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Abstract: In this paper, we consider clustered unmanned vehicle (UV) sensor networks for swarm
sensing applications in a linear structure such as highway, tunnel, underwater pipelines, power
lines, and international border. We assume that the linear UV sensor networks follow Thomas
cluster process (TCP), in which the cluster locations are modelled by Poisson point process (PPP),
while the cluster members (UVs) are normally distributed around their cluster centers. We focus
on communications between UVs within a cluster such as local sensing data transfer or swarm
coordination, where multiple UV pairs can share the same frequency band simultaneously. Thus, in
the presence of co-channel interference both from the same cluster and the other clusters, we study
the coverage and area spectral efficiency of the clustered UV sensor networks in a linear topology.
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1. Introduction

Robotic systems have brought significant benefits to human lives over the past few decades [1].
To extend the functional range of the robotic systems or to deploy them in unstructured environments,
robotic technologies are integrated with communication technologies, fostering the emergence of
networked robotics [2–5]. In the networked robotics applications, multiple robots perform a team task
in a distributed fashion by exchanging sensing data via the communication network. For example, a
team of networked robots can conduct search and rescue missions in extreme environments, such as
the earthquake, exploring the unknown space, operating fast and accurate grasp of the real demand
as highlighted in [6,7]. The conventional pre-programmed robots cannot be used in these scenarios
because of the unknown conditions and time-varying characteristics.

In this paper, we are interested in the applications of networked robotics for monitoring and
emergency management in linear structures such as tunnel, pipelines, subway, power lines, and
international border. In particular, unmanned vehicles (UVs), which can travel through a long pipe or
tunnel-like systems, are useful for search and rescue applications in uncertain disaster environments
such as chemical subway attack, nuclear explosion, and fire in pipelines. To explore these inaccessible
environments, it is expected to organize swarms (clusters) of small unmanned ground, water, and
airborne vehicles and launch complex missions that comprise several such teams [8]. Focusing on
robust operation and cooperative sensing tasks in real time, UVs decompose and allocate tasks using
onboard computation and inter-vehicle communication.

1.1. Motivation and Related Work

As unmanned vehicles (UVs) become more sophisticated and widely deployed, there is an
increasing need for communication systems that allow users to effectively utilize a team of UVs
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to gather required information [9]. However, to our knowledge, in spite of increasing interest in
autonomous sensing applications using UVs, there have not been systematic modelling and analysis
of UV sensing networks organized as multiple clusters. In particular, how to optimize a random
linear or one-dimensional (1D) network with clustering property has not been extensively studied.
For example, the prior works in [10,11] considered cooperative multi-hop linear networks with a fixed
(deterministic) inter-node separation. In addition, in [12,13]. the impact of intra-flow interference
was studied in multi-hop linear networks using continuum assumption, which does not account for
random node locations with clustering. Thus, motivated by the lack of a systematic study of randomly
clustered linear UV networks, in this paper, we present a stochastic geometry-based linear UV network
model and provide analytical framework for efficient communication to feed sensed data and team
operation in linear UV sensor networks using stochastic geometry.

Stochastic geometry is an effective tool to analyze wireless networks with random topology in
a statistical fashion. The main strength of the stochastic geometry-based network modelling is to
capture the spatial randomness inherent in wireless networks [14,15]. Moreover, it is straightforward to
incorporate with random propagation impairments such as fading, shadowing, and power control [16].
In addition, it often leads to closed-form expressions or bounds that characterize how a large-scale
network behaves as key system parameters change. In particular, in interference-limited networks
with high node density, stochastic geometry is a powerful technique to simplify modelling and provide
accurate enough insights into various wireless networks [17].

Most of the existing work using stochastic geometry focused on ad hoc and sensor networks to
account for their intrinsic spatial randomness in the absence of infrastructure [18–22]. On the other
hand, because cellular networks were known to be deployed according to an idealized hexagonal
grid, stochastic geometry was not widely used to model cellular networks until the early 2010s [16].
However, since it was highlighted that cellular networks also follow an irregular topology, which
randomly changes from one geographical location to another, in [23,24], stochastic geometry has
attracted significant attention to model and analyze cellular networks. For example, heterogeneous
cellular networks were studied in [25–30]. In addition, cognitive and self-organizing cellular networks
were analyzed in [31,32]. The extensions to coordinated multipoint (CoMP) were characterized
in [33,34].

