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Abstract: A microstructure beam is one of the fundamental elements in MEMS devices like cantilever
sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the
performance of MEMS beams with the current available simulators due to the inevitable process
deviations. Feasible numerical methods are required and can be used to improve the yield and profits
of the MEMS devices. In this work, process deviations are considered to be stochastic variables,
and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied
for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify
the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions
have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave
Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for
the results of GPC approximations compared with the MC simulations. Appropriate choices of the
4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation
labor. The mean value of the residual stress, concluded from experimental tests, shares an error about
1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC
approximation to attain the mean test value of the residual stress. The corresponding yield occupies
over 90 percent around the mean within the twofold standard deviations.
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1. Introduction

Numerical simulation methods have widely been used in the design of Micro-Electromechanical
Systems (MEMS) to model the interactions among multi-physical fields for rapid computational
prototyping [1–4]. However, owing to factors like manufacturing process errors, residual stresses,
irregular surface topography, and chemical contamination, these simulation methods assume the
geometrical and physical properties of the device to be determinate [5]. Ubiquitous uncertainty
exists for incomplete underlying physics theories and inevitable measurement errors. To investigate
the impact of data drifts in processing, the quantification of uncertainty needs to be developed.
Therefore, for reliable predictions, it is imperative to incorporate uncertainty when the simulations
begin, not as an after-thought [6,7]. The stochastic deviations in various design parameters should be
considered during the development of the computational models.

MEMS uncertainties have been considered to be subjective safety factors, which may lead to over
conservative designs [8]. The influence of processing uncertainties on the operation and reliability
of MEMS devices has been widely investigated on both the experimental and the theoretical points
of view. Although improvements have been achieved in single processing steps like release [9] and
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surface roughness [10], or in topology and material optimizations [11–13], MEMS device optimization
through various experimental trials is time-profit costing. On the other hand, computer-aided
designs or simulations can quickly provide proper guidance for device design when facing process
deviations. Typically, Monte Carlo (MC) simulations have been employed to deal with the input
parameter uncertainty during MEMS device design [14–17]. These studies have presented natural
but expensive MC-based frameworks in a deterministic way. Even if it is straightforward, the MC
method becomes prohibitively expensive to achieve high accuracy as it offers slow convergence
rates when facing complex multi-physics MEMS problems. Although improvements have been
made by researchers [18,19], the heavy sampling remains an obstacle. In other cases where the
problem is entirely continuous, Taylor expansions seem to be useful [20]. Unfortunately, it is
just a minor probability event. For uncontinuous or partly continuous problems, non-sampling
methods are used. For example, perturbation methods [21] have been extensively used in various
engineering fields [21–23]. In order to perform well, these methods should obey the inherent
limitation that the uncertainty magnitude cannot be too large, both for the inputs and outputs
(typically less than 10 percent). Another class of non-sampling methods includes the operator-based
methods [24], which are actually manipulations of the stochastic operators in the governing equations.
Like perturbation methods, they are also restricted to small uncertainties [25] and strongly dependent
on the underlying operators. We previously developed adequate processing models to predict the
device performance [26]. However, these approaches are not applicable to complex device models
with different process deviation distributions.

A generalized polynomial chaos (GPC) method can be qualified, which is essentially a spectral
representation in random space [27]. It exhibits fast convergence when the solution smoothly depends
on the random inputs. This idea derives from polynomial chaos (PC), based on the theory of
Wiener-Hermite polynomial chaos [28]. The Hermite polynomials aim to represent random processes
as orthogonal basis and succeed in solving engineering problems [28]. The PC expansion is to construct
a random variable with a desired distribution as a function of the given random variable. As a result,
the GPC type of random variables depends on random inputs, following the Wiener-Hermite PC
expansion. This approach, which provides not only high accuracy, but faster convergence rate, has
also been successfully applied to many engineering problems, such as computational mechanics [29],
diffusion [30], fluid flow [31] and heat conduction [32].

This work is devoted to the GPC-based stochastic modeling of MEMS beam structures. To quantify
the effect of stochastic deviations in MEMS processing, the random inputs are finally turned into
deterministic equations. Various process deviations are assumed to be mutually independent and
discretized in the governing equations within stochastic domains. Sensitivity analysis is utilized to
choose the initial critical factors. The doubly-clamped poly-beam has been testified to illustrate the
accuracy of the GPC method. GaAs MMIC-based beams are modeled to predict the statistical features
of the unknown parameters such as Young’s modulus and the residual stress. Verifications have
been conducted by MC simulations as well as experimental tests by a Laser Doppler Vibrometer
(LDV, MSV-400M2-20, Polytec Corp., Irvine, CA, USA).

