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Abstract: Recently, autonomous vehicles, particularly self-driving cars, have received significant
attention owing to rapid advancements in sensor and computation technologies. In addition to traffic
sign recognition, road lane detection is one of the most important factors used in lane departure
warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and
fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal
and external factors such as road quality, occlusion (traffic on the road), weather conditions, and
illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane
markings for recognition processing is a difficult challenge. Therefore, we propose a method to
overcome various illumination problems, particularly severe shadows, by using fuzzy system and
line segment detector algorithms to obtain better results for detecting road lanes by a visible light
camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes
dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane
detection methods.
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1. Introduction

Detecting road lane markings is an important task in autonomous vehicles [1–3]. Most recent
algorithms for lane detection are vision-based. Images captured from various types of cameras
such as visible light camera sensors are processed to extract all meaningful feature data such as
edges, lane orientation, and line boundaries, and they are combined with the distance information
measured by radar sensors. A vision-based system requires camera calibration before operating, good
environmental situations and road conditions, and high processing speed to detect lane boundaries in
real time to match the speed of the vehicles. Therefore, most of the methods based on handcrafted
features propose three main steps of processing [1,4–7]: (1) pre-processing: enhancing illumination
of the original image captured from the camera; (2) main-processing: extracting features of road lane
markings such as edges, texture, and color; and (3) post-processing: removing outliers or clustering
detected line segments.

Unlike traffic signs, severe shadows can exist on road lanes, and this factor leads to challenging
problems for automatic recognition and classification of road lanes. For example, owing to the effect of
overly bright or overly dark illuminations, a solid lane can be divided into smaller units; therefore,
it can be falsely recognized as a dashed lane [6]. Therefore, we propose a method of road lane detection
by using a fuzzy inference system (FIS) to overcome the effect of shadows on input images. Detailed
explanations of previous approaches are provided in the Section 2.

Sensors 2017, 17, 2475; doi:10.3390/s17112475 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17112475
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2475 2 of 29

2. Related Works

Previous research on road lane detection used visible light and night-vision cameras, or combinations
of the two, to enhance the accuracy. Previous studies on camera-based lane detection can be classified
into model-based and feature-based methods. The first approach uses the structure of the road to
create a mathematical model to detect and track road lane named model-based methods. A popular
mathematical model is B-splines [4,8–11]; this model can form any arbitrary shape using a set of control
points. Xu et al. detected road lanes based on an open uniform B-spline curve model and maximum
deviation of position shift (MDPS) method to search control points, but the method resulted in a large
deviation, and, consequently, it could not fit the road model for the case when the road surface was not
level [8]. Li et al. adopted an extended Kalman filter with a B-spline curves model for continuous lane
detection [9]. Truong et al. [4] combined the vector-lane-concept and non-uniform B-splines (NUBS)
interpolation method to construct the left and right boundaries of road lanes. On the other hand,
Jung et al. used the linear model to fit the near vision field, while the parabolic model was used to fit the
far field to approximate lane boundaries in video sequences [12]. Zhou et al. presented a lane detection
algorithm based on a geometrical model and the Gabor filter [13]. However, they assumed the road in
front of the vehicle was approximately planar and marked, which is often correct on the highway and
freeway; and the geometrical model built in this research required four parameters: starting position,
lane orientation, lane width, and lane curvature. In previous research [14], Yoo et al. proposed a
lane detection method based on gradient-enhancing conversion to guarantee an illuminating-robust
performance. In addition, an adaptive Canny edge detector, a Hough transformation (HT), and a
quadratic curve model are used in their method. Li et al. adopted an inverse perspective mapping
(IPM) model to locate a straight line in an image [15]. The IPM model was also used in [5,15–18].
Chiu et al. proposed a lane detection method based on color segmentation, thresholding, and fitting
the model of a quadratic function [19].

These methods start with the hypothesis of the road model, and then match the edge with
the road structure model. They only use a few parameters to model the road structure. Therefore,
the performance of lane marking detection is affected by the accurate definition of mathematical model,
and the key problem is how to choose and fit the road model. That is why these methods work well
only when they are fed with complete initial parameters of the camera or the structure of the road.