In stochastic geometry analysis, the networks are abstracted to a point process (PP) that reflects
characteristics of a given network. Because of its tractability, Poisson point process (PPP), in which the
number of points inside any compact set is a Poisson random variable and the points are uniformly
distributed in the compact set, is the most commonly used PP. However, PPP cannot capture clustering
and repulsion behaviors exhibited by certain network systems such as sensor networks and mobile
social networks. For this reason, in recent studies, more complex but more accurate PPs have been
employed to better model different types of networks. For instance, in [35,36] Ginibre process was
adopted to consider repulsion among nodes (points) in energy harvesting networks. On the other hand,
to reflect the clustering and social nature of device-to-device (D2D) networks, in [37,38], clustered D2D
networks were studied assuming Thomas cluster process (TCP), where cluster centers are modelled by
Poisson point process (PPP) and the cluster members are normally distributed around their cluster
centers, in two-dimensional (2D) and three-dimensional (3D) space, respectively.

When it comes to UV sensor networks to monitor spatial phenomena, Gaussian deployment is
widely adopted [39], by which the networks exhibit clustering characteristics. Furthermore, it has been
shown that wireless nodes have the clustering property in linear vehicular networks with autonomous
robotics and driverless vehicle technologies. In [40–42], it was presented that the social properties
of vehicular ad hoc networks (VANETs) based on trajectory data collected in urban environments.
Moreover, in [43], it was shown that the node degree (or node density) distribution of VANET can
be modelled by Gaussian distribution in both urban and highway environments. In [44], it was
showed that, in VANETs for highway environments, the degree distribution is Gaussian with a high
clustering coefficient.
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Therefore, considering the node locations following Gaussian distribution and the clustering
property, TCP is employed to analyze linear UV sensor networks in this paper. In addition, to optimize
the network performance, we adopt the analytic approach in [37,38], because UVs can be regarded as
clustered mobile devices in D2D networks in a broad sense. However, it is noted that the statistical
analysis of communication distance in 1D space is definitely different from those in 2D and 3D spaces,
and the analytic expressions presented in this paper are not the special cases of those derived in [37,38].
As the studies on unmanned aerial vehicle (UAV) networks in [45–47], we assume UVs randomly
move but transmit only when they are static. In other words, the channel is assumed to be quasi-static,
where the network topology may vary over time, but the symbol duration is significantly smaller than
the coherence time of the channel, meaning that the topology and fading channel remain the same over
an entire symbol period. This assumption perhaps cannot be applied to highly mobile UV networks,
but the system performance obtained under this assumption may be used as an upper bound on that
of the UV network with high mobility since link reliability can be degraded by high mobility of nodes.

1.2. Originalities and Contributions

The original contribution of our work is to present the stochastic geometry-based analysis of
1D clustered UV sensor networks using TCP. The detailed contributions of this paper are four-fold.
First, we derive the probability distributions of distance between two UVs in the same cluster and two
different clusters, respectively, in the 1D clustered network. Second, we provide the exact mathematical
expressions of the coverage probability and the area spectral efficiency. Third, the approximate upper
and lower bounds of the coverage probability are obtained, which are useful to gain design insights to
improve coverage. Lastly, we present numerical results, which validate our analysis and show the
impacts of system parameters.

1.3. Organization

The rest of this paper is organized as follows: In Section 2, we introduce our system model of
clustered linear UV networks. In Section 3, we derive the probability distributions of the distances
between UVs that belong to the same and different clusters. In Section 4, we analyze the network
performance in terms of coverage probability and area spectral efficiency. Then, in Section 5, upper
and lower bounds of the coverage probability are provided. Section 6 presents numerical results to
validate our analysis by comparing with simulation results. The final section concludes the paper and
shows some future perspectives.

