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Abstract: Wireless sensor networks are widely used to acquire environmental parameters to support
agricultural production. However, data variation and noise caused by actuators often produce
complex measurement conditions. These factors can lead to nonconformity in reporting samples
from different nodes and cause errors when making a final decision. Data fusion is well suited to
reduce the influence of actuator-based noise and improve automation accuracy. A key step is to
identify the sensor nodes disturbed by actuator noise and reduce their degree of participation in
the data fusion results. A smoothing value is introduced and a searching method based on Prim’s
algorithm is designed to help obtain stable sensing data. A voting mechanism with dynamic weights
is then proposed to obtain the data fusion result. The dynamic weighting process can sharply
reduce the influence of actuator noise in data fusion and gradually condition the data to normal
levels over time. To shorten the data fusion time in large networks, an acceleration method with
prediction is also presented to reduce the data collection time. A real-time system is implemented
on STMicroelectronics STM32F103 and NORDIC nRF24L01 platforms and the experimental results
verify the improvement provided by these new algorithms.
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1. Introduction

In recent years, wireless sensor networks (WSNs) have been widely used to monitor the
environment [1–3], such as the temperature, humidity, gas concentration, gas composition, dust and so
on, particularly for agricultural production purposes [4–6]. A greenhouse is an agricultural facility
designed to extend the production season and improve the quality of agricultural products [7].
Because greenhouses generally contain climate-regulating equipment, the internal sensing data of
greenhouses must be comprehensive and accurate. WSNs are composed of hundreds or thousands
of sensor nodes that are used to acquire parameters under a range of conditions and transmit these
parameters to a base station or sink node [8–10], enabling an information-based decision to be made in
an automated manner. They are often used as the system for fire alarm in forests or used to monitor
the environment in the field. In a greenhouse, the number of sensor nodes may be less. But if the
greenhouse is large, it may also need several hundreds of sensor nodes. Furthermore, in complex
and inhomogeneous environments, noise often corrupts the sensing data. Thus, a data fusion
algorithm is required for selecting correct reports from mass data to identify accurate values from the
measurements [11–13].

Figure 1 shows an illustration of a sensor network deployed in a greenhouse containing a heating
unit and windows. When the heating unit is working, the temperature of the area nearest to the unit
may become hotter than other regions far from the heater because the heating effect is related to the
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distance from the actuator. This effect can be termed the ‘actuator effect’ and tends to disrupt sensor
reports by introducing inhomogeneous information into the dataset. The actuator influence is common
in agricultural and industrial environments; for example, when sunlight shines through windows in
the roof of a greenhouse, the light intensity value detected in small regions increases but most parts of
the greenhouse remain dark. If the automatic control system follows the high light intensity value,
subsequent incorrect operation is challenging to avoid. Thus, a data fusion algorithm is expected to
reduce the influence of the actuator effect or other disturbing factors during the sensing procedure;
the subsequent analysis of correct data is meaningful for the automation of the agriculture industry.
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lifetime of the network [17]. The performance of this technique has been demonstrated through 
simulation. The Peeling algorithm [18] was developed to improve the performance of serial data 
fusion and the simulation results highlight the effectiveness of this algorithm in reducing energy 
consumption and time responsiveness. A distributed data fusion algorithm, which aims to minimize 
energy cost, was also deployed in the active network paradigm using WSNs [19]. The optimal linear 
estimation method was also derived to achieve data fusion in multi-rate sensor networks [20]. The 
fusion of quantized and un-quantized sensor data has been investigated to improve estimates [21]. 
Task-oriented distributed fusion functions have been introduced to adapt the dynamics of tasks and 
the topology of self-organized networks [22]. Rough-set and back-propagation neural networks have 
also been adopted to raise the accuracy of prediction [23]. Maximum a priori probability [24] and 
vector-space-based methods [25] can be used to reduce the influence of noisy or conflicting data in 
sample values. Neural networks have also been used to assist the data fusion for sensing [26,27]. The 
neural networks can help to select important features from datasets and improve the fusion work. 
They can also be used to optimize the localization for WSNs [28]. Feature selection and integration 
are also important techniques for data fusion. The adaptive weight and feedback control can help to 
find out the key points from the datasets efficiently [29]. However, few researchers have addressed 
the inhomogeneous effect of environmental elements influencing the sampled data of WSNs. 
Furthermore, most of the studies typically prove new algorithms through simulation only and not 
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To improve the accuracy of sensing and reduce the burden of data transmission, researchers
are now focusing on data fusion mechanisms [14–16]. A data fusion scheme based on a grey model
and an extreme learning machine has been proposed to reduce redundant transmissions and extend
the lifetime of the network [17]. The performance of this technique has been demonstrated through
simulation. The Peeling algorithm [18] was developed to improve the performance of serial data
fusion and the simulation results highlight the effectiveness of this algorithm in reducing energy
consumption and time responsiveness. A distributed data fusion algorithm, which aims to minimize
energy cost, was also deployed in the active network paradigm using WSNs [19]. The optimal
linear estimation method was also derived to achieve data fusion in multi-rate sensor networks [20].
The fusion of quantized and un-quantized sensor data has been investigated to improve estimates [21].
Task-oriented distributed fusion functions have been introduced to adapt the dynamics of tasks and
the topology of self-organized networks [22]. Rough-set and back-propagation neural networks have
also been adopted to raise the accuracy of prediction [23]. Maximum a priori probability [24] and
vector-space-based methods [25] can be used to reduce the influence of noisy or conflicting data in
sample values. Neural networks have also been used to assist the data fusion for sensing [26,27].
The neural networks can help to select important features from datasets and improve the fusion
work. They can also be used to optimize the localization for WSNs [28]. Feature selection and
integration are also important techniques for data fusion. The adaptive weight and feedback control
can help to find out the key points from the datasets efficiently [29]. However, few researchers have
addressed the inhomogeneous effect of environmental elements influencing the sampled data of WSNs.
Furthermore, most of the studies typically prove new algorithms through simulation only and not