As the second category, feature-based methods or handcrafted feature-based methods have been
researched to address this issue. These methods extract features such as edges, gradient, histogram
and frequency domain features to locate lane markings [6,20–27]. The main advantages are that this
approach is not sensitive to the structure of road, model, or camera parameters. However, these
feature-based methods require a noticeable color contrast between lane markings and road surface,
as well as good illumination conditions. Therefore, some works perform a variety of color-space
transformations to hue, saturation, and lightness (HSL), and luminance, chroma blue, and chroma red
(YCbCr) to address this issue. In addition, others use the original red, green, and blue (RGB) image.
In previous research, Wang et al. [25] combined the self-clustering algorithm (SCA), fuzzy C-mean, and
fuzzy rules to enhance lane boundary information and to make it suitable for various light conditions.
At the beginning of their process, they converted the RGB image into that in YCbCr space so that the
illumination component can be maintained, because they only required monochromatic information of
each frame for processing. Sun et al. [28] introduced the method that converts the RGB image into
that in the HSI color model, and applied fuzzy C-mean for intensity difference segmentation. These
methods worked well when road and lane markings produced separate clusters; however, the intensity
values of the road surface and road lanes are often classified into the same cluster, and, consequently,
the fundamental issue of the color lane and road lanes being converted into the same value is not
resolved. Although it belongs to the model-based approach, a linear discriminant analysis (LDA)-based
gradient-enhancing method was introduced in the research of Yoo et al. [14] to dynamically generate
a conversion vector that can be adapted for range illumination and different road conditions. Next,
they achieved optimal RGB weights that maximize gradients at lane boundaries. However, their
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conversion method cannot work well in a case of extremely different multi-illumination conditions.
This is because they assumed that multiple illuminations are not included in one scene. Wang et al. [18]
simply used the Canny edge detector and HT to obtain the line data, then created the filter conditions
according to the vanishing point and other location features. First, their algorithm saved the detected
lane and vanishing points in near history, then clustered and integrated to determine the detection
output based on the historical data; and finally, a new vanishing point was updated for the next
circuit. Convolutional neural network (CNN)-based lane detection with the image captured by camera
(laterally-mounted camera) at the side mirror of the vehicle was proposed [22]. In previous research [6],
the authors proposed a method for road lane detection that distinguishes between dashed and solid
lanes. However, they used the predetermined region-of-interest (ROI) without the detection of the
vanishing point, and used the line segment detector whose parameters were not adaptively changed
according to the shadows on the road image. Therefore, their performances of road lane detection
were affected by the shadows on the images.

As previously mentioned, these feature-based methods or handcrafted features-based methods
work well only under visible and clear road conditions where the road lane markings can be easily
separated from the ground by enhancing the contrast and brightness of the image. However, they have
the limitations of detecting correct road lane in case of severe shadows from objects, trees or buildings.
To address this issue, we propose a method to overcome poor illumination problems to get better
results of detecting a road lane. In the following four ways, our research is novel compared to
previous research.

- First, to evaluate the level of shadows in the ROI of the road image, we use two features as the
inputs for FIS: hue, saturation, and value (HSV) color difference based on local background area
(feature 1) and gray difference based on global background area (feature 2). Two features from
different color and gray space are used for FIS to consider the characteristics of shadow in various
color and gray spaces.

- Second, using FIS based on these two features, we can estimate the level of shadows depending on
the output of FIS after the defuzzification process. We modeled the input membership functions
based on the training data of two features and maximum entropy criterion to enhance the accuracy
of FIS. The procedure of intensive training which is required in training-based method such as
neural network, support vector machine, and deep learning is not necessary for using FIS.

- Third, by adaptively changing the parameters of the line segment detector (LSD) and CannyLines
detector algorithms based on the output of FIS, more accurate line detection can be possible based
on the fusion of the detection results by LSD and CannyLines detector algorithms, irrespective of
severe shadows on the road image.

- Previous researches did not discriminate the solid and dashed lanes in the detected road lanes
although it is necessary for autonomous vehicle. However, even the solid and dashed lanes are
discriminated (including the detection of starting and ending positions of dashed lanes) in the
detected road lanes by our method.

In Table 1, we show the summarized comparisons of the proposed and existing methods.
The remainder of this paper is organized as follows: in Section 3, our proposed system and

methodology are introduced. In Section 4, the experimental setup is explained and the results are
presented. Section 5 presents both our conclusions and discussions on ideas for future work.
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Table 1. Comparisons of previous and proposed methods on road lane detection.

Category Model-Based Methods

Feature-Based Methods

Not Considering Severe Shadows on
Road Image

Considering Severe
Shadows on Road Images

(Proposed Method)

Methods

- B-spline model [4,8–11]
- Parabolic model [12]
- Local road model or

geometrical model [13]
- Quadratic curve model [14,19]
- IPM [5,15–18,29]

- Using edge features [30], EDLines
method [31], and illumination
invariant lane features [27]

- SCA, fuzzy C-mean and fuzzy
rules in YCbCr space [25]

- Canny edge detector and HT [18]
- Fuzzy C-mean in HSI color

space [28]
- Line segment detector [6]
- Convolutional neural network

(CNN) [22]

FIS-based estimation of the
level of shadows and
adaptive change of the
parameters of LSD and
CannyLines detector
algorithms

Advantages
High performance and accuracy of
road lane detection by using
mathematical models

- Performance is not affected by the
model parameters or the initial
parameters of the camera

- Algorithm is simple with fast
processing speed

Accurate road lane detection
can be possible irrespective
of severe shadows on
road image

Disadvantages

It works well only when complete
initial parameters of the camera or
the structure of the road are
provided

It works well only in visible and clear
road conditions where the road lane
markings can be easily separated from
the ground by enhancing the contrast
and brightness of the image

Additional procedure for
designing fuzzy
membership function and
fuzzy rule tables is necessary

3. Proposed Method

3.1. Overview of Proposed Method

Figure 1 depicts the overall procedure for our method. The input image is captured by the
frontal-viewing camera, and has various sizes (640 × 480 pixels or 800 × 600 pixels). In order to reduce
computational complexity as well as noise, ROI for lane detection is automatically defined based on
the detected vanishing point from the input image only in case that the correct vanishing point is
detected (see the condition of Figure 1 in Section 3.2). If it fails to detect the correct vanishing point,
the predetermined ROI is empirically defined. Next, by using two input features such as HSV color
difference based on local background area (feature 1) and gray difference based on global background
area (feature 2), FIS outputs the level of shadow in the current selected ROI image. Based on the FIS
output value, the parameters for line segment detector algorithms are changed adaptively to enhance
the accuracy of line detection. Next, three steps focus on eliminating invalid line segments based on the
properties of road lanes, such as angle and vanishing point, and the correct left and right boundaries
of road lanes are finally detected. We detail each step in the next sections.