2. System Model

We consider a UV sensor network in one-dimensional space with the length of L as shown in
Figure 1, where the UVs are distributed in clusters. In other words, there exist multiple clusters for
the swarm sensing applications, each of which consists of a group of UVs. We assume that each UV
communicates with other UVs in the same cluster, while the UVs across clusters do not communicate
directly. The locations of the UVs in the 1D linear space are modelled by a TCP, where the cluster
centers follow a homogeneous Poisson point process (PPP) Φc with density λc. In addition, the cluster
members (UVs) are independent and identically distributed (i.i.d.) according to a symmetric normal
distribution with variance σ2 around each cluster center x ∈ Φc with the Gaussian density function of
the UV locations y ∈ R relative to a cluster center as

fY(y) =
1√

2πσ2
exp

(
− y2

2σ2

)
, (1)

where σ is the scattering parameter.
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Figure 1. An example illustration of an one-dimensional clustered linear unmanned vehicle (UV)
sensor network based on Thomas cluster process (TCP).

The UVs in the cluster of x ∈ Φc are denoted by N x, which has two subsets: (i) transmitting UVs
N x

t ; and (ii) receiving UVs N x
r . Suppose the set of simultaneously transmitting UVs in the cluster

is Bx ⊆ N x
t , and its cardinality |Bx| follows a Poisson distribution with mean λt. In other words,

the number of simultaneously active UV transmitters (UV-Txs) inside each cluster is a Poisson random
variable with mean λt. As in [37], without loss of generality, we analyze based on a typical UV in
a representative cluster x0 ∈ Φc, where the typical UV is regarded as the UV receiver of interest.
We assume that the typical UV is located at the origin. In addition, the UVs only transmit while they
are static, as in [45].

We assume that the serving (or desired) UV-Tx is located at y0 inside the cluster x0 ∈ Φc. Thus,
the distance between the serving UV-Tx and the typical UV is denoted by r = |y0 + x0|. Hence, with
the same transmit power of the UVs denoted by Pu, the received power at the typical UV is

S =
Puh0

rα
=

Puh0

|x0 + y0|α
, (2)

where α is the path-loss exponent and h0 is the power gain of small scale fading channel, which follows
exponential distribution with unit mean as in [4,37,48]. The typical UV suffers from two types of
co-channel interference: (i) intra-cluster interference caused by the simultaneously active UV-Txs in
the same cluster; and (ii) inter-cluster interference caused by the UV-Txs in the other clusters, which
are represented as

Iintra = ∑
y∈Bx0\y0

Puhyx0

|x0 + y|α , (3)

Iinter = ∑
x∈Φc\x0

∑
y∈Bx

Puhyx

|x + y|α , (4)

respectively. Consequently, assuming interference-limited networks, the signal-to-interference-ratio
(SIR) at the typical UV is given by

SIR(r) =
S

Iintra + Iinter
. (5)

Since Pu is cancelled, we can set Pu = 1 in the SIR analysis.

3. Communication Distance Distributions

In this section, we derive the probability distributions of the distances from the typical UV to
intra-cluster and inter-cluster UVs for system performance analysis associated with SIR. We assume
that the content (or data) of interest for a typical UV in a given cluster is available at a UV chosen
uniformly at random in the cluster, as in [37]. Based on this assumption, we derive the distance
distributions from the typical UV to the serving UV-Tx, intra-cluster and inter-cluster interferers.
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3.1. Distance between Typical UV and Intra-Cluster UV-Tx

For the intra-cluster UVs, let Dx0
t be the set {Di}i=1:|N x0

t |
of distances from the typical UV to the

set of possible transmitting UVs N x0
t in the cluster x0 ∈ Φc, where di = |x0 + y| is the realization of

Di. We note that the index i will be omitted when it is clear from the context. First, if we denote the
distance between the cluster center and the typical UV by v0 = |x0|, its probability density function
(PDF) is the folded normal distribution as

fv0(v0) =

√
2

πσ2 exp

(
−

v2
0

2σ2

)
, (6)

where v0 ≥ 0. In addition, the locations of the cluster center x0 and the UV-Txs y are i.i.d.
random variables in R, following i.i.d. Gaussian distributions with zero mean and variance of σ2.
Thus, D = |x0 + y|, which is the absolute value of a Gaussian random variable with zero mean and
variance of 2σ2, follows a folded normal distribution [49] with the PDF as

fD(d) =
1√
πσ2

exp
(
− d2

4σ2

)
, (7)

where d ≥ 0.

3.2. Conditional Distance Distribution given |x0|

The distances between the typical UV to the transmitting UVs in the same clusters, which are
required to calculate S and Iintra in SIR, are correlated because of the common factor x0. Therefore,
conditioning the relative location of the cluster center, x0, to typical UV, we can treat the locations of
the intra-cluster UVs as i.i.d. random variables, which means that the distances between typical UV
and the intra-cluster UVs are i.i.d.