Sensors 2017, 17, 2555 3 of 14

through real-time hardware and experimentation. Thus, this study focuses on the solution of noisy
data produced by the inhomogeneous effect in certain application circumstances and the mechanism
to speed up calculations. An embedded hardware platform is built to evaluate the effectiveness of
these new algorithms and simulations are run on a large-scale dataset.

The contributions of this study are as follows: (1) An adjacent graph is introduced to describe
the regional relationship among sensor nodes. The value assigned to the arc of the graph is used to
indicate the distance between two neighboring nodes; (2) A stable area-searching method based on
Prim’s algorithm is designed to locate regions that are not influenced by the actuator effect; (3) A voting
mechanism based on dynamic weight is introduced to complete the data fusion and the self-healing
function is designed to distinguish the actuator effect from normal sensing; (4) An acceleration
mechanism with adaptive threshold is proposed to speed up the process of decision making in
real-time applications.

The remainder of this paper is organized as follows: Section 2 presents a detection method for
stable areas and the data fusion procedure based on a voting mechanism. In Section 3, an acceleration
method is designed to speed up the computational process in real-time applications. Experiments are
performed on embedded hardware and the results are presented in Section 4. Finally, the conclusions
are provided in Section 5.

2. Data Fusion and Self-Learning

To improve the accuracy of the final decision, a data fusion mechanism is required to reduce the
influence of an actuator. The actuator effect is related to the position under a certain circumstance.
Once the location of a sensor node is set, the accuracy of the node’s sensing data is approximately
confirmed. The improved method must detect the nodes influenced by the actuator and reduce their
contribution via a weighting method in the data fusion algorithm.

2.1. Adjacent Graph and Stable Area

To find the stable area in the map, the spatial relationships of the sensor nodes should first be
determined. An adjacent graph is used in this work to describe the regional relationship between
neighboring nodes. The adjacent graph is a type of undirected graph that uses arc connections to
express the relationship between neighboring nodes. As shown in Figure 2, a node in the adjacent map
represents a sensor node whose location is recorded by the engineer manually or using its locating
device. A weight value wi–j (i < j) is assigned to each arc according to the distance between node i and
j, which is normalized as shown in Equation (1).

wi–j =
wi–j-org − wmin

wmax − wmin
(1)

where wi–j-org represents the original straight-line distance between sensor node i and j, wmin denotes the
minimum distance between two sensor nodes in the sensor network and wmax is the maximum value.
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Furthermore, a smoothing value Sk is calculated for each node in the graph following Equations (2)
and (3) to express the uniformity of sensing data in the node’s neighborhood. The actuator effect is
gradually reduced as the distance from actuator device increases. Thus, along with the spreading
paths of the effect, the sensing data in that region is not uniform. This key point can help determine
the main scope of the actuator’s effect in the map.

sk-org = ∑t
i=1 (Di − Dk)/t (2)

sk =
sk-org − smin-org

smax-org − smin-org
(3)

where t is the number of neighboring nodes for the center node k according to the adjacent graph;
Dk represents the data acquired from node k and Di is the data from its neighboring node i; sk-org denotes
the original smoothing value for node k; and smin-org and smax-org are the minimum and maximum
smoothing values, respectively.