3.2. Detect Vanishing Point and Specify ROI

In the first step, the vanishing point is detected and the ROI where the road lane is detected is
automatically defined in the input image only in case that the correct vanishing point is detected.
If it is failed to detect the correct vanishing point, the ROI is empirically defined. By performing
the road lane detection within the ROI instead of the whole image, various noises in the captured
image by the frontal-viewing camera as shown in Figure 2, can be reduced in the procedure of lane
detection. In addition, the effect of environmental conditions such as sunshine, rain, or extreme
weather conditions can be lessened in the case using ROI compared to that using the whole image.

In general, the vanishing point is considered one of the most important keys to retaining a
valid road lane, because road lanes are assumed to converge at one point within the captured image.
As shown in Figure 2, lane markings always appear within the lower part of the image, but this
depends on each camera configuration, and the input image can also include other objects (e.g., car
hoods in Figure 2b–f).
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Figure 1. Overall procedure for the proposed method.

The vanishing point is detected as follows [24]: Left and right road lane markings usually appear
like two sides of a trapezoid based on the perspective projection of the frontal-viewing camera.
Therefore, we can assume that all left and right lane boundaries can converge at one point called the
vanishing point. First, line segments are detected by algorithms called LSD [32,33] and CannyLines [34]
using consistent texture orientation. Let S = {s1, s2, . . . , sk} be the set of line segments extracted from
image. Each line segment si, (i = 1, 2, . . . , k) is defined as:

si = {x1i, y1i, x2i, y2i, θi}, (i = 1, 2, . . . , k) (1)

where (x1i, y1i) and (x2i, y2i) are the coordinates of the starting point and the ending point of line
segment si, respectively. θi is the angle of line segment si. Next, we define the length of line segment
ith (leni) as the length weight (WL). The longer line segment represents more pixels in the same
direction, as well as a higher voting weight which increases the voting score. Second, Gaussian weight
is calculated in Equation (2) [24]. In the voting space image, we not only consider the intersected point
between two line segments, but also its 5 × 5 neighboring points. Based on Gaussian distribution,
those involved points have different values to make the lines vote more smoothly, and thus improve
the accuracy of the detection of the vanishing point:
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Figure 2. Examples of input images: (a) Image only with road lanes; (b,c) Images with other road
markings; (d,e,f) Images with shadows.

WG(x, y) = exp
(

x2 + y2

−2σ2

)
(2)

where the candidate vanishing point (x, y) is computed in the neighborhood space 5 × 5 matrix,
−2 ≤ x, y ≤ 2, σ = 1.5. In Equation (2), (x, y) is the candidate vanishing point. Because there can be
errors in the detected (x, y) position just based on line segments, the neighborhood space of 5× 5 pixels
based on the (x, y) is also considered by using Gaussian distribution. By using the weight of Gaussian
distribution, the less weight is assigned to the position (of candidate vanishing point) far from (x, y)
when determining the final vanishing point as shown in Equation (3). In addition, the less weight is
given to the position (of candidate vanishing point) which is determined based on shorter line segment
(WL) as shown in Equation (3). The score of the current selected pixel is then calculated as follows:

I(x, y)score = WL + WG(x, y) (3)

Finally, we create a matrix space which is the same size as the input image and initialized to 0.
Next, we update the score of each element in the matrix that corresponds to each pixel in the input
image by adding I(x, y)score into the current value at the same position. Here, (x, y) is coordinate of
current element in matrix and it is also a coordinate of current selected pixel in input image. The point
that has the largest value is considered the vanishing point [24].

Figure 3b shows examples of detecting the vanishing point and defined ROI based on the
vanishing point. Incorrect vanishing point caused by the car hood can be removed, and correct one is
obtained, which produce the correct ROI as shown in Figure 3b. In addition, although incorrect line
segments can be generated by shadows, the voting methods considering the Gaussian function-based
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weight and the length weight of line segment as shown in Equations (2) and (3) can prevent the
detection of incorrect vanishing point by the incorrect line segments by shadows as shown in Figure 3b.
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of green cross shape.
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In order to prevent an incorrect ROI caused by inaccurate detection of the vanishing point, the y
position of the vanishing point is compared to the upper y position of the predetermined ROI of
Figure 3a (which is manually determined according to the database). If the difference between these
two y positions is larger than the threshold (30 pixels), the predetermined ROI is used for lane detection,
assuming that detection of the vanishing point fails. The diagram of these procedures are shown in
Figure 4. In next Sections 3.3 and 3.4, we would explain the method of extracting features 1 and 2 as
the inputs to FIS to measure the level of shadows.