2. Methodology and Algorithm

All process deviations are assumed to be represented by a vector x. Thus, the original
device performance equations can be rewritten as in Equation (1) in a stochastic way rather
than deterministically:
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where = ( , , )  is the performance solution, ( , , )  is the source term. The differential 
operator  generally involves differentiations in space/time and can be nonlinear. Appropriate 
boundary and initial conditions should be set before the simulation. The random parameter  
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(x, t, θ; u) = f (x, t, θ) , (1)

where u = u(x, t, θ) is the performance solution, f (x, t, θ) is the source term. The differential operator
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but identically distributed random variables
{

ξ j} =
[
ξ1
(
θj
)
, . . . , ξn

(
θj
)]

, f or j = 1, . . . , N, with the

given number of realizations N. For each realization, the deterministic problem
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(
uj, σj, Pj

f ; x, t, ξ j
)
= 0

is solved to obtain the solution [33]. However, MC-based simulators are often complex and take
appreciable computing time to be evaluated, so that the large number N of simulation runs required
by MC is impractical. The performance solution u, which is regarded as a random process, can be
expanded by the Wiener-Askey polynomial chaos as:

u(x, t; θ) =
P

∑
i=0

ui(x, t)Ψi(ξ(θ)) . (2)

Note that the infinite summation in Equation (2) has been truncated at the finite term P. The above
representation can be considered as a spectral expansion in the random dimension θ, while the random
trial basis {Ψi} is the Askey scheme-based orthogonal polynomials. The total number of expansion
terms is (P + 1) which is determined by the dimension (n) of random variable ξ and the highest order
(p) of the polynomials {Ψi}:

(P + 1) =
(n + p)!

n!p!
. (3)

Upon substituting Equation (2) into the governing Equation (1):
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(
x, t, θ;

P

∑
i=0

uiΨi

)
= f (x, t, θ) , (4)

a Galerkin projection [28] of the above equation onto each polynomial basis {Ψi} is conducted in
order to ensure that the error is orthogonal to the functional space, spanned by the finite dimensional
basis {Ψi}:

<
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(
x, t, θ;

P

∑
i=0

uiΨi

)
, Ψk > =< f , Ψk >, k = 0, 1, . . . , P. (5)

By using the orthogonality of the polynomial basis, a set of (P + 1) coupled equations can be
obtained for each random mode ui(x, t), where i = {0, 1, . . . , P}. It should be noted that by utilizing the
Wiener-Askey polynomial chaos expansion, the randomness in process inputs is effectively transferred
into the basis polynomials. Thus, the governing device performance equations for the expansion
coefficients ui resulting from above are deterministic. Discretizations in process inputs x and time
t can be carried out by any conventional deterministic techniques, e.g., Runge-Kutta, to complex
multi-physical MEMS problems for highly accurate solutions.

3. Problem Presentations and Analysis

MEMS process deviations mainly derive from the geometry, material properties and systematic
errors. Although measures can be taken to reduce their influence, process deviations are totally
inevitable. Advanced processing techniques and strictly environmental control aim at confining
the geometric or material property deviations within desired ranges. Process deviations still occur
randomly, giving rise to deviations from the original design. As the importance of input randomness
has been highlighted above, the processing errors are treated herein as random events, along with
process deviations as random variables. Illustrations on process deviations have been done with
examples of MEMS beam structures in the following. Because of the uncertain nature of process
deviations, the original deterministic systems are recast into stochastic systems which are handled by
the GPC method and MC verification. When the corresponding polynomials for a given distribution
can be built, it is best to employ these basis polynomials to produce the given distribution exactly [27].
Without loss of generality, the input processing parameters are normally distributed. As the analysis
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mainly focuses on in-plane movement and the resonant frequency, the influence of the air gap will be
analyzed in our future work for performance like the capacitance.

3.1. The Doubly-Clamped Beam

As a basic element in MEMS, a doubly-clamped beam can be thought of to be an Euler-Bernoulli
beam when the section is assumed to be a plane. The resonant frequency of the doubly-clamped beam
underlies the majority of engineering designs. The differential equation for lateral oscillation can be
expressed as Equation (6):

EI
∂4z(x, t)

∂x4 − σA
∂2z(x, t)

∂x2 = −ρA
∂2z(x, t)

∂t2 (6)

where EI is the bending stiffness, ρA is the linear density, σA stands for the axial load, and z(x, t)
is the displacement along the z-axis. Ignoring the residual stress, the resonant frequency of the
doubly-clamped beam approximates as [34,35]:

fi =
1

2π
(kil)