After the construction of the adjacent graph, the weight of each arc wi–j and the smoothing value
Sk for every node are generated. As Algorithm 1 shows, a method based on Prim’s algorithm is
introduced in this work to search a stable area for data fusion. Prim’s algorithm is a classical approach
to compute a minimum spanning tree from a graph and a smoothing value threshold λ is set to
avoid using nodes in unstable areas. Thus, the stable area can be marked by the node set U in the
result; the time complexity of the algorithm is O(|V|2). Using only the sensing data from stable areas,
the final fusion decision can be made and the result is recorded as history that can influence future
decision making.

Algorithm 1. Procedure to find a stable area via a search algorithm

Input: The adjacent graph ({V, S, E, W}), in which V = {u0, u1, u2, . . . } is the set of nodes with corresponding
S = {s0, s1, s2, . . . } as their smoothing values and E is the set of arcs with W as their weights.

Output: a set of nodes U in the stable area
Start:
Sort the set V from small to large by their smoothing value S to make V’
Initialize U = {u0}, O = {} and TE = {}, in which u0 is the first vertex in V’, O is a set for storing obsolete vertexes
during operation and TE is a set for storing valid arcs during operation.
while U∪O 6= V’

Find the arc (ui, vj) with minimum weight that satisfies ui∈U, vj∈V’-U-O
if sj < λ (sj is the smoothing value for vertex vj)

U = U∪{vj}; TE = TE∪{(ui, vj)}
else

O = O∪{vj}
end if

end while
end

2.2. Data Fusion Based on Dynamic Weight

After acquiring the stable area, the data fusion result can be generated according to that area.
Because the reports are not the same in all applications, a principle should be designed to determine
the extent to which each node participates in the final decision. The voting mechanism based on weight
is a satisfactory choice for this principle. Equation (4) shows the procedure of voting, where Ŷ denotes
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the data fusion result,
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When an actuator works, low weights should be assigned for the sensor nodes near it,
whereas normal weights should be used when the actuator is closed. Because of the challenges
associated with continually describing the working time of an actuator, a dynamic weight with
self-healing ability is proposed. Equation (5) shows the rule that determines the dynamic weight,
where n indicates the continuous count of being outside the stable area, α is an adjustment parameter
for the variation control and t denotes the time ticks after the setting process. When the stable area
is confirmed at a new time tick, the weights of the sensor nodes outside the area are refreshed by
Equation (5). For example, if a sensor node is outside the stable area at a time tick, this node’s
weight follows the curve of 1–2/(1 + eαt). Furthermore, if the node is outside the stable area again
before its weight recovers to 1, the curve should be refreshed by the function of 1−2/(1 + e0.5×αt);
otherwise, the curve follows the previous curve until the node’s weight is restored to value 1.
Thus, based on this mechanism, the sensor nodes adjacent to the actuator can gradually recover
participation in data fusion over time to recover from the actuator effect. Continuous regions that
remain outside the stable area enhance the effect of the decreased weight and the discontinuous regions
do not influence the data significantly. Figure 3 shows the weight variation of a sensor node adjacent
to an actuator in the application. The node enters the unstable area at time ticks 0, 3 and 10 and its
weight is gradually reduced to avoid the actuator’s influence.