Conditioned on v0 = |x0|, D = |x0 + y| is the absolute value of a Gaussian random variable with
mean of v0 and variance of σ2. Therefore, D also follows a folded normal distribution with the PDF as

fD(d|v0) =

√
2

πσ2 exp

(
−

d2 + v2
0

2σ2

)
cosh

(
v0d
σ2

)
, (8)

where d ≥ 0 and cosh(·) is the hyperbolic cosine function.

3.3. Distances to Serving UV-Tx and Interferers: r, w, and u

Let the serving and intra-cluster interferer distances be r = |x0 + y0| and w = |x0 + y|,
respectively. Their conditional PDFs given that v0 = |x0| are the same as Equation (8). In other words,
fR(r|v0) = fD(r|v0) and fW(w|v0) = fD(w|v0). In addition, conditioned on the distance v = |x|
between one of the other clusters x ∈ Φc and the typical UV, the distances {u = |x + y|, ∀y ∈ Bx}
between the typical UV and the inter-cluster interfering UV-Txs in x ∈ Φc are i.i.d., following the
conditional PDF fU(u|v) = fD(u|v0 = v) given in (8).

3.4. Validation through Simulation

Figure 2 shows the three PDFs: fv0(x), fD(x), and fD(x|v0) in Equations (6)–(8), respectively.
For the conditional PDF of D, fD(x|v0), we set v0 = 10. The solid, dotted, and dashed lines represent
the theoretical graphs based on the derived PDFs. On the other hand, the three differently shaped
markers indicate the corresponding simulation results. As shown in the figure, the analytical results
are consistent with the simulation results for the entire range of x, which verifies our analysis.
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Figure 2. Example PDFs with σ = 5.

4. Performance Analysis

In this section, we investigate the coverage probability, denoted by Pc, and the area spectral
efficiency, denoted by ASE, of the 1D clustered UV sensor network. We first find the Laplace transforms
of the two interference terms to characterize SIR. Then, using the Laplace transforms, we derive the
exact expressions of Pc and ASE.

4.1. Laplace Transform of Intra-Cluster Interference

Conditioned on v0 = |x0|, we first derive the Laplace transform of Iintra as

LIintra(s|v0) = E
[
e−sIintra

]
= EBx

[
∏

y∈Bx
Ehyx0

[
exp

(
−shyx0

|x + y|α

)]]

(a)
= EBx0

 ∏
y∈Bx0\y0

1
1 + s|y + x0|−α


(b)
= exp

(
(1− λt)

∫
R

s|y + x0|−α

1 + s|y + x0|−α
fY(y)dy

)
(c)
= exp

(
(1− λt)

∫ ∞

0

sw−α

1 + sw−α
fW(w|v0)dw

)
, (9)

where (a) follows from the exponentially distributed hx0 with unit mean, and (b) follows from
the probability generating functional (PGF) of Poisson process [50]. In addition, (c) follows
from w = |x0 + y|.
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4.2. Laplace Transform of Inter-Cluster Interference

The Laplace transform of Iinter is given by

LIinter (s) = E
[
e−sIinter

]
= EΦc

 ∏
x∈Φc\x0

EBx

[
∏

y∈Bx
Ehyx

[
exp

( −shyx

|x + y|α

)]]
(a)
= EΦc

 ∏
x∈Φc\x0

EBx

[
∏

y∈Bx

1
1 + s|y + x|−α

]
(b)
= EΦc

 ∏
x∈Φc\x0

exp
(∫ ∞

0

−λtsu−α

1 + su−α
fU(u|v)du

)
(c)
= exp

(
2λc

∫ ∞

0
(κ(v)− 1) dv

)
, (10)

where κ(v) = exp
(∫ ∞

0
−λtsu−α

1+su−α fU(u|v)du
)

and (a) follows from the exponentially distributed hx0 with
unit mean. In addition, (b) and (c) follow from the PGF of Poisson process.