2

√
EI

ρAl4
(7)

Here, kil represents the coefficient of the ith mode of vibration. The first three values are
k1l = 4.730, k2l = 7.853, k3l = 10.996, respectively. Process deviations are reflected in deviations
of parameters E (Young’s modulus), h (beam thickness) and l (beam length). The sensitivity analysis
can be conducted as Figure 1. The influence of beam thickness h in Figure 1a predominates over
the other two factors, i.e., Young’s modulus and beam length in Figure 1b,c. Thus, it can be treated
as one-dimensional stochastic problem. The width, length and Young’s modulus of the beam are
fixed at 4 µm, 200 µm and 158 GPa, respectively while the thickness h changes randomly around
initial value h0 = 2 µm. Assuming the distribution of h as N(µh, σh), the resonant frequency can be
approximated as:

fi =
P−1

∑
i=0

αiΨi(ξ) =
P−1

∑
i=0

αiΨi(h(ξ)) (8)

where random variables ξ are the germs to construct random variable h, sharing similar distribution
with h. The GPC method explained in Section 2 is applied to this case and verified with MC simulations
(10,000 runs respectively). The results are plotted in a manner of probability density function (PDF)
and cumulative distribution function (CDF), referring to Figure 2. As presented in Figure 2a, the results
of 2-order GPC approximation can be a substitute for the MC method. The 4-order and 6-order PC
approach MC simulations act with an error less than 0.3%, which can be obtained from the insets
in Figure 2a,b. Therefore, for one-dimensional problems, 4-order PC approximations can satisfy the
accuracy requirement.



Sensors 2017, 17, 2561 5 of 10

Sensors 2017, 17, 2561  4 of 9 

 

3.1. The Doubly-Clamped Beam 

As a basic element in MEMS, a doubly-clamped beam can be thought of to be an 
Euler-Bernoulli beam when the section is assumed to be a plane. The resonant frequency of the 
doubly-clamped beam underlies the majority of engineering designs. The differential equation for 
lateral oscillation can be expressed as Equation (6): ( , ) − ( , ) = − ( , )  (6) 

where  is the bending stiffness,  is the linear density,  stands for the axial load, and ( , ) 
is the displacement along the z-axis. Ignoring the residual stress, the resonant frequency of the 
doubly-clamped beam approximates as [34,35]: = ( )   (7) 

Here,  represents the coefficient of the ith mode of vibration. The first three values are  = 4.730, = 7.853, = 10.996, respectively. Process deviations are reflected in deviations 
of parameters  (Young’s modulus), ℎ  (beam thickness) and   (beam length). The sensitivity 
analysis can be conducted as Figure 1. The influence of beam thickness ℎ in Figure 1a predominates 
over the other two factors, i.e., Young’s modulus and beam length in Figure 1b,c. Thus, it can be 
treated as one-dimensional stochastic problem. The width, length and Young’s modulus of the beam 
are fixed at 4 m, 200 m and 158 GPa, respectively while the thickness ℎ changes randomly 
around initial value ℎ = 2 m. Assuming the distribution of ℎ as ( , ), the resonant frequency 
can be approximated as: = ∑ Ψ ( ) = ∑ Ψ (ℎ( ))  (8) 

where random variables   are the germs to construct random variable ℎ , sharing similar 
distribution with ℎ. The GPC method explained in Section 2 is applied to this case and verified with 
MC simulations (10,000 runs respectively). The results are plotted in a manner of probability density 
function (PDF) and cumulative distribution function (CDF), referring to Figure 2. As presented in 
Figure 2a, the results of 2-order GPC approximation can be a substitute for the MC method. The 
4-order and 6-order PC approach MC simulations act with an error less than 0.3%, which can be 
obtained from the insets in Figures 2a,b. Therefore, for one-dimensional problems, 4-order PC 
approximations can satisfy the accuracy requirement. 

 
Figure 1. Sensitivity analysis of the resonant frequency for the doubly-clamped beam. (a) Beam 
thickness variable; (b) Young’s modulus variable; (c) Beam length variable. 
Figure 1. Sensitivity analysis of the resonant frequency for the doubly-clamped beam.
(a) Beam thickness variable; (b) Young’s modulus variable; (c) Beam length variable.Sensors 2017, 17, 2561  5 of 9 

 

(a) (b) 

Figure 2. Statistical results of the resonant frequency for the doubly clamped beam approximated by 
three different orders of GPC methods and MC verifications. The marked insets demonstrate errors 
within 0.3%. (a) PDF; (b) CDF. 