ωti = 1− 2

1 + e
1

2n−1 ·α·t
(5)
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3. Acceleration Mechanism with an Adaptive Threshold

Since the data fusion mechanism is now influenced by the voting procedure, the precision of
the result can be improved. The conventional voting procedure nevertheless requires that data are
collected from all participants. This approach can lead to an increase in time latency for automatic
decision and can become an obstacle to real-time application. To minimize the time consumption for
decision making, an acceleration mechanism is proposed in this section to achieve a balance between
accuracy and speed.
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3.1. Procedure of the Acceleration Mechanism

According to the voting algorithm, the workstation must wait until all data, from all sensor
nodes, are collected to make a final decision. However, communicational obstacles may exist for
data transmission in large sensor networks or networks with faulty nodes that exhaust their energy
or encounter problems with the corresponding equipment. In these extreme cases, the data fusion
program must wait for the data from each node until timeout, which slows down data collection and
increases the response time of the system in real-time applications. Thus, an acceleration mechanism
with adaptive thresholds is designed to address this problem. As shown in Figure 4, the acceleration is
based primarily on a forward prediction and a backward adaptive threshold adjustment. The whole
procedure can be divided into two steps, the initialization and real-time sensing. At the initialization
step, the value of the data fusion result at time 0 and the weighting for each sensor node are assigned
according to the voting algorithm. Furthermore, at the real-time sensing step, the workstation starts
to receive reports from sensor nodes and refreshes the fusion result. In circumstances with uniform
parameters, only some of the reports from the sensor nodes (rather than all of them) are required due
to the similarity of the reports.Sensors 2017, 17, 2555 7 of 14 
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Thus, the procedure generally uses the history value at time t − 1 to estimate a value for time t
via a prediction algorithm before the formal data fusion occurs. Then, once the workstation receives
a report rti from sensor node i for time t, an approximate fusion result R't is calculated for time t
using the data fusion voting formula. Then, if the difference between the approximate result R't and
the estimate value Et is less than the pre-set threshold θ, the procedure stops to receive additional
reports from sensor nodes for time t and the current R't value is taken as the final fusion result Rt.
After that, the weight of each sensor node is refreshed according to the new result value Rt at time t and
is used for the next time t + 1. Following this design, under the circumstance of uniform parameters
that change linearly, the acceleration algorithm soon converges to a final decision with little error.
However, under complex environments, the algorithm requires additional time to obtain a relatively
accurate result. The balance between accuracy and speed is controlled by the prediction method and
the pre-set threshold θ, whose large value allows for more error but uses less time to acquire a result.
Equations (6) and (7) show the adaptive threshold recommended in this work. As the variation of
measuring object increases, θ decreases to enhance restriction for data fusion, which may avoid larger
errors in the result. Furthermore, intermittent use of acceleration mechanisms can also help maintain
the balance between accuracy and speed. For example, after the acceleration procedure is used three
times, we omit using it the fourth time, using instead the result calculated from all the reports to help
eliminate the accumulated error.

∆xk = |xk − xk−1| (6)

θ = E + ε · (1/
√

2πσ)e−
(∆xk−µ)2

2σ2 (7)

where ∆xk represents the variation of measuring object from time k − 1 to time k; E is a fixed value
assigned by the engineer and ε is an adjustment value selected from a Gaussian distribution.

3.2. Prediction Algorithm

The prediction algorithm is another important element for the acceleration mechanism.
The physical parameters measured by sensor networks are regulated linearly or non-linearly and the
prediction algorithm should be designed for various parameters with this factor in mind. This research
focuses on the most general environmental parameters for agriculture, such as temperature, humidity,
light and CO2 concentration. Because these parameters do not typically change sharply, a Kalman
filter is a suitable choice for prediction.

The purpose of the Kalman filter is to minimize the squared error of the estimated non-stationary
signal in the noise. Each state update in the Kalman filter is recursively calculated from its previous
estimate and the latest input data so that it is necessary to store only the previous estimate without
all the past observations. Thus, the Kalman filter is widely used to reduce the influence of sensing
and processing noise in applications that predict subsequent values. We consider the linear system
described by the state space and measuring space:{

x(k) = A(k− 1)x(k− 1) + B(k)n(k)
y(k) = CT(k)x(k− 1) + D(k)n1(k)

(8)

where x(k) represents the (N + 1) × 1-dimensional state variable vector; y(k) is an observation signal
vector; and n(k) and n1(k) denote the process noise and observation noise, respectively. If M is the
number of system inputs and L is the number of system outputs, then A(k − 1), B(k),C(k) and D(k) are
coefficient matrixes with dimensions (N + 1)× (N + 1), (N + 1)×M, (N + 1)× L and L× L, respectively.

