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Abstract: The two-dimensional planar MIMO array is a popular approach for millimeter wave
imaging applications. As a promising practical alternative, sparse MIMO arrays have been devised
to reduce the number of antenna elements and transmitting/receiving channels with predictable and
acceptable loss in image quality. In this paper, a high precision three-dimensional imaging algorithm
is proposed for MIMO arrays of the regularly distributed type, especially the sparse varieties.
Termed the Dimension-Factorized Range Migration Algorithm, the new imaging approach factorizes
the conventional MIMO Range Migration Algorithm into multiple operations across the sparse
dimensions. The thinner the sparse dimensions of the array, the more efficient the new algorithm will
be. Advantages of the proposed approach are demonstrated by comparison with the conventional
MIMO Range Migration Algorithm and its non-uniform fast Fourier transform based variant in
terms of all the important characteristics of the approaches, especially the anti-noise capability.
The computation cost is analyzed as well to evaluate the efficiency quantitatively.

Keywords: dimension-factorized; range migration algorithm; MIMO; regularly distributed array imaging

1. Introduction

The millimeter wave imager plays an important role in the field of security screening [1–3].
In order to build a three-dimensional (3D) image, targets must undergo at least repeated
two-dimensional (2D) scans, using, for example, a planar Multi-Input Multi-Output (MIMO) array.
To avoid spectral aliasing, which would result in grating lobes, the Nyquist sampling theorem in the
space domain must be observed [4]. For MIMO arrays, that means that the transmitting and receiving
elements will have to reach a given quantity in a predefined array aperture. This may be impractical
in terms of cost or system complexity in some cases. Accordingly, applications and optimization of
sparse MIMO arrays have attracted much attention [5–7].

Two commonly encountered 2D sparse MIMO array scenarios are those with regularly
distributed [1,8–10] or irregularly distributed elements [7,11]. In the former, the transmitting and
receiving elements are arranged evenly across each dimension of the array. Null elements are included,
which means that the adjacent elemental interval must be an integral multiple of the minimum interval
between elements in each dimension. The latter scenario does not share the same arrangement.
The regularity of arrays makes it possible to apply Fast Fourier Transform (FFT) to accelerate the image
reconstruction algorithm, but zero-padding will be invoked for the missing elements.

Extremely high sparsity can be achieved by irregularly distributed MIMO arrays, since the
randomness of element layouts tends to share the energy of sidelobes amongst the elements, and
the sidelobes and grating lobes will be suppressed according to the projection slice method [12].
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Finding approaches to improve the precision of 3D images has been an area of active research focus
for irregularly distributed arrays, resulting in a number of methods such as the modified Kirchhoff
Migration Algorithm [13], and the grating lobes migration technology [14–16]. In terms of efficiency,
fast back projection algorithms seem to be attractive [17,18]. In specific cases, these can be as fast
as algorithms in the wavenumber domain. They sacrifice precision to achieve acceleration [19–21],
and sometimes the price may be too high to pay, such as in MIMO array imaging of high sparsity.
Precision is critical for a point spread function. To date, a practical fast-imaging algorithm for irregularly
distributed MIMO arrays remains elusive.

Any one of the high-precision algorithms mentioned above can be applied to regularly distributed
MIMO arrays, and the regularity of MIMO arrays makes it possible to apply the range migration
algorithm (RMA), if the performance in terms of efficiency is deemed a priority. 3D MIMO array
imaging using RMA was proposed by Zhuge [4], and can, in principle, be applied efficiently to any
MIMO array with regularly distributed elements. However, such has not always been the case in
practice. The reason lies perhaps in the operation of dimension reduction in the wavenumber domain.
Firstly, if the sampling steps in the wavenumber domain across the cross-range dimensions are not
equal, a large number of zeroes must be padded for the MIMO array. The performance of RMA will
then suffer. This depends on the array geometry, and can be avoided by a proper design. Secondly, even
when zero-padding is not needed, the image quality will deteriorate due to the error introduced by the
one-dimensional (1D) Stolt interpolation, which will be quite distinct in sparse arrays. A simple remedy
to improve the precision is to apply 3D interpolation, but it will be detrimental to the computational
efficiency of RMA.