3.3. Calculating Feature 1 (HSV Color Difference Based on Local Background Area)

Figure 5 shows the flowchart for determining shadow for feature 1. As the first step of Figure 5,
the ROI of RGB color space is converted to that of HSV color space [35]. In the HSV color space, the V
component is a direct measure of intensity. Pixels that belong to shadow should have a lower value
of V than those in the nonshadow regions, and the hue (H) component of shadow pixels changes
within a certain limited range. Moreover, shadow usually lowers the saturation (S) component.
In conclusion, a pixel p is considered to be part of shadow if its value is satisfactory with the following
three equations [36]:

thrValpha ≤
IV
p

BV
p
≤ thrVbeta (4)

IS
p − BS

p ≤ thrS (5)∣∣∣IH
p − BH

p

∣∣∣ ≤ thrH (6)

where IE
p and BE

p represent the specific channel of HSV color space (E = H, S, and V, respectively) for
the pixel p in the current input image (I) and in the background ROI (B) (blue boxes of Figure 6a,c,e),
respectively. The values thrValpha, thrVbeta, thrS, and thrH represent the threshold values, and these
values are respectively 0.16, 0.64, 100, and 100. These optimal values were empirically determined by
experiments with training data. It is unnecessary to recalculate the thresholds even if the camera is
modified. In our experiment of Section 4, we used same thresholds with three different databases where
the different cameras were used. Among these thresholds, those which affect shadow detection most
are thrValpha and thrVbeta, because thrValpha is used to define a maximum threshold for the darkening
effect of shadows on the background pixel, whereas thrVbeta prevents the system from incorrectly
identifying the too dark (nonshadow) pixels as shadow pixels [37].Sensors 2017, 17, 2475  9 of 30 
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binarization image of detected shadow by Figure 5.

From the ROI of Figure 3, the ROI for lane detection is reduced by removing the left and right
upper areas of the images as shown in Figure 6a,c,e to extract the features used as the input to
FIS. Figure 6b,d,f shows the binarization image of extracted shadow within these ROIs based on
Equations (4)–(6) and Figure 5. Thus, the average number of shadow pixels in this ROI is calculated as
feature 1 in our research.

3.4. Calculating Feature 2 (Gray Difference Based on Global Background Area)

Figure 7 shows the flowchart for determining shadow for feature 2. While feature 1 is calculated
in HSV color space, feature 2 is calculated in gray image to consider the characteristics of shadow in
various color and gray spaces. Two thresholds for lower and upper bound threshold thrlow and thrhigh
are determined to calculate feature 2. According to the kinds of experimental databases, the threshold
values are a little changed, and the ranges of these two thresholds are 16~17 and 48~50, respectively.
These ranges of optimal thresholds were empirically determined by experiments with training data.
Next, the mean value of all pixels whose value is in the range from thrlow to thrhigh is calculated as
µmean. For example, there are four pixels inside the ROI of Figure 8, and their pixel values (gray levels)
are 20, 15, 33, and 40, respectively. Because three pixels of 20, 33, and 40 (except for 15) belong to the
range from thrlow to thrhigh, µmean is calculated as 31((20 + 33 + 40)/3). Finally, the pixel (x, y) which
satisfied the condition of Equation (7) is determined as shadow:
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|I(x, y)− µmean| ≤ thrmedium (7)

where I(x, y) is the pixel value at coordinate x and y in the ROI for lane detection of Figure 8a,c;
and the optimal threshold (thrmedium) was also empirically determined by experiments with training
data. According to the kinds of experimental databases, the threshold value is a little changed, and the
range of this threshold is 24~26, respectively. Next, the average number of shadow pixels in this ROI is
calculated as feature 2 in our research.
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Figure 8. Examples of extracted shadows for calculating feature 2: (a,c) Image in the ROI; (b,d)
binarization image of detected shadow by Figure 7.

According to the position of camera, the detected position of vanishing point can be changed
in the input image and the consequent ROI of Figure 8 can be also changed, which can influence the
threshold values of Figure 7. However, the changes of threshold values are not large as explained
above, and for the experiments of Section 4, we used the similar threshold values in three different
databases of the Caltech dataset, Santiago Lanes Dataset (SLD), and Road Marking dataset where the
positions of cameras are different.
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3.5. Designing Fuzzy Membership Functions and Rule Table

For the next step, our method measures the level of shadow included in the ROI by using FIS
using two features (features 1 and 2) as inputs as shown in Figure 1. The range of each feature is
represented from 0 to 1 by min-max scaling to use two features as inputs to FIS. The input values are
separated into two classes (low (L) and high (H)) in the membership function. In general, there is an
overlapped area between these two value classes, and we define the shape of the input membership
function as a linear function. Linear membership functions have been widely adopted in the FIS
because the algorithm is less complex and the calculation speed is very fast compared to the nonlinear
membership function [38–40]. With the training data, we obtained the distributions of features 1 and 2,
and based on maximum entropy criterion, we designed the input member ship functions as follows:

FL_ f eature i(x) =


1 for 0 ≤ x ≤ pL_i

aL_ix + bL_i for pL_i ≤ x ≤ qL_i
0 for qL_i ≤ x ≤ 1

(8)

FH_ f eature i(x) =


0 for 0 ≤ x ≤ pH_i

aH_ix + bH_i for pH_i ≤ x ≤ qH_i
1 for qH_i ≤ x ≤ 1

(9)

where aL_i is 1/(pL_i − qL_i) and bL_i is qL_i/(qL_i − pL_i). In addition, aH_i is 1/(pH_i − qH_i) and bH_i
is qH_i/(qH_i − pH_i). In Equations (8) and (9), i = 1 and 2, and FL_ f eature i(x) is the L membership
function of feature i, whereas FH_ f eature i(x) is its H membership function. Next, we can obtain the
following equations:

ProbL_ f eature i = ∑1
x=0 FL_ f eature i(x)DistL_ f eature i(x) (10)

ProbH_ f eature i = ∑1
x=0 FH_ f eature i(x)DistH_ f eature i(x) (11)