Let x̂(k|k− 1) represent the estimated value of x(k) using the observation value until
time k − 1 and let x̂(k|k) denote the estimated value of x(k) using the observation value
until time k. Thus, the corresponding estimated error can be defined as Equations (9) and
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(10). Furthermore, the corresponding covariance matrix of these errors can be calculated using
Equations (11) and (12).

e(k|k) = x(k)− x̂(k|k) (9)

e(k|k− 1) = x(k)− x̂(k|k− 1) (10)

Re(k
∣∣∣k) = E

[
e(k
∣∣∣k)eT(k

∣∣∣k)] (11)

Re(k
∣∣∣k− 1) = E

[
e(k
∣∣∣k− 1)eT(k

∣∣∣k− 1)
]

(12)

Rn(k) = E
[
n(k)nT(k)

]
(13)

Rn1(k) = E
[
n1(k)n1

T(k)
]

(14)

Algorithm 2 shows the procedure for using the Kalman filter, where K(k) is an (N + 1) × L matrix
called the Kalman gain and Rn(k) and Rn1(k) are defined in Equations (13) and (14), respectively.
Using the x̂(k|k− 1) as the prediction value for time k, the acceleration mechanism can be performed
according to the adaptive threshold θ.

Algorithm 2. Kalman filter procedure

Initialization:
x̂(0|0) = x(0) Re(0

∣∣0) = x(0)xT(0)
Calculation: when k ≥ 0,

x̂(k|k− 1) = A(k− 1)x̂(k− 1|k− 1)
Re(k

∣∣k− 1) = A(k− 1)Re(k− 1
∣∣k− 1)AT(k− 1) + B(k)Rn(k)BT(k)

K(k) = Re(k
∣∣∣k− 1)C(k)

[
CT(k)Re(k

∣∣k− 1)C(k) + Rn1 (k)
]−1

x̂(k
∣∣k) = x̂(k

∣∣k− 1) + K(k)(y(k)− CT(k)x̂(k
∣∣k− 1))

Re(k
∣∣k) = [I − K(k)CT(k)

]
Re(k

∣∣k− 1)

4. Simulation and Experiments

4.1. Simulation Results and Discussion

To verify the effect of the smooth weighted data fusion (SWDF) process introduced in this work,
a simulation implemented in MATLAB is performed on a PC with a 3.4 GHz Intel Core CPU and 4 GB
memory. In the simulation, the sensor nodes are uniformly deployed in a 400 m × 400 m rectangular
field and 20 actuators are randomly settled in the field with an influencing range consisting of a
5 m radius circle. Four different algorithms are involved in the simulation: the GM-OP-ELM (GOE)
method [17], double cluster head model (DCHM) [14], a cosine theorem-based method for identifying
and fusing conflicting data (CTB) [25] and the SWDF introduced in this paper. GOE uses a grey model
and an extreme learning machine to predict the data of the next period to accelerate the calculation
process. Moreover, the DCHM selects two cluster heads in each group and adopts Bayesian data
fusion to improve robustness. In CTB, a fusion algorithm based on the degree of mutual support is
proposed to accommodate conflicting data. The parameters were set to ε = 0.17 in GOE and α = 1,
λ = 0.3, E = 0.3, µ = 0, σ = 1 and ε = 1 in SWDF. The ratio of compromised sensor nodes is set to 30%
in the DCHM. Figure 5 shows the simulation results for 100, 200, 400 and 800 sensor nodes when
sensing the environmental temperature. These sensor nodes are uniformly deployed in the simulation
field. Three hundred simulation tests are run for each group and the average results are calculated
for presentation.
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methods in the simulation.

As shown in Figure 5a, the DCHM obtained the highest average accuracy in these four algorithms.
The accuracy represents the degree of sensing data following the real one, as calculated by Equation (15).
The accuracy decreases as the density of the sensor nodes increases, indicating that the actuator’s effect
is gradually increasing. When the number of nodes reaches 800, the accuracy exhibits a small rebound
due to the influence of multiple nodes outside the influencing range of actuators. We found that the
DCHM, CTB and SWDF all featured capabilities to reduce the influence of the actuator’s effect on
the simulation, while GOE did not obtain satisfactory performance because it lacked a robust way to
accommodate distorted data. The DCHM, consisting of a weighted DBSCAN (Density-Based spatial
clustering of applications with noise) algorithm [14], Bayesian data fusion and double cluster heads
mechanism, is found to be a powerful approach to address actuator disturbance.(