To overcome the aforementioned difficulties, a dimension-factorized range migration algorithm
(DF-RMA) is proposed, which exploits the sparsity of some dimensions in the regularly distributed
array. MIMO RMA is factorized into multiple RMAs in the sparse dimensions, through which the
precision will be enhanced prominently. Two dimensions of the array are sparse generally, and it
will not affect the efficiency too much if the sparsity is high enough. As expected, the algorithm will
be decelerated as the sparsity is reduced, but the efficiency degradation tends to be limited within
a definite boundary. Therefore, the computation load of DF-RMA is still on the same order. On the
other hand, the method can be interpreted in the sense of array geometry. The formulation of the
whole array is divided into multiple cross-MIMO arrays, which can be formulated very efficiently and
precisely by RMA. When combined with parallel computation, the algorithm will be faster.

This paper is organized as follows. The principle of conventional MIMO RMA is reviewed
briefly, and DF-RMA is formulated, in Section 2. In Section 3, a numerical simulation is performed to
verify the performance of DF-RMA, including the results of a point spread function and imaging of a
continuous object in terms of the anti-noise capability. The computation load of DF-RMA is estimated
and compared with conventional MIMO RMA. Lastly, the paper will be summarized in Section 4.

2. Proposed Method

2.1. MIMO Range Migration Algorithm

For MIMO radar architecture, the feature of diversity is a critical advantage for many applications [22],
which makes it possible to synthesize a larger aperture with fewer elements compared with phased
array architecture. The simplest case of MIMO radar is that with time diversity. The transmitting elements
radiate signals in sequence, and the receiving elements receive and record the echoes independently.

The schematic of a MIMO array is illustrated in Figure 1. In Cartesian coordinates, the transmitting
and receiving elements form a planar aperture, parallel to the X–Y plane. Targets are supposed to be
contained in the object domain D(x, y, z), a block area of Z > 0. Assume that a transmitting element
positioned at (xt, yt, zt) radiates a pulse to the region Z > 0, and the signal reflected by a scatterer
at (x, y, z) is recorded by a receiving element positioned at (xr, yr, zr). The plus sign connecting the
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reflected signals (i.e., the reflection response) represents the principle of superposition among channels.
Time division is assumed to be applied here. The echo can be expressed as [23]

s(xt, yt, zt; xr, yr, zr; k) =
y

D(x,y,z)

σ(x, y, z)
4πRtRr

p(k) exp[−ik(Rt + Rr)]dxdydz (1)

Rt =
√
(x− xt)

2 + (y− yt)
2 + (z− zt)

2

Rr =
√
(x− xr)

2 + (y− yr)
2 + (z− zr)

2

k = 2πf/c

where σ(x, y, z) is the reflectivity function of the scatterer positioned at (x, y, z); f is the frequency
of the signal; c is the propagation speed of the electromagnetic wave in free space; p(k) represents
the pulse waveform of the signal in the wavenumber domain; and Rt and Rr denote the single-trip
distances from the scatterer to the transmitting and receiving element, respectively.
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Figure 1. Schematic of a Multi-Input Multi-Output (MIMO) array imaging setup.

Computing the 4D Fourier transform on both sides of (1) with the Fourier transform pair xt → kxt ,
yt → kyt , xr → kxr , yr → kyr , we get

s
(
kxt, kyt, zt; kxr, kyr, zr; k

)
= −πp(k)

kztkzr

t

D(x,y,z)
σ(x, y, z)

× exp[−i(kxt + kxr)x− i(kyt + kyr)y]
× exp(−ikzt|z− zt| − ikzr|z− zr|)dxdydz,

(2)

kzt =
√

k2 − k2
xt − k2

yt,

kzr =
√

k2 − k2
xr − k2

yr.