In Equations (10) and (11), i = 1 and 2. In addition, DistL_ f eature i(x) is the L (data) distribution of
feature i (nonshadow data of Figure 9), whereas DistH_ f eature i(x) is the H (data) distribution of feature
i (shadow data of Figure 9). Based on Equations (10) and (11), the entropy can be calculated as follows:

H
(

pLi , qLi , pHi , qHi

)
= −ProbL_ f eature i log

(
ProbL_ f eature i

)
− ProbH_ f eature i log

(
ProbH_ f eature i

)
(12)

where i = 1 and 2. Based on the maximum entropy criterion [41,42], the optimal parameters
of (pL_i, qL_i, pH_i, qH_i) of feature i are calculated by being selected when the entropy
H( pL_i, qL_i, pH_i, qH_i) is maximized. From this, the input membership functions of features 1
and 2 are defined as shown in Figure 9.

These membership functions are used to convert input values to a degree of membership.
The output value of FIS is also described in the form of a linear function from the membership function
to determine whether selected ROI contains more shadow or less. In our research, we designed the
output membership function using three functions of low (L), medium (M), and high (H) as shown in
Figure 10. We define the output fuzzy rule as “L” in the case when the level of shadow is close to 0
(minimum) and “H” when the level of shadow is close to 1 (maximum), as shown in Table 2. Thus,
the optimal output value of FIS can be obtained using these output membership functions: the fuzzy
rule table, and the combination of the defuzzification method with Min and Max rules.
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Table 2. Fuzzy rules based on features 1 and 2.

Input 1 (Feature 1) Input 2 (Feature 2) Output of FIS

L L L
L H M
H L M
H H H

3.6. Determining Shadow Score Based on Defuzzification Methods

Using the two normalized input features, four corresponding values can be calculated using the
input membership functions as shown in Figure 11. Four functions are defined as gL

f 1(·), gH
f 1(·), gL

f 2(·),
and gH

f 2(·). The corresponding output values of the four functions with input values of f 1 (feature 1) and

f 2 (feature 2) are shown by (gL
f 1, gH

f 1) and (gL
f 2, gH

f 2). For example, suppose that the two input values

for f 1 and f 2 are 0.20 and 0.50, respectively, as shown in Figure 11. The values of (gL
f 1, gH

f 1) and (gL
f 2,

gH
f 2) are (0.80(L), 0.20(H)) and (0.00(L), 1.00(H)), respectively, as shown in Figure 11. With these values,
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we can obtain the following four combinations: (0.80(L), 0.00(L)); (0.80(L), 1.00(H)); (0.20(H), 0.00(L));
and (0.20(H), 1.00(H)).
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Figure 11. Obtaining the output value of the input membership function for two features: (a) feature 1;
(b) feature 2.

With these four combinations, a value is selected by the Min or Max rule with the fuzzy rules
in Table 2. In the Min method, the minimum value is selected from each combination, whereas the
Max method selects the maximum value. For example, for (0.80(L), 1.00(H)), in the case of the Min
rule, 0.80 is selected and M is determined (if “L” and “H,” then “M” as shown in Table 2). Finally,
the obtained value is 0.80(M). In the case of the Max rule, 1.00 is selected with M, and the obtained
value is 1.00(M). These obtained values are called “inference values” (IVs). Table 3 shows the obtained
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IVs by the Min or Max rule with the rule table of Table 2 from these four combinations of (0.80(L),
0.00(L)); (0.80(L), 1.00(H); (0.20(H), 0.00(L)); and (0.20(H), 1.00(H)).

Table 3. IVs obtained with four combinations.

Feature 1 Feature 2
IV

MIN Rule MAX Rule

0.80(L) 0.00(L) 0.00(L) 0.80(L)
0.80(L) 1.00(H) 0.80(M) 1.00(M)
0.20(H) 0.00(L) 0.00(M) 0.20(M)
0.20(H) 1.00(H) 0.20(H) 1.00(H)
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Using four IVs, we can obtain the final output of FIS by one of the five defuzzification methods.
In our research, we only consider five methods for defuzzification: first of maxima (FOM), last
of maxima (LOM), middle of maxima (MOM), mean of maxima (MeOM), and center of gravity
(COG) [38,43,44]. The FOM method selects the minimum value (w1) among the values calculated using
the maximum IV ((IV1(L) and V2(M) of Figure 12a), LOM selects the maximum value (w3) among the
values calculated using the maximum IV ((IV1(L) and IV2(M)). The MOM gets the middle value of the
weight value from FOM and LOM ((w1 + w3)/2), and MeOM gets the mean value ((w1 + w2 + w3)/3).
The output of FIS obtained by the COG is w5 as represented in Figure 12b, which is calculated from the
COG of three regions (R1, R2, and R3). We compared the five defuzzification methods and used one
method (COG) which shows the best performance. That is, w5 is used as f uzzyscore of the Equations (13)
and (14) to adaptive change the parameters of LSD and CannyLines detector.

3.7. Adaptively Change Input Parameters for Line Segment Detector Algorithms

The obtained output of FIS in Section 3.6 represents the level of shadow in the input image,
and then based on this output, the input parameters of line segment detector algorithms are changed
adaptively, as shown in Equations (13) and (14). That is because more line segments are usually
extracted from the boundaries of shadows in the case when the image including the larger level of
shadows is compared to the image including the lesser level of shadows.