1− |ds − dr|
dr

)
× 100% (15)

where ds represent the sensing value acquired by the WSN system and dr denotes the real value.
However, the large calculation burden of the DCHM, as shown in Figure 5b, makes it challenging

to deploy in real-time applications, particularly when the devices of the applications are equipped with
a low-frequency MCU. Figure 5b shows the time/cost of each round of sensing calculations for these
methods. GOE and SWDF are designed with a prediction-based accelerating method, which does not
require the reports from all nodes to make a final decision. GOE and SWDF enable a low time/cost
when the number of sensor nodes increases, while other algorithms do not efficiently control the time
consumption. The DCHM requires the most calculation time in each group, due primarily to the
cluster head re-selection procedure. In WSNs, the energy is an important factor of interest to engineers
because sensor nodes often contain limited battery capacity that is not easily recharged. Figure 6a
shows the average energy consumption in an hour for each testing group. SWDF is well suited for
low-energy-consumption applications in real-time circumstances relative to other traditional methods,
particularly in agricultural applications using low-cost hardware.
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The process of parameter setting is another area of concern in SWDF application. With fewer
parameters, the SWDF is simple and sufficiently efficient to be used over a large-range sensing
area. The adjustment coefficient ε in Equation (7) determines the value of the adaptive threshold θ,
which influences the balance between accuracy and speed. When α = 1, λ = 0.3, E = 0.3, µ = 0 and σ = 1
and ε is set to 0, 0.5, 1, or 2, Figure 6b shows the effect of these various ε values in SWDF working with
200 sensor nodes. A different ε may lead to a different degree of involvement of the adaptive part
of the tolerant threshold for prediction error. When ε = 0, the threshold is fixed and it costs 22.3 ms
for each sensing round. As ε increases, the adaptive part has more effect in Equation (7) and leads
to a different sensing time and accuracy. As shown in Figure 6b, the influence of ε is not monotonic.
When ε = 1, the accuracy is larger than when ε = 0.5. Thus, this value should be assigned by the user
according to the application environment. Brief on-site testing is recommended to determine a suitable
ε value after the algorithm is deployed. A satisfactory choice of this value will lead to quick response
of the system and (in some cases) high accuracy.

4.2. Implementation and Experiments

As shown in Figure 7a, to further verify the effect of the SWDF in real-time applications,
the hardware of a WSN node was implemented on STMicroelectronics STM32F103 and NORDIC
nRF24L01 platforms with a SHT20 temperature and humidity sensor from Sensirion Corporation.
The STM32F103 is an ARM 32-bit Cortex-M3 microcontroller that is used to drive the sensor and
execute calculations. The nRF24L01 is a single-chip 2.4 GHz transceiver with an embedded baseband
protocol engine, which is used to establish the WSN in the sensing system. The SHT20 is a humidity
and temperature sensor with fully calibrated digital output. Each chip should be calibrated by the
producer before it comes to the market. Thus, it is not necessary to calibrate the sensor nodes before
our experiments. The hardware is established on FR-4 PCB board with lithium battery for providing
power. As Figure 8 shows, the experiments were performed in a 30 m × 40 m rectangular greenhouse
containing 12 fans, shutters, outside shades and inside shades as actuators. The 48 sensor nodes
were arranged in a line at 5 m intervals as shown in Figure 7b. The SWDF, DCHM and the general
average algorithm (GAA), without any data fusion mechanisms, were evaluated in the experiments.
The parameters for SWDF in experiments were set to α = 1, λ = 0.3, E = 0.3, µ = 0, σ = 1 and ε = 1 and
the ratio of compromised sensor nodes in DCHM was set to 30%.
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Figure 7. (a) Illustration of the wireless sensor node for experiments; (b) Illustration of the deployment
of sensor nodes for experiments.