Before further processing, it is imperative to compensate the terms of the free space attenuation
and the pulse waveform. Specifically,

sk
(
kxt, kyt, zt; kxr, kyr, zr; k

)
= −

s
(
kxt, kyt, zt; kxr, kyr, zr; k

)
kztkzr

πp(k)
. (3)
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According to the matched filtering theory, the reflectivity function σ(x, y, z) can be
formulated as [1]

σ(x, y, z) = ∑
zt,zr

∫
D(k)

s
Dk(kxt,kyt)

s
Dk(kxr,kyr)

sk
(
kxt, kyt, zt; kxr, kyr, zr; k

)
× exp [i(kxt + kxr)x + i(kyt + kyr)y]

× exp(ikzt|z− zt|+ ikzr|z− zr|)dkxrdkyrdkxtdkytdk.

(4)

In Equation (4), D(k) is the wavenumber support domain of the detection signal, and Dk(kxt, kyt)

and Dk(kxr, kyr) denote the transmitting and receiving wavenumber support domain, respectively.
Assuming zt = zr = 0 and z > 0, Equation (4) can be reformulated as

σ(x, y, z) =
∫

D(k)

s
Dk(kxt,kyt)

s
Dk(kxr,kyr)

sk
(
kxt, kyt; kxr, kyr; k

)
× exp[i(kxt + kxr)x + i(kyt + kyr)y]

× exp[i(kzt + kzr)z]dkxrdkyrdkxtdkytdk.
(5)

As expected, RMA ends in the operation of 3D inverse FFT (IFFT). To avoid the effects of the
periodicity of Fourier transform, we have to keep the scene center of the image aligned with a
predefined distance Hc, i.e., the center of D(x, y, z) along z-axis. The operation is called scene center
compensation, and can be realized by

skc
(
kxt, kyt; kxr, kyr; k

)
= sk

(
kxt, kyt; kxr, kyr; k

)
exp[i(kzt + kzr )Hc

]
. (6)

The term sk
(
kxt, kyt; kxr, kyr; k

)
in Equation (5) shall be replaced by Equation (6). One can also

transform Equation (5) into a more compact form as

σ(x, y, z) =
y

D(kx,ky,kz)

skc
(
kx, ky, kz)expi(kxx + kyy + kzz)dkxdkydkz, (7)

kx = kxt + kxr, (8)

ky = kyt + kyr, (9)

kz = kzt + kzr. (10)

In Equation (7), D(kx, ky, kz) is the wavenumber support domain of kx, ky, and kz. Equation (7)
is the canonical form of the Fourier transform, which makes it possible to apply FFT. Thus, the 3D
image of the reflectivity function σ(x, y, z) will be built after skc

(
kxt, kyt; kxr, kyr; k

)
is arranged properly

according to Equation (8), (9), and (10). The problem now is how to carry them out efficiently.
The operations of Equations (8) and (9) are defined as dimension reduction. In Equation (10),

kz is nonlinear with k, kx, and ky. Thus, interpolation must be applied here, which is named
Stolt interpolation in conventional RMA. According to [4], Stolt interpolation can be realized by 1D
interpolation. Dimension reduction and Stolt interpolation are implemented as follows: Assume the
5D data block skc

(
kxt, kyt; kxr, kyr; k

)
is with the size

(
Nxt, Nyt, Nxr, Nyr, Nr

)
in discrete sample points.

The wavenumber sampling steps of kxt and kxr must be kept the same by zero-padding if necessary,
as must those of kyt and kyr. The data block will be divided into Nxt ×Nyt ×Nxr ×Nyr vectors
with the length Nr. Suppose the dimensions kyt and kxr are sparse; there will be at most Nxr

vectors taking up similar kx values, and Nyt for ky. These vectors should be reassigned along the
dimension k. After dimension reduction, the cross-range wavenumbers turn out to be of the size
(Nxt + Nxr − 1, Nyt + Nyr − 1), and the number of vectors belonging to the cross-range dimensions
will be different. Due to the inconsistency of the range dimension after dimension reduction,
1D interpolation seems to be not precise enough. This problem will not turn up in the case of a
single cross array, which is obvious in the example in [2]. A more precise approach is to adopt
3D interpolation, which will inevitably degrade the efficiency. Instead, a nonuniform fast Fourier
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transform (NUFFT) can be applied here. In the NUFFT-based MIMO RMA, the steps of dimension
reduction, Stolt interpolation, and IFFT will be implemented with 3D NUFFT precisely. It would also
be more efficient with fast Gaussian gridding acceleration [24]. In the present work, we propose to
apply a dimension-factorized range migration algorithm to tackle the task of dimension reduction
efficiently without sacrificing precision.