4.3. Coverage Probability and Area Spectral Efficiency

Letting β denote the SIR threshold for successful decoding at the receiver, which is a function of
modulation and coding, the coverage probability is

Pc = P[SIR > β] = ER{P[SIR(R) > β|R]]}
= ER{P[h0 > βrα(Iintra + Iinter)|R = r]}

= ER{E{e−βrα(Iintra+Iinter)|R = r}}

=
∫ ∞

0

∫ ∞

0
LIinter (βrα)LIintra(βrα|v0) fR(r|v0) fv0(v0)drdv0.

Therefore, letting the area spectral efficiency be defined as the average achievable rate per unit
bandwidth per unit area as in [37], the area spectral efficiency is given

ASE = λtλc log2(1 + β) Pc, (11)

where λtλc is the average density of simultaneously active UV-Txs of the whole UV sensor network.

5. Approximate Upper and Lower Bounds of Pc

As the exact expressions of Pc and ASE are unwieldy, we provide easy-to-compute upper and
lower bounds of Pc. Particularly, the lower bound is in a closed form, which can be readily evaluated.
As stated in Section 2, r and w are correlated because of the common factor x0. For analytical tractability,
to derive the two approximate bounds we allow separate de-conditioning on r and w as in [37],
which implies that r and w are treated as i.i.d. random variables following the PDF in (7).

5.1. Upper Bound of Pc

Since the intra-cluster interferers are significantly closer to the typical UV compared to the
inter-cluster UV-Txs, Iintra is dominant in the denominator of SIR. Thus, we can derive the approximate
upper bound of SIR by ignoring Iinter, which corresponds to the upper bound of Pc. By the i.i.d.
assumption of r and w, the Laplace transform of Iintra can be approximated as
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L̃Iintra(s) = e(1−λt)
∫ ∞

0
sw−α

1+sw−α fW (w)dw, (12)

where fW(w) follows the PDF in Equation (7). Thus, the upper bound of Pc is given by

P̃c = ER{P[h0 > βrα Iintra|R = r]}

=
∫ ∞

0
L̃Iintra(βrα) fR(r)dr, (13)

where fR(r) follows the PDF in Equation (7).

5.2. Lower Bound of Pc

We first derive lower bounds of LIintra(s) and LIinter (s) in closed forms. Then, using the two,
the lower bound of Pc will be obtained.

Corollary 1. The lower bound on the Laplace transform of Iintra is

LIintra(s) ≥ L
∗
Iintra

(s) = exp

(
1− λt

σ
√

π

s1/α(π/α)

sin(π/α)

)
(14)

Proof. See Appendix A.

Corollary 2. The lower bound on the Laplace transform of Iinter is

LIinter (s) ≥ L
∗
Iinter

(s) = exp
(
−2s

1
α

λcλt(π/α)

sin(π/α)

)
. (15)

Proof. See Appendix B.

Based on Equations (14) and (15) along with the independent de-conditioning assumption, we can
obtain the approximate lower bound of Pc in a closed form as follows:

Pc ≥
∫ ∞

0
L∗Iinter

(βrα)L∗Iintra
(βrα) fR(r)dr

(a)
=
∫ ∞

0
exp (−ρr)

√
1

πσ2 exp
(
− r2

4σ2

)
dr,

(b)
= exp

(
ρ2σ2

) [
1− erf(ρσ)

]
:= Pc

∗, (16)

where ρ = πβ1/α

α sin(π/α)
( λt−1

σ
√

π
+ 2λcλt) and erf(x) = 1√

π

∫ x
0 e−t2

dt is the error function. Furthermore, (a)
follows from fR(r) in (7) and (b) follows from ρ ≥ 0 (because α ≥ 2 and λt ≥ 1).

6. Numerical and Simulation Results

In this section, we present numerical and simulation results to validate our analysis and discuss
the impacts of system parameters on Pc and ASE. For simulations, the UV locations are randomly drawn
from a TCP over a linear network with L = 10 km. The simulation results are obtained by averaging
over 106 iterations. For each realization, the network topology is randomly generated. To be specific,
the cluster centers follow PPP with intensity λc, where the average number clusters is Lλc = 10λc in
each run. Furthermore, UVs are randomly located following 1D Gaussian distribution around the
cluster centers. Assuming the average number of active UV Txs of λt, the average number of UVs in
the network in each simulation trial is Lλcλt = 10λcλt. In addition, we assume the path-loss exponent
α of 4 as in [37], and the fading channel is independently realized following Rayleigh distribution
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for any pair of UVs in each simulation trial. To validate the scalability of the presented model and
analysis, we change the average number of active UV Txs λt in each cluster from one to twenty, which
corresponds to the average number of active UV Txs in the entire network increases up to 200λc,
and observe how network performances vary.