In this paper, we combine two robust line segment detection algorithms to efficiently detect
road lane markings boundaries from an input image. They are called LSD algorithm [32,33] in
OpenCV library [45] and CannyLines detector [34], which are applied into the ROI of the input
image, sequentially. The LSD method has several parameters to control meaningful line segments as
follows; and the scale is adjusted in our research because it affects line segment detection more than
sigma_scale:

(1) Scale (α of Equation (13)): The scale of the image that is used to find the lines; its range is from
0 to 1. The 1 means that the original image is used for line segment detection. A smaller value
shows that the image of a smaller size is used for line segment detection. For example, 0.5 means
the image whose width and height are respectively half compared to those of the original image
is used for line segment detection

(2) Sigma_scale: Sigma value for Gaussian filter

Based on the output of FIS, we update the LSD parameter (scale) dynamically based on
Equation (13). In this Equation, α0 is the default scale (0.8) of the LSD parameter, and f uzzyscore

is the output of FIS, whose range is from 0 to 1. The image of larger f uzzyscore means that the larger
levels of shadows are included. Therefore, in this case, we use the smaller α for LSD, which means the
image size is reduced for line segment detection. With the image of smaller size, the high frequency
edges of the image disappear compared to that of larger size. Therefore, the line segments from the
boundary of the shadow tends to be reduced:

α = (α0 + 0.2)− f uzzyscore (13)

Most of the parameters of the CannyLines detector related to the input image are determined by
the image itself. However, there are still some parameters which can be adjusted, and µv is adjusted in
our research because it affects line segment detection more than other parameters:

(1) µv: Denotes the lower limit of a gradient magnitude
(2) θs: Represents the minimal length of an edge segment to be considered for splitting and equals

twice that of the possibly shortest edge segment
(3) θm: Represents the maximal direction deviation tolerance of two close-direction line segments to

be considered for merging
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Based on the output of FIS, the parameter of the CannyLines detector is also updated by
Equation (14). The value µ0 is the default value (70) of the lower limit of a gradient magnitude.
As explained previously, the image of larger f uzzyscore means that the larger levels of shadows are
included. Based on Equation (14), consequently, µv becomes larger. A larger µv means that the higher
limit of a gradient magnitude is used, which causes the reduction of the detected line segment by the
CannyLines detector:

µv = µ0·10· f uzzyscore (14)

As shown in Figure 13, through the adaptive adjusting of parameters of the LSD and CannyLines
detector, we can find that the incorrect line segments are reduced in the result image.
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3.8. Detecting Correct Lane Boundaries by Eliminating Invalid Line Segments Based on Angle and
Vanishing Point

As shown in Figure 13b,d, there are still incorrect line segments after adaptively adjusting the
parameters by the output of FIS. Therefore, in the next step, incorrect line segments are removed based
on the characteristics of the road lane.

Because the car always operates between two road lanes, left and right road lane markings appear
like two sides of a trapezoid in the image as shown in Figure 13. Therefore, only the left and right
road lanes that satisfy the angle condition are maintained, regardless of their location [6]. In detail,
we separate the ROI into two areas of left and right-side ROIs based on the middle position in the
horizontal direction of ROI. That is, we decide that all line segments whose starting point has an
x-coordinate of the range [0, WROI

2 − 1] belong to the left side-ROI; whereas, all the others belong
to the right-side ROI. Here, WROI is the width of the ROI. Then, we define empirically the range of
angle of the road lane for left side-ROI and right-side ROI as θle f t

(
25
◦ − 75

◦)
and θright

(
105

◦ − 155
◦)

,
respectively. Any line segments whose angle does not belong to these ranges (θle f t

(
25
◦ − 75

◦)
and

θright
(
105

◦ − 155
◦)

) are removed. As shown in Figure 14, incorrect line segments are removed after
using the angle condition.

There are still incorrect line segments after using the angle condition as shown in Figure 15a,c,e.
Therefore, we use the vanishing point condition to remove these line segments. As explained in
Section 3.2, all left and right boundaries of road lane markings intersect at a point called the vanishing
point. Once the vanishing point is detected, we can obtain its x and y coordinates as xvp and yvp.
Next, we can calculate slope a and y-intercept b of each detected line segment, and calculate the linear
equation of this straight line with xvp to get the y coordinate value. Finally, we compare the distance
value between yvp and the y coordinate value by using the linear equation of a straight line with



Sensors 2017, 17, 2475 17 of 29

a certain threshold value as shown in Equation (15), and remove the line segments if this distance
value exceeds a certain threshold value. Figure 15b,d,f shows the results by using the vanishing point
condition: ∣∣yvp −

(
a·xvp + b

)∣∣ ≤ thrdist (15)
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In the case of a curved lane, the angle condition is not valid. For example, in Figure 16b the angle
of the right lane of the upper region is similar to that of the left lane by the curved road. Therefore,
the above angle condition is applied only in the middle and lower areas of ROI. In the upper area of
ROI, the line segment whose angle is much different from that of the line segment detected below the
region is removed. Detailed algorithms are referenced in [6].

However, in our research, the curved lanes are not detected correctly because of the vanishing
point. This problem is depicted in Figure 16b. Based on the vanishing point condition, we only keep
line segments that have an extension crossing the vanishing point; thus, we cannot detect the whole
curved lane marking, but the part of the curved lane (of Figure 16b) can be removed by the vanishing
point condition. To solve this problem, we apply the vanishing point condition only in the lower areas
(below the violet line of Figure 16b) of ROI based on the detected vanishing point.