2.2. Dimension-Factorized Range Migration Algorithm

Our algorithm starts with Equation (7), for a MIMO array with regularly distributed elements
that are supposed to be sparse in two dimensions, for instance, a MIMO array geometry as depicted in
Figure 2a. The whole array consists of 16 cross-shaped sub-arrays, considered as unit arrays. The whole
array can be regarded as the periodic repetition of the unit array. The geometry of the unit array
is demonstrated in Figure 2b. The interval between adjacent transmitting (and receiving) elements
is 8 mm. There are 14 transmitting elements and 14 receiving elements involved in a single unit array,
and 224 transmitting elements and 224 receiving elements totally in the whole array. The gap between
the edges of the unit arrays is 24 mm, which corresponds to 2 missing elements. Thus, the cross-range
wavenumber kyt and kxr represent sparse dimensions, and it will be efficient to compute Equation (5)
by factorizing it across the sparse dimensions:

σ(x, y, z) =
Nxr
∑

n=1

Nyt

∑
m=1

∫
D(k)

s
Dk(kxt,kyr)

skc
(
kxt, kyt; kxr, kyr; k

)
× exp[i(kxt + kxrn)x + i(kytm + kyr)y + i(kztm + kzrn)z

]
dkxtdkyrdk,

(11)

kztm =
√

k2 − k2
xt − k2

ytm ,

kzrn =
√

k2 − k2
xrn − k2

yr .

In Equation (11), the wavenumbers kxrn and kytm are the sequenced expressions of kxr and kyt.
The constants Nxr and Nyt indicate the sparsity of the factorized dimensions. In the case represented
by Figure 2, we have Nxr = 4, Nyt = 4.

In order to elaborate on the computation of Equation (11), it is reformulated as follows:

σ(x, y, z) =
Nxr

∑
n=1

Nyt

∑
m=1

Pmn(x, y, z) exp(ikxrnx + ikytmy), (12)

Pmn(x, y, z) =
∫

D(k)

s
Dk(kxt,kyr)

skc
(
kxt, kyt; kxr, kyr; k

)
× exp

[
ikxtx + ikyry + i(kztm + kzrn)z]dkxtdkyrdk.

(13)

Equation (13) can be computed by RMA simply, without zero-padding, or by 3D interpolation.
A total of NxrNyt operations of RMA, i.e., Pmn(x, y, z), is required independently. As Equation (12)
shows, the reflectivity function can be obtained by a weighted summation of Pmn(x, y, z). To summarize
the procedure discussed above, Figure 3 presents the block diagram of DF-RMA. Intuitively, the thinner
the sparse dimension is, the more efficient our method will be. It seems that the computation load will
increase linearly in NxrNyt, and the efficiency gain of RMA will be lost in the case of very low sparsity.
Nevertheless, the computation load estimation will demonstrate quantitatively that the efficiency
degradation will not be as bad as expected, in the next section. Moreover, the efficiency can be
enhanced once Stolt interpolation and 3D IFFT are computed in parallel.
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3. Simulation Results and Computation Load Estimation

3.1. Point Spread Function

In this section, a numerical simulation is undertaken to demonstrate the validity of DF-RMA
and compare it with conventional MIMO RMA and NUFFT-based MIMO RMA. The point spread
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function (PSF) will be computed first to test the performance in terms of image quality by each
algorithm quantitatively.