6.1. Upper and Lower Bounds

Figure 3 shows the coverage probability Pc with different average numbers of simultaneously
active UV-Txs λt. Figure 3a,b corresponds to λc = 30 and 15 clusters/km, respectively. For both cases,
we use σ = 5 and β = 0 dB. The solid lines indicate the theoretical results of the coverage probability
Pc, while the circles represent the simulation results. Moreover, the dashed and dash-dotted lines
correspond to the lower and upper bounds, P̃c and Pc

∗, respectively. As expected, in both Figure 3a,b,
all of the curves decrease, as λt increases, because the number of the intra-cluster and inter-cluster
interferers increases.

2 4 6 8 10 12 14 16 18 20
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(a) Pc with λc = 30 clusters/km, σ = 5, and β = 0 dB
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Pc with λc = 15 clusters/km, σ = 5, and β = 0 dB

Figure 3. Pc versus λt: comparison with the upper and lower bounds.

In both figures, comparing the simulation and theoretical curves, we observe the two are consistent
to each other, which validates our analysis in the previous sections. Furthermore, the exact coverage
probability Pc obtained from the simulation results is always bounded by the derived upper and lower
bounds P̃c and Pc

∗. As expected, when λc is small, which means the lower inter-cluster interference,
the upper bound P̃c is closer to the exact Pc, where the inter-flow interference is ignored. In contrast,
when λc increases from 15 to 30 clusters/km, the lower bound Pc

∗ becomes closer to the exact Pc.
In addition, as λt rises, both of the upper and lower bounds approach the exact Pc regardless of λc.

6.2. Impact of λc and σ on Pc

In Figures 4 and 5, we observe how the exact Pc changes with λc and σ. In both figures, the vertical
axis is Pc, while the horizontal axis indicates λt. To delve into the impacts of the two parameters, we
consider three different coverage probabilities in the presence of: (i) only intra-cluster interference;
(ii) only inter-cluster interference; and (iii) both intra-cluster and inter-cluster interference. In the
graphs, the three cases correspond to the dashed, dash-dotted, and solid lines, respectively. In addition,
the simulation results for λc = 30, 50 are denoted by the “o”- and “x”-markers, respectively.

In Figure 4, the curves only with the intra-cluster interference give the same Pc regardless of λc,
which has nothing to do with the intra-cluster interference. In contrast, as λc increases from 30 to 50
clusters/km, Pc obtained only with the inter-cluster interference decreases. As a result, Pc based on
both the intra- and inter-cluster interference also decreases, as λc increases. In Figure 5, we plot the Pc

curves with σ = 1 and 5. With the two different values of σ = {1, 5}, the Pc curves calculated only with
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the intra-cluster interference are identical to each other. This is because the variations of the serving
and interfering UV-Txs are canceled each other. On the other hand, when σ increases, the coverage
probability Pc with inter-cluster interference decreases, because of the increased separation from
the serving UV-Tx. Consequently, Pc with both the intra-cluster and inter-cluster interference also
decreases, as σ goes up.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4. Pc versus λt for λc = {30, 50} clusters/km, σ = 5, and β = 0 dB.
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0.9

1

Figure 5. Pc versus λt for λc = 30 clusters/km, σ = {1, 5}, and β = 0 dB.

6.3. Area Spectral Efficiency

Figures 6 and 7 show ASE versus λt graphs. In the both figures, the optimal λt to maximize ASE

for the given system parameters is indicated by the ‘x’-markers. In Figure 6, we observe the impacts of
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λc and σ on ASE. If comparing the two curves with λc = 30 and 100 clusters/km for the same σ = 5,
ASE increases, as λc increases, because the decrease in Pc caused by the increase in λc is not as much as
the increase by the multiplicative term of λc in ASE given in (11). On the other hand, as expected from
the previous simulation results regarding Pc, if comparing the two curves with the different σ but the
same λc, we observe that ASE decreases, as σ increases. If we look at Figure 7, the higher β makes ASE
increase, because of log2(1 + β) in (11). Furthermore, the decrease in ASE with β = 5 dB is the most
rapid, when λt increases, because the higher β implies the tighter SIR requirement.