After eliminating the line segments according to angle and vanishing point conditions, multiple
groups of line segments that belong to road lane markings remain. In this final step, we use methods
similar to those that were used in [6] to combine small fragmented line segments into a single line.
We define a 3

◦
of angle difference and three of the Euclidean distance difference as the stopping

conditions, which means that we concatenate any two adjacent lines that have smaller than 3
◦

and
three pixels of angle difference and the Euclidean distance difference, respectively.
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Figure 16. Detected vanishing point. VP means the detected vanishing point: (a) straight road lane
markings; (b) curved lane markings.

4. Experimental Results

We tested our proposed method with various datasets as shown in Figures 17–19. For the Caltech
dataset, 1016 images were used, and the size of the image was 640 × 480 pixels [5]. For the Santiago
Lanes Dataset (SLD), 1201 images with the size of 640 × 480 pixels were used [46]. In addition,
the Road Marking dataset consists of various subsidiary dataset with more than 3000 frames captured
under various illumination conditions, and the image size is 800 × 600 pixels [47,48]. These databases
were collected at different times along the day. We performed the experiments on a desktop computer
with Intel CoreTM i7 3.47 GHz, 12 GB memory of RAM, and the algorithm was implemented by Visual
C++ 2015 and OpenCV library (version 3.1).
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Figure 18. Examples of the SLD dataset.

The ground-truth (starting and ending) positions of road lane markings were manually marked
in the images to measure the accuracy of lane detection. Because our goal is to discriminate dashed
and solid lanes in addition to lane detection, we manually detect the ground-truth point, and then
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compare it with detected starting and ending points with a certain interdistance threshold value to
determine whether the detected line is correct or not.
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Figure 19. Examples of the Road Marking dataset.

In our method, we only consider whether the detected line segment is a lane mark or not,
so negative data do not occur (i.e., ground-truth data of a non-lane), and true negative (TN) errors
are 0% in our experiments. Other kinds of errors such as true positive (TP), false positive (FP), and
false negative (FN) are defined and calculated to obtain precision, recall, and F-measure as shown
in Equations (16)–(18) [49,50]. The number of TP, FP, and FN are represented as #TP, #FP and #FN,
respectively:

Precision =
#TP

#TP + #FP
(16)

Recall =
#TP

#TP + #FN
(17)

F−measure = 2× Precision·Recall
Precision + Recall

(18)

Tables 4–6 show the accuracies of our method with each dataset.

Table 4. Experimental results by our method with the Caltech datasets.

Database #TP #FP #FN Precision Recall F-Measure

Cordova 1 1201 100 141 0.92 0.89 0.91
Cordova 2 824 230 122 0.78 0.87 0.82

Washington 1 1242 259 328 0.83 0.79 0.81
Washington 2 1611 43 299 0.97 0.84 0.90

Total 4878 632 890 0.89 0.85 0.87

Table 5. Experimental results by our method with the SLD datasets.

Database #TP #FP #FN Precision Recall F-Measure

SLD 6430 553 1493 0.92 0.81 0.86

Figure 20 shows correct lane detection using our method with various datasets. In addition,
Figure 21 shows some examples of incorrect detection results. In Figure 21a, our method incorrectly
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recognized non-road lane objects such as crosswalks, road-signs, text symbols, and pavement as lane
markings. In those cases, there are no dynamic conditions to distinguish which one belongs to a
road lane and which one belongs to non-road lane objects. In addition, Figure 21b shows the effect
of shadows on our method. Although our method uses the fuzzy rule to determine the amount of
shadow in the image to automatically change the lane detector parameter, it still fails in some cases
where extreme illumination occurs.

Table 6. Experimental results by our method with the Road Marking datasets.

Database #TP #FP #FN Precision Recall F-Measure

Road marking 5128 999 640 0.84 0.89 0.86
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Figure 20. Correct lane detection: (a–d) Caltech dataset ((a) Cordova 1; (b) Cordova 2; (c) Washington 
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Figure 20. Correct lane detection: (a–d) Caltech dataset ((a) Cordova 1; (b) Cordova 2; (c) Washington 1;
(d) Washington 2); (e) SLD dataset; (f) Road marking dataset.
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Figure 21. Incorrect lane detection due to (a) nonroad lane objects, and (b) shadow. 

In the next experiment, we compare the performance of our method with some other methods: 

the Hoang et al. method [6], Aly method [5], Truong method [4], Kylesf method [7] and Nan method 

[1]. In [6], the line segment was detected by the LSD algorithm to detect the road lane. However, in 
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Figure 21. Incorrect lane detection due to (a) nonroad lane objects, and (b) shadow.

