1 0.053 21.7 0.057 20.7 0.053 19.9 0.058 

MH_03_medium 24.7 0.044 22.8 0.039 22.5 0.044 X X 
V1_02_medium 25.2 0.062 23.3 0.059 23.2 0.058 X X 
V2_02_medium 25.6 0.066 24.5 0.073 23.6 0.063 X X 
Medium level 25.2 0.057 23.5 0.057 23.1 0.055 X X 

MH_04_difficult 23.3 0.080 21.9 0.092 X X X X 
MH_05_difficult 25.0 0.065 24.1 0.086 X X X X 
V1_03_difficult 20.5 0.064 22.9 0.068 X X X X 
V2_03_difficult X X X X X X X X 
Difficult level 22.9 0.070 23.0 0.082 X X X X 

Total 24.5 0.059 22.6 0.064 21.9 0.054 19.9 0.058 

Table 8. Evaluation of AVIO-based SLAM in a single-core single-threaded environment. 

 VIO (500)-L0 AVIO-L1 (Suitable for All) AVIO-L2 (Suitable for Easy & Medium) AVIO-L3 (SUITABLe for Easy) 

Dataset 
Level 0 Average  

Tracking Time (ms) Level 0 RMSE (m)/GT Scale 
Level 1 Average  

Tracking Time (ms) 
Level 1 RMSE (m)/

GT Scale 
Level 2 Average  

Tracking Time (ms) 
Level 2 RMSE (m)/

GT Scale 
Level 3 Average  

Tracking Time (ms) 
Level 3 RMSE (m)/ 

GT Scale 
MH_01_easy 49.6 0.033 36.0 0.032 31.3 0.036 30.4 0.032 
MH_02_easy 46.1 0.032 35.5 0.041 29.9 0.033 29.9 0.036 
V1_01_easy 51.1 0.093 46.0 0.094 39.1 0.093 37.6 0.094 
V2_01_easy 42.5 0.060 35.3 0.055 32.5 0.062 29.5 0.062 
Easy level 47.3 0.054 38.2 0.055 33.2 0.056 31.9 0.056 

MH_03_medium 46.4 0.041 39.7 0.045 34.5 0.045 X X 
V1_02_medium 39.4 0.083 45.8 0.059 38.8 0.070 X X 
V2_02_medium 43.3 0.085 42.3 0.077 37.3 0.070 X X 
Medium level 43.0 0.070 42.6 0.060 36.9 0.062 X X 

MH_04_difficult 37.2 0.080 37.4 0.061 X X X X 
MH_05_difficult 40.4 0.089 38.5 0.118 X X X X 
V1_03_difficult X X X X X X X X 
V2_03_difficult X X X X X X X X 
Difficult level 38.8 0.085 38.0 0.090 X X X X 

Total 44.0 0.066 39.6 0.065 34.8 0.059 31.9 0.056 
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Figure 15. Comparison of the average tracking time and translation RMSE of keyframe trajectory with 
different level-sets of AVIO-based SLAM in a single-core single-threaded environment. 

4.4. Experiments of the Adaptive Visual–Inertial Odometry SLAM with Mobile Device Sensors 

First, we use the OpenCV library to resize and convert the acquired camera image to RGB format 
on an Android smartphone. The image data and IMU data are transferred to the PC in real time under 
WiFi connection using the ROS toolkit. We obtained a 15 fps image of size 640 × 480 and 100 Hz IMU 
data on a Nexus 6 smartphone. After the camera-IMU calibration, the proposed method was tested 
in a PC environment. Figure 16 shows a screenshot of the proposed AVIO-based SLAM with real 
mobile device sensor data in a PC environment. 

When we tested the proposed system using actual mobile device sensor data, the average 
tracking time was 23.2 ms. However, since the smartphone used in the experiment uses a low-priced 
rolling shutter camera and the image frequency is relatively low, moving it slightly faster will cause 
the image to be blurred and tracking to be lost. Although it can be solved to some extent with the 
VIO method, this system still has not achieved the desired robustness. 

 
Figure 16. Screenshot of the proposed AVIO-based SLAM with real mobile device sensor data in a PC 
environment. 

5. Conclusions 



Sensors 2017, 17, 2567  23 of 25 

In this paper, we presented an adaptive monocular visual–inertial SLAM for real-time AR 
applications in mobile devices. First, we designed a VIO method that combines a camera and IMU 
sensor. Second, to support real-time faster tracking of AR applications in a mobile device 
environment, an optical-flow-based fast VO module was designed and combined with the existing 
ORB-SLAM system. Finally, we present an adaptive execution method that adaptively selected the 
tracking module according to the change in the IMU sensor value. 

Experimental results show that the proposed technique achieves up to 18.8% of performance 
improvement, while reducing the accuracy slightly. Therefore, our methods can be adapted to 
improve the performance of SLAM for real-time AR applications in mobile devices. 
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