Figure 6. ASE versus λt with (λc, σ) = {(100, 5), (30, 1), (30, 5)} and β = 0 dB.

Figure 7. ASE versus λt with λc = 30 clusters/km, σ = 5 and β = {−5, 0, 5} dB.

One of the key design issues is to determine the optimal λt, which means how many
simultaneously active UV-Txs we should allow. In Figure 6, the changes in σ and λc do not cause
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significant variation in the optimal λt ≈ 2. On the other hand, if we decrease the SIR threshold β

as in Figure 7, the optimal value of λt increases up to 3.75, because lower β can accommodate more
simultaneous UVs.

7. Conclusions and Future Work

In this paper, we have studied a clustered linear UV sensor network assuming the search and
rescue missions conducted by networked robots in a linear structure. Based on the clustered nature
of the swarm sensing applications, we have modelled the linear UV sensor network by TCP, where
multiple UVs form a cluster. Using stochastic geometry, we have analyzed Pc and ASE of the clustered
linear UV sensor network in the presence of co-channel interference both from the same cluster and
the other clusters. We have derived the exact mathematical expressions of Pc and ASE, which are
verified with the simulation results. Moreover, the approximate upper and lower bounds on Pc have
been derived, which become tighter as λt grows. Both of bounds can provide design insights to
achieve a certain level of Pc. Numerical results indicate that Pc can be improved with smaller λc and σ.
Furthermore, we have observed that there exists an optimal number of simultaneously active UV-Txs
λt that maximizes ASE. A method to find an optimal λt can be further studied for implementation in
clustered linear UV networks.

Potential extensions of this paper include addressing a wider scenario with time-variant clustering,
inter-cluster communications, different fading channels, and high mobility models. In addition,
because all of our contributions in this work are focused on the quasi-static scenario, we will remove
this assumption and generalize analysis for high mobility UV networks both for intra-cluster and
inter-cluster data transmission in the future. Furthermore, we will improve the analytical model with
experimental studies using a large scale testbed as a long-term plan.
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The following abbreviations are used in this manuscript:

UV Unmanned vehicle
TCP Thomas cluster process
PPP Poisson point process
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
VANETs Vehicular ad hoc networks
SIR Signal-to-interference-ratio
PDF Probability density function
PC Probability of coverage
ASE Area spectral efficiency
PGF Probability generating functional
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Appendix A. Proof of Corollary 1

LIintra(s) =
∫
R

exp
(∫

R

(1− λt) fY(y)dy
1 + |y + x0|α/s

)
· fY(x0)dx0

=
∫
R

exp
(∫

R

(1− λt)

1 + |z|α/s
fY(z− x0)dz

)
· fY(x0)dx0

(a)
≥ exp

(∫
R

∫
R

(1− λt)

1 + |z|α/s
fY(z− x0) fY(x0)dx0dz

)
(b)
≥ exp

(∫
R

(1− λt)

1 + |z|α/s
| fY ∗ fY|∞dz

)
= exp

(
1− λt

2σ
√

π

∫
R

1
1 + |z|α/s

dz
)

,

= exp
(

1− λt

σ
√

π

∫ ∞

0

1
1 + |z|α/s

dz
)

,

= exp
(

1− λt

σ
√

π
s1/α (π/α)

sin(π/α)

)
, (A1)

which corresponds to L∗Iintra
(s) in (14). (a) follows from Jensen’s inequality, and (b) follows from

Holder’s inequality.

Appendix B. Proof of Corollary 2

LIinter (s)
(a)
≥ exp

(
2λc

∫ ∞

0

∫ ∞

0

−λtsu−α

1 + su−α
fU(u|v)dudv

)
,

(b)
= exp

(
−2λcλt

∫ ∞

0

su−α

1 + su−α
dv
)

,

= exp
(
−2s

1
α

λcλt(π/α)

sin(π/α)

)
, (A2)

which gives L∗Iinter
(s) in (15). (a) follows from the Taylor expansion of an exponential function, and (b)

is based on the property of the PDF in (7) that
∫ ∞

0 fU(u|v)v2dv = u2.
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