3.2. GaAs MMIC-Based MEMS Beams 

GaAs MMIC-based devices are significantly affected by Young’s modulus and the residual 
stress. These two properties of the GaAs MMIC-based MEMS films have been reported adequately 
in our group [30]. They may not only lead to failure of the micromachined devices by fatigue or 
environmental degradation, also alter expected devices performance by crazing or changing in 
shapes. Therefore, for reliability or yield improvements of these devices, it is necessary to predict 
and analyze the distributions of Young’s modulus and the residual stress in GaAs MMIC-based 
MEMS films. The resonant frequency of a cantilever beam, demonstrated in Equation (9), is related 
to the Young’s modulus, physical dimension, and material density. Parameters in Equation (9) are 
listed in Table 1. Experiments for the testing structures have been accomplished with processing 
procedures in Figure 3 and SEM structures in Figure 4 [36]: 

= 0.16154 ℎ
 (9) 

The influence of beam width deviations can be ignored as it is less sensitive to process 
deviations compared with the thickness. The key element in Equation (9) turns out to be the beam 
thickness ℎ by means of the sensitivity analysis. The value of beam frequency  is set to 
25.2 kHz, according to its uniform distribution of testing results. The GPC method has been 
conducted on both the variables, beam thickness ℎ and Young’s modulus , where the parameter ℎ 
is assumed to be normally distributed. Herein, the 2-order and 4-order GPC are chosen to compare 
with MC simulations (10,000 runs). Concentrated on the statistical features of Young’s modulus, 
plots of PDF and CDF are shown as Figure 5. For the illustrative purpose, beam thickness deviations 
are a bit exaggerated. Besides, there still exist deviations in beam frequency . As a result, 
the exceptional values should be excluded. The working area of Young’s modulus as the dashed area 
in Figure 5a and circled green box in Figure 5b, is assigned to be [60 GPa, 105 GPa]. 

Table 1. Relative parameters in Equation (9). 

Parameters Design Values ± Deviations 
Beam length (L/μm) 170 ± 1 

Beam thickness (h/μm) 2 ± 0.5 
Material density (ρ/g ∙ cm ) 19.2 

Effective Young’s modulus ( ) /(1 − ) ∗
*  is the Possion’s ratio, and here it equals 0.42 for gold [12]. 

Figure 2. Statistical results of the resonant frequency for the doubly clamped beam approximated by
three different orders of GPC methods and MC verifications. The marked insets demonstrate errors
within 0.3%. (a) PDF; (b) CDF.

3.2. GaAs MMIC-Based MEMS Beams

GaAs MMIC-based devices are significantly affected by Young’s modulus and the residual
stress. These two properties of the GaAs MMIC-based MEMS films have been reported adequately
in our group [30]. They may not only lead to failure of the micromachined devices by fatigue or
environmental degradation, also alter expected devices performance by crazing or changing in shapes.
Therefore, for reliability or yield improvements of these devices, it is necessary to predict and analyze
the distributions of Young’s modulus and the residual stress in GaAs MMIC-based MEMS films.
The resonant frequency of a cantilever beam, demonstrated in Equation (9), is related to the Young’s
modulus, physical dimension, and material density. Parameters in Equation (9) are listed in Table 1.
Experiments for the testing structures have been accomplished with processing procedures in Figure 3
and SEM structures in Figure 4 [36]:

fcantilever = 0.16154
h
L2

√
Ee

ρ
(9)

The influence of beam width deviations can be ignored as it is less sensitive to process deviations
compared with the thickness. The key element in Equation (9) turns out to be the beam thickness
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h by means of the sensitivity analysis. The value of beam frequency fcantilever is set to 25.2 kHz,
according to its uniform distribution of testing results. The GPC method has been conducted on both
the variables, beam thickness h and Young’s modulus Ee, where the parameter h is assumed to be
normally distributed. Herein, the 2-order and 4-order GPC are chosen to compare with MC simulations
(10,000 runs). Concentrated on the statistical features of Young’s modulus, plots of PDF and CDF
are shown as Figure 5. For the illustrative purpose, beam thickness deviations are a bit exaggerated.
Besides, there still exist deviations in beam frequency fcantilever. As a result, the exceptional values
should be excluded. The working area of Young’s modulus as the dashed area in Figure 5a and circled
green box in Figure 5b, is assigned to be [60 GPa, 105 GPa].

Table 1. Relative parameters in Equation (9).