The PSF is calculated without noise, and the parameters used are listed in Table 1. The geometry
of the MIMO array shown in Figure 2 is applied. An ideal scatterer positioned at (0, 0, Hc) is
supposed to be the target, and the echo is calculated with the signal model represented by Equation (1).
Three algorithms—DF-RMA, conventional MIMO RMA, and NUFFT-based MIMO RMA—are adopted
here to build the 3D image of the scatterer, and the results are presented graphically in Figure 4.
These profiles are obtained as follows: The 2D slice corresponding to z = Hc is extracted from the 3D
image, then the matrix of the slice is projected with the maximum value conserved along the x-axis
and y-axis, respectively, so as to present the performance of PSF fairly and comprehensively. As shown
in Figure 4, the profiles along the x-axis and y-axis are the same because of the symmetry. For the
performance of the full width at half maximum (FWHM) and the maximum sidelobe level (MSL),
the difference is not obvious. But for the average background level, it is −45.603 dB in DF-RMA,
whereas it is −46.644 dB and −29.710 dB in NUFFT-based MIMO RMA and conventional MIMO
RMA, respectively. A suppression gain of about 16 dB has been obtained by DF-RMA with respect to
MIMO RMA, and the precision of DF-RMA is as high as that of NUFFT-based MIMO RMA.
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Table 1. The parameters in PSF calculation.

Parameters Value

Operating frequency range 30 GHz–35 GHz
The range from the aperture to the scene center (Hc) 500 mm

Number of samples in frequency 64

3.2. Numerical Simulation

In this section, the imaging performance of a contiguous target will be presented as well as
anti-noise capability. First of all, the scattering field of the target will be computed by the method
of moments (MoM). The target used in the electromagnetic simulation is a perfectly conducting
fan-shaped 2D object with eight identical blades, as presented in Figure 5. The geometry of the
array in Figure 2 is applied to the simulation, and the other parameters used in this simulation are
listed in Table 1. The source used in the electromagnetic simulation is a Hertzian electric dipole.
The scattering field is computed at the positions of the receiving elements, and only the co-polarized
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field will be taken into account. Subsequently, three algorithms are applied to reconstruct the image,
and the results are graphically presented in Figure 5. The 3D complex reflectivity function data volume
is presented as follows: The pixels are selected based on the maximum absolute values of the data
volume in the range direction, and the final image in the cross-range direction is obtained. In this
fashion, the mainlobe and maximum sidelobes are retained, and the performance of the algorithms
can be compared fairly.
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noise capability. First of all, the scattering field of the target will be computed by the method of 

moments (MoM). The target used in the electromagnetic simulation is a perfectly conducting fan-

shaped 2D object with eight identical blades, as presented in Figure 5. The geometry of the array in 

Figure 2 is applied to the simulation, and the other parameters used in this simulation are listed in 

Table 1. The source used in the electromagnetic simulation is a Hertzian electric dipole. The scattering 

field is computed at the positions of the receiving elements, and only the co-polarized field will be 

taken into account. Subsequently, three algorithms are applied to reconstruct the image, and the 

results are graphically presented in Figure 5. The 3D complex reflectivity function data volume is 

presented as follows: The pixels are selected based on the maximum absolute values of the data 

volume in the range direction, and the final image in the cross-range direction is obtained. In this 

fashion, the mainlobe and maximum sidelobes are retained, and the performance of the algorithms 

can be compared fairly. 
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Figure 5. Target: Metal fan-shaped object with eight blades. Figure 5. Target: Metal fan-shaped object with eight blades.