The real temperature values for comparison in experiments were calculated using specialized
sensor nodes in the correct area of the greenhouse, as chosen manually. A correct area means a robust
area for data sensing. The sensor nodes inside the correct area will never be influenced by actuators
and therefore they will not report data imprecisely. The correct area can be found automatically by
previous experiments. If the error between the sensing data is less than the set variance, the sensor
node can be considered to be located within the correct area. Furthermore, the detection boundary of
the outermost correct nodes can be considered as the boundary of the correct area. The specialized
sensor nodes are generally chosen manually from correct area which can provide stable and precise
parameter values for experiments. One way for choosing these specialized nodes is to select the nodes
far away from the actuators on the map and ensure that they will not be affected by any actuator;
another way is to observe the nodes over a period of time in previous experiments and find out the
nodes with stable sensing data. Only several specialized sensor nodes are sufficient and the average
value of their sensing data will be regarded as the estimated real temperature value in the environment.
The experiments were run for ten rounds and at each round, a refreshment of 10.8 thousand data bytes
were acquired for each algorithm. The temperature refreshing time was set to once per second and
each round lasted 3 h. The experimental results for these three algorithms are shown in Figure 9.
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As shown in Figure 9, the accuracy of SWDF was similar to that of the DCHM in experiments. 
However, the GAA obtained the lowest accuracy because none of the data fusion mechanisms were 
deployed; thus, the average value of all of the reports from the sensor nodes was taken as the result. 
Moreover, the DCHM cost more than twice the time taken by SWDF and GAA used the least time/cost 
of the three algorithms. In summary, we found experimentally that SWDF is an efficient method that 
can use limited time to obtain a stable data fusion result. The SWDF algorithm, deployed in real-time 
applications, will work particularly well for the agricultural WSN with a low cost of hardware and 
multiple sensor nodes. Although the SWDF is not necessary for a greenhouse control, it can improve 
the robustness of the sensing system. Because the operation of the environmental control system in 
the greenhouse depends largely on the correctness of the sensing data, the SWDF can help to avoid 
the malfunction and overshoot of the actuator. That is very meaningful for greenhouse production. 
This algorithm can also be used in the fields outdoor but the effect is not as significant as in a closed 
greenhouse. 

5. Conclusions 

Accurate sensor results are important for automatic control in agricultural and industrial 
applications. However, sensor nodes near actuators may encounter noisy data. To increase the system 
robustness, we propose the SWDF method, in which voting data fusion (based on adjacent graph 
theory) is designed to reduce the influence of data corruption and dynamic weights are proposed to 
maintain a balance between accuracy and speed. To shorten the response time, an acceleration 
mechanism with a prediction algorithm is developed to reduce the number of redundancy reports 
from sensor nodes. A real-time hardware system is implemented on the STM32F103 MCU and 
nRF24L01 wireless platforms. Simulations and experiments in a greenhouse demonstrate the 
improvements achieved using the new set of algorithms. 
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Figure 9. (a) Average accuracy of each algorithm in the experiments; (b) Average time cost of each
algorithm in the experiments.

As shown in Figure 9, the accuracy of SWDF was similar to that of the DCHM in experiments.
However, the GAA obtained the lowest accuracy because none of the data fusion mechanisms were
deployed; thus, the average value of all of the reports from the sensor nodes was taken as the result.
Moreover, the DCHM cost more than twice the time taken by SWDF and GAA used the least time/cost
of the three algorithms. In summary, we found experimentally that SWDF is an efficient method
that can use limited time to obtain a stable data fusion result. The SWDF algorithm, deployed in
real-time applications, will work particularly well for the agricultural WSN with a low cost of hardware
and multiple sensor nodes. Although the SWDF is not necessary for a greenhouse control, it can
improve the robustness of the sensing system. Because the operation of the environmental control
system in the greenhouse depends largely on the correctness of the sensing data, the SWDF can help
to avoid the malfunction and overshoot of the actuator. That is very meaningful for greenhouse
production. This algorithm can also be used in the fields outdoor but the effect is not as significant as
in a closed greenhouse.

5. Conclusions

Accurate sensor results are important for automatic control in agricultural and industrial
applications. However, sensor nodes near actuators may encounter noisy data. To increase the
system robustness, we propose the SWDF method, in which voting data fusion (based on adjacent
graph theory) is designed to reduce the influence of data corruption and dynamic weights are proposed
to maintain a balance between accuracy and speed. To shorten the response time, an acceleration
mechanism with a prediction algorithm is developed to reduce the number of redundancy reports from
sensor nodes. A real-time hardware system is implemented on the STM32F103 MCU and nRF24L01
wireless platforms. Simulations and experiments in a greenhouse demonstrate the improvements
achieved using the new set of algorithms.
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