Parameters Design Values ± Deviations

Beam length (L/µm) 170 ± 1
Beam thickness (h/µm) 2 ± 0.5

Material density (ρ/g·cm−3) 19.2
Effective Young’s modulus (Ee) E/(1− ν2)∗

* ν is the Possion’s ratio, and here it equals 0.42 for gold [12].
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Figure 4. Topological SEM of GaAs MMIC-based MEMS beams: the left for bridge structures with
the length ranging from 50 µm to 600 µm while the right for cantilevers with the length ranging from
50 µm to 380 µm. The spacing is 50 µm and 30 µm, respectively, for bridges and cantilevers. All the
structures are 16 µm -width and 2 µm -thickness [36].
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Figure 5. Statistical features of Young’s modulus: (a) PDF; the probability is over 70% while the
horizontal axis ranges from 60 GPa to 105 GPa; (b) CDF; the intersection point takes a probability over
28% to evaluate Young’s modulus to 60 GPa.

Over 70% simulation data is included in Figure 5a, which means that the intersection in Figure 5b
has a probability over 28% to evaluate Young’s modulus more than 60 GPa. The 4-order GPC
approximation in Figure 5 has shown an appropriate match with MC verifications with the error
less than 1% totally.

The left part in Figure 4 is the bridge structures. Its resonant frequency is a function of both
Young’s modulus and the residual stress, indicated as Equation (10). Here, σu represents the effective
residual stress while the rest parameters share the same meaning as Equation (9). Concluded from the
statistical features of Young’s modulus, the mean value is deduced as 76.89 GPa. Thus, the residual
stress σu can be revised into a function of the parameter h, σu = σu(h). Here the value of the
resonant frequency fbridge equals 159.5 kHz, referring to its uniform distribution of testing results.
Similarly, statistical properties of the residual stress can be obtained from its PDF and CDF plots in
Figure 6a,b, with the help of the GPC and MC implementations. Several statistical features are listed in
Table 2 to demonstrate the advantages of space / time-saving for the GPC methods compared with
different MC simulation runs (Windows 7, Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz, 64.0 GB
RAM). The mean value of the huge 100,000 MC samplings can be treated as a reference, to which the
4-order GPC shares an error about 1.10% but nearly 5 times faster. The testing results in Figure 6a locate
in the range of [µPC − 2σPC, µPC + 2σPC], where µPC and σPC are the mean and standard deviation of
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the residual stress for the 4-order GPC approximation. The errors in Figure 6 between 4-order GPC
and MC method are less than 1% as the inset indicates in Figure 6b. Thus, a prediction can be made
from Figure 6 that the probability of the residual stress to attain the mean testing value is about 54.3%:

fbridge = 1.028
h
L2 (

Ee

ρ
)

1/2
[1 + 0.295

σu

Ee
(

L
h
)

2
]
1/2

(10)
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Table 2. Mean location of the residual stress and its standard deviation by GPC and MC.

GPC MC

2-Order 4-Order 100 Runs 1000 Runs 100,000 Runs

Mean value (GPa) 31.55 34.10 31.27 33.66 34.48
Error 8.50% 1.10% 9.31% 2.38% –

4. Discussion

The MEMS beam structures used in this study are simplified into one-dimensional stochastic
systems, which make the high order GPC expansion unnecessary. Examples of the doubly-clamped
poly-beams in Section 3.1 have demonstrated that the accuracy of 4- or 6-order between GPC and
MC is over 99.7%. Section 3.2 has taken the advantage of the correlation between the cantilever and
bridge structures to give the distributions of unknown parameters. Considering the exaggerated
input deviations, Young’s modulus is tackled with a probability more than 28% while the error
remains less than 1%. As a result of the sensitivity analysis, Young’s modulus and the resonant
frequency are evaluated at determinate points in bridge structure analysis. The distribution of the
residual stress is concluded as Figure 6. The mean value of the residual stress has undergone a
left-drift because of the exaggerated random variable and the ignored parameter randomness in
beam length, Young’s modulus, and the resonant frequency. Due to these factors, the simulation
results experience an underestimated probability to attain the mean value of experimental tests.
In this case the predicted probability should be higher than 54.3% to gain the experimental result.
Nevertheless, the one-dimensional variable situation can act as an important index for MEMS device
performance predictions, concerning to random process deviations.
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5. Conclusions

This work has proposed a framework to model MEMS beam structures under process deviations.
The modeling is accomplished by employing a GPC method to replace the role of brute-force MC
simulations. Comparisons among the GPC, MC approximations, and experimental tests have been
made to verify the accuracy of the GPC method with an acceptable error. It can be concluded that
by proper selection of distribution terms and expansion orders, the GPC method can be utilized
to replace the time/space-consuming role of MC simulations for more complex MEMS devices.
Furthermore, suggestions can be obtained for compensation designs and yield improvement under
processing uncertainties.
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