The resultant Figure 6 is computed by DF-RMA. The profile of the target is rather clear except
for the slight grating lobes around the blades without noise in Figure 6a. For sparse MIMO arrays
of the regularly distributed types, the grating lobes are unavoidable in the reconstructed image.
Subsequently, white Gaussian noise is added to the reflected signal, and the power is measured
in terms of the signal to noise ratio (SNR). The result makes no difference when the noise whose
SNR equals −15 dB is applied, as demonstrated in Figure 6b. When SNR reduces to −20 dB, the
background noise rises and becomes obvious in Figure 6c, but the profile of the target remains
recognizable. Noise obscures the resultant image when SNR = −25 dB, which is considered as a critical
value of the anti-noise capability of DF-RMA. The result of Figure 7 is computed by NUFFT-based
MIMO RMA. The quality of the image is as high as that computed by DF-RMA without noise, and
likewise in terms of the anti-noise performance. The result of Figure 8 is computed by conventional
MIMO RMA. Even without the added noise, the image in Figure 8a is contaminated by background
noise to some extent. Moreover, parts of the scatterer are lost, although the rough sketch of the target
remains recognizable. The precision loss by the 1D interpolation is also partially responsible for the
image degradation. As noise is added to the signal, the image becomes obscured when SNR = −15 dB
in Figure 8b, and the target is buried by noise entirely with lower SNR in Figure 8c,d. In terms of
anti-noise performance, DF-RMA is at least 10 dB stronger than conventional MIMO RMA judged by
SNR, as the background noise is substantially suppressed by DF-RMA, which is attested by the PSF
calculation, too.
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Figure 6. Images constructed using DF-RMA: (a) Imaging result without noise; (b) Imaging result with
signal to noise ratio (SNR) = −15 dB; (c) Imaging result with SNR = −20 dB; (d) Imaging result with
SNR = −25 dB. The pixels of the image are selected based on the maximum absolute values of the data
volume in the range direction. The dynamic range of the images is 15 dB.Sensors 2017, 17, 2549  10 of 14 
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Figure 8. Images constructed using conventional MIMO RMA: (a) Imaging result without noise; (b) 
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Figure 7. Images constructed using NUFFT-based MIMO RMA: (a) Imaging result without noise;
(b) Imaging result with SNR = −15 dB; (c) Imaging result with SNR = −20 dB; (d) Imaging result with
SNR = −25 dB. The pixels of the image are selected based on the maximum absolute values of the data
volume in the range direction. The dynamic range of the images is 15 dB.
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Figure 8. Images constructed using conventional MIMO RMA: (a) Imaging result without noise;
(b) Imaging result with SNR = −15 dB; (c) Imaging result with SNR = −20 dB; (d) Imaging result with
SNR = −25 dB. The pixels of the image are selected based on the maximum absolute values of the data
volume in the range direction. The dynamic range of the images is 15 dB.

3.3. Computation Load Estimation

In this section, the computation load of DF-RMA will be evaluated to quantify its deceleration with
respect to conventional MIMO RMA. Suppose the constants Nxt, Nyt, Nxr, and Nyr are defined as the
number of transmitting/receiving sampling points after zero padding along the cross-range directions
X and Y, where the subscripts t and r refer to transmitting and receiving elements, respectively.
As Equation (1) shows, the echoes are recorded in the frequency domain, and the number of sampling
points is Nr. The requirements of complex multiplications, which constitute the main computational
tasks, will be counted to estimate the computation cost.

The computation load of conventional MIMO RMA of each step is listed in Table 2. To balance the
efficiency and the precision, 1D piecewise interpolation is an alternative. For each query point,
it requires 6 real additions, 2 real divisions, and 2 real multiplications, which is approximated
as 1 complex multiplication here. Thus, the computation cost of interpolation is supposed to be
(Nxt + Nxr − 1)

(
Nyt + Nyr − 1

)
Nr, just of the same size as the data to be interpolated. It is presumed

Nyt and Nxr are sparse. The wavenumber sampling steps of kxt and kyr are supposed to be equal
regardless of zero-padding. After dimension reduction, IFFT will be undertaken within the length of
(2Nxt, 2Nyr) along the cross-range directions. It is convenient to keep the size of output data identical
among the algorithms.

Table 2. Computation load of conventional MIMO RMA.

Processing Step Complex Multiplications

4D FFT 1
2 NxtNytNxrNyrNr log2

(
NxtNytNxrNyr

)
Scene Center Compensation NxtNytNxrNyrNr

Piecewise Interpolation (Nxt + Nxr − 1)
(
Nyt + Nyr − 1

)
Nr

3D inverse FFT (IFFT) 2NxtNyrNr log2
(
4NxtNyrNr

)
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In Table 3, the computation load of DF-RMA is evaluated in each step. Differences arise in
the last three steps. The algorithm is factorized into NxrNyt operations of dimension reduction and
IFFT, while the input data have the size (Nxt, Nyr, Nr) during each operation. Finally, a weighted
summation is taken. More computation resources will be required due to these steps. The ratio of
the computation load of DF-RMA to that of MIMO RMA is introduced to estimate the efficiency
degradation of DF-RMA:

α =
TDF-RMA

TRMA
(14)

where TDF-RMA refers to the total computation load of DF-RMA, and TRMA indicates that of
MIMO RMA. To simplify the discussion, the MIMO array is supposed to be symmetric in the
cross-range directions, which means Nxt = Nyr and Nxr = Nyt just as depicted by the geometry
in Figure 2. According to Tables 2 and 3, we obtain

αest =
N2

xr log2

(
N2

xtN
2
xr

)
+ 12N2

xr + 4N2
xr log2(4N2

xtNr)

N2
xr log2

(
N2

xtN
2
xr

)
+ 2N2

xr + 2
(

Nxt+Nxr−1
Nxt

)2
+ 4 log2(4N2

xtNr)
. (15)

Table 3. Computation load of conventional DF-RMA.

Processing Step Complex Multiplications

4D FFT 1
2 NxtNytNxrNyrNr log2

(
NxtNytNxrNyr

)
Scene Center Compensation NxtNytNxrNyrNr

Piecewise Interpolation NxtNytNxrNyrNr
3D IFFT 2NxrNytNxtNyrNr log2

(
4NxtNyrNr

)
Weight Multiplications 4NxrNytNxtNyrNr

Table 4. Time consumed by each imaging method.

Method Time Consumed (s)

DF-RMA 10.243
NUFFT based MIMO RMA 112.838
Conventional MIMO RMA 2.283

In the numerical simulations of Section 3.1, it is assumed Nxt = Nyr = 64, Nxr = Nyt = 4,
and Nr = 64. According to Equation (15), we obtain αest = 4.668. The programs were run on
a personal computer configured with 2-core Intel(R) Xeon(R) CPU i7-6820HQ, and 64 GB RAM.
No parallel techniques were applied, and the time consumed by each imaging method is listed in
Table 4. The computation load ratio between DF-RMA and MIMO RMA calculated from Table 4 is
αmeas = 4.486, which is very close to the value αest estimated from Equation (15). Subsequently,
the computation load ratio αest will be exploited under more severe conditions, when the sparse
dimension Nxr varies from 1 to Nxt. The extreme case Nxr = 1 means the MIMO array is a simple cross
array, while Nxr = Nxt means no sparse dimensions exist. The plot of the ratio αest with respect to
Nxr is illustrated in Figure 9. We observe that the ratio increases steeply until Nxr = 8, and thereafter
it tends to relax to a stable value around αest = 5. Therefore, the efficiency degradation is limited
even when sparse dimensions disappear, and DF-RMA retains the same order of speed under even
the worst conditions. Finally, for comparison, we notice that in the case of NUFFT-based MIMO
RMA, the efficiency degrades seriously for the implementation of 3D interpolation, even with fast
Gaussian gridding.
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4. Conclusions

In conclusion, a high-precision and efficient imaging algorithm for regularly distributed MIMO
array is proposed and demonstrated. Due to the sparse dimensions of arrays, the computation is
factorized into multiple operations of RMA. Although the method will be more preferable for arrays
with highly sparse dimensions, the efficiency degradation is nevertheless limited under even extremely
low sparse dimensions. The salient characteristics of DF-RMA are summarized as follows:

1. In terms of precision, DF-RMA outperforms conventional MIMO RMA significantly. According to
a comparison of PSFs, DF-RMA achieves strong background level suppression. In the numerical
simulation of a contiguous target without added noise, the quality of the image is better than
conventional MIMO RMA, and the precision is as high as NUFFT-based MIMO RMA. As for
anti-noise performance, DF-RMA is at least 10 dB stronger than conventional MIMO RMA,
judged by SNR;

2. In terms of efficiency, DF-RMA is 5 times slower than conventional MIMO RMA at most (and can
be nearly as fast as conventional MIMO RMA in cases of high sparsity), but more than 10 times
faster than NUFFT-based MIMO RMA. Equally significantly, the structure of the algorithm is
naturally adaptable to parallel computation, and it remains effective in a range of applications,
especially those involving sparse arrays.

To summarize, we have proposed and demonstrated a high-precision imaging algorithm with
limited efficiency loss, vis-à-vis conventional MIMO RMA for regularly distributed MIMO arrays.
It does well in background noise suppression, and outperforms conventional MIMO RMA in terms of
anti-noise capability.
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