In the next experiment, we compare the performance of our method with some other methods:
the Hoang et al. method [6], Aly method [5], Truong method [4], Kylesf method [7] and Nan method [1].
In [6], the line segment was detected by the LSD algorithm to detect the road lane. However, in [6],
the lane detection was performed within the smaller ROI compared to the ROI in our research, and the
number of images including shadows is smaller than that in our research. Therefore, the accuracies of
lane detection, even with the same database using the methods [6] in Table 7, are lower than those
reported in [6]. Owing to the same reasons, the accuracies by the methods [4,5] reported in [6] are
different from those in Table 7. In other methods, they converted the input image by IPM with HT [5,7]
to detect a straight line, and the random sample consensus (RANSAC) algorithm [5] to fit lane makers.
We empirically found the optimal thresholds for these methods [1,4–7]. As shown in Table 7 and
Figure 22, our method outperforms previous methods. The reason why the accuracies by [1,4,5,7] are
too low is that they did not detect the left and right boundaries of road lane, and did not discriminate
the dashed and solid lanes. That is, their method did not detect the starting point and ending point of
road marking as well as the left and right boundaries of road lane. Although the method [6] has these
two functionalities, their method is more affected by the shadows in the image, and the accuracies
by [6] are lower than ours. Moreover, this method [6] uses fixed ROI for detecting road lane and does
not detect the vanishing point; thus, it generates more irrelevant line segments. That is why precision
by this method is lower than that by our method. As shown in Figure 22a, we included the examples
with the presence of vehicles on the same road lane of the detection vehicle. These cases were already
included in our experimental databases. As shown in Figure 22a and Table 7, the presence of cars on
the same road lane does not affect our detection results.
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[4] 0.54 0.3 0.54 0.42 0.40 0.58
[7] 0.5 0.41 0.42 0.67 0.38 0.64
[1] 0.75 0.42 0.45 0.52 0.78 0.78

Recall

Ours 0.89 0.87 0.79 0.84 0.81 0.89
[6] 0.85 0.72 0.72 0.83 0.78 0.82
[5] 0.08 0.13 0.06 0.05 0.08 0.02
[4] 0.52 0.32 0.45 0.26 0.38 0.13
[7] 0.22 0.33 0.32 0.31 0.29 0.16
[1] 0.45 0.57 0.46 0.46 0.44 0.49
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Table 7. Cont.

Criterion Methods
Caltech Dataset

SLD Road-Marking
Cordova 1 Cordova 2 Washington 1 Washington 2

F-measure

Ours 0.91 0.82 0.81 0.90 0.86 0.86
[6] 0.83 0.70 0.67 0.85 0.82 0.77
[5] 0.09 0.15 0.08 0.07 0.09 0.03
[4] 0.53 0.31 0.49 0.32 0.39 0.21
[7] 0.31 0.37 0.36 0.42 0.33 0.26
[1] 0.56 0.48 0.45 0.49 0.56 0.60
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As the next experiment, we measured the processing time per frame by our method as shown in
Table 8. As shown in Table 8, we can confirm that our method can be operated at a fast speed (about
40.4 frames/s (1000/24.77)).

Table 8. Processing time per each frame by our method (unit: milliseconds).

Database Processing Time

Cordova 1 23.47
Cordova 2 24.02

Washington 1 29.55
Washington 2 27.33
SLD dataset 17.58

Road marking dataset 30.98
Average 24.77

In other previous researches [51–54], they showed the high performance of road lane detection
irrespective of various weather conditions, traffic, and curved lanes, etc. However, they did not
discriminate the solid and dashed lanes in the detected road lanes although it is necessary for
autonomous vehicle. Different from them, even the solid and dashed lanes are discriminated in
the detected road lanes by our method. In addition, more severe shadows are considered in our
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research compared to the examples of three results in [51–54]. In other methods [55,56], they can detect
the road lane in difficult environments, but the method [55] did not discriminate the solid and dashed
lanes in the detected road lanes either. The method [56] discriminated the solid and dashed lanes in
the detected road lanes. However, they did not detect the exact starting and ending positions of all
the dashed lanes although the accurate detection of these positions are necessary for the prompt or
predictive decision of the moment of crossing road lane by fast moving autonomous vehicle. Different
from them, in addition to the discrimination of the solid and dashed lanes, the accurate starting and
ending positions of dashed lane are also detected by our method.

5. Conclusions

In this study, we proposed a method to overcome severe shadows in the image, for obtaining
better road lane detection results. We used two features as the inputs for FIS: HSV color difference
based on local background area (feature 1) and gray difference based on global background area
(feature 2) for evaluating the level of shadow in the ROI of a road image. Two features from different
color and gray spaces were used for FIS for considering the characteristics of shadow in various color
and gray spaces. Using FIS based on these two features, we estimated the level of shadows based
on the output of FIS after the defuzzification process. We modeled the input membership functions
based on the training data of two features and maximum entropy criterion for enhancing the accuracy
of FIS. By adaptively changing the parameters of LSD and CannyLines detector algorithms based
on the output of FIS, more accurate line detection was possible based on the fusion of the detection
results by LSD and CannyLines detector algorithms, irrespective of severe shadows on the road image.
Experiments with three open databases showed that our method outperformed previous methods,
irrespective of severe shadows in the images. Because tracking information in successive image frames
was not used in our method, the detection of lanes by our method was not affected by the speed of
the car.

However, complex traffic with the presence of cars can affect our performance when detecting
vanishing points and line segments, determining shadow levels, and locating final road lanes, which
is the limitation of our system. Nevertheless, our three experimental databases do not include these
cases, and we could not measure the effect of the presence of cars on the performance of our system.

In future, we would collect our own database including the complex traffic with the presence
of cars, and measure the effect of these cases on our performance. In addition, we plan to solve this
limitation by deep learning-based lane detection. Also, we plan to use a deep neural network for
discriminating dashed and solid lane markings under various illumination conditions, as well as for
detecting both straight and curved lanes. In addition, we would research to combine our method with
a model-based method to enhance the performance of lane detection.
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