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Abstract: Noise and artifacts are inherent contaminating components and are particularly present
in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant
in long-term monitoring (LTM) recordings, as these are collected for several days in patients
following their daily activities; hence, strong artifact components can temporarily impair the clinical
measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as
a problem of non-desirable component removal by means of several quantitative signal metrics
such as the signal-to-noise ratio (SNR), but current systems do not provide any information about
the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to
classical approaches, this work assesses the ECG quality under the assumption that an ECG has
good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible
(a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its
consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality
evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals
is assembled and labeled from a clinical point of view for its use as the gold standard of noise
severity categorization. These devices are assumed to capture those signal segments more prone to
be corrupted with noise during long-term periods. Then, the ECG noise is characterized through
the comparison of these clinical severity criteria with conventional quantitative metrics taken from
traditional noise-removal approaches, and noise maps are proposed as a novel representation tool
to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise
measurement criteria represent an accurate enough estimation of the clinical severity of the noise.
A case study of long-term ECG is reported, showing the statistical and temporal correspondences and
properties with respect to EER signals used to create the gold standard for clinical noise. The proposed
noise maps, together with the statistical consistency of the characterization of the noise clinical severity,
paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity,
allowing the user to process different ECG segments with different techniques and in terms of different
measured clinical parameters.
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1. Introduction

The electrocardiogram (ECG) signal, which depicts the electrical activity of the heart, is an efficient
tool to observe its health condition because it depicts useful electrical information on the cardiac system
collected by noninvasive means using a set of electrodes attached to the surface of the human body [1].
Whereas the usual ECG registers the signal during short periods of a few seconds, Holter monitoring
allows us to record the ECG for longer time intervals, typically of 24 h. Nowadays, it has become usual to
use this in order to find anomalies that do not appear in short-term ECG, such as paroxysmal, self-limited
arrhythmias presenting as episodes separated by hours or days [2]. It is also a very attractive method to
provide health care solutions in combination with the information and communication technologies [3,4],
including health monitoring in remote areas using mobile devices [5,6].

Currently, the interest in monitoring patients over several days is growing because of its potential
to find anomalies that remain undetected in standard ECG and 24 h Holter. This kind of register
is referred to as long-term monitoring (LTM) recordings, and these have been found to be useful
for the detection of subclinical atrial fibrillation in patients with cryptogenic stroke [7,8], for the
detection of non-sustained atrial or ventricular arrhythmias in patients with heart failure [9], and for
the assessment of autonomic parameters obtained from heart rate variability analysis [10]. Holter ECG
is obtained from portable devices while patients continue with their daily activities; thereafter, the
signal is highly affected by noise and artifacts. Thus, as a result of the extensive use of Holter ECG,
noise has become a matter of major concern, particularly in LTM recordings, because its presence may
result in wrong diagnoses.

The main sources of noise are patient movements (baseline wander noise, electromyographic noise,
and electrode motion), powerline or electronic-device interference at data collection, signal processing,
or medical equipment [11]. Traditionally, dealing with poor-quality ECG has been faced as a denoising
problem for which the target consists of improving some quality metrics, such as the root mean
square (RMS) or the signal-to-noise ratio (SNR), which are often measured on artificially contaminated
ECGs. Recent quantitative analysis has been performed within this framework using different signal
processing techniques, such as transform domains [12–16], independent and principal component
analysis [17,18], adaptive filtering [19], genetic algorithms [20], empirical mode decomposition [21,22],
fuzzy logic [23], or neural networks [24–26].

The underlying assumption of these approaches is that the denoising process can provide a
valid signal if the resulting metric values are solid enough. However, none of the used measurement
parameters report information about diagnostic features allowing us to assess their clinical validity.
For example, we note that sometimes, a moderate SNR does not affect the ECG morphology, whereas
similar SNRs in different conditions may dramatically decrease the signal quality. Additionally, on
some occasions, the ECG is so strongly altered that none of its waves are recognizable; thus they
become useless. In consequence, rather than noise elimination, an alternative approach is followed in
recent research focusing on two aspects, namely, noise quantification from a clinical standpoint, and
ECG quality assessment. The quality is considered in this work as a synonym of clinical validity; that
is, a signal is considered good quality when it can be used for clinical purposes. According to this view,
the signal processing of LTM for quality ECG purposes would no longer be limited to artifact removal,
but it should also include the identification of severely corrupted segments, which are clinically invalid
with different severity levels, in order to avoid false diagnosis. One of the most clarifying contributions
following this approach is given in [27], which proposes a method for classifying the quality of an ECG
into five levels. The paper is also a good summary of previous works on this topic. Other examples of
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automatic detection and classification of noise are [28,29], although these two works do not rate the
noise in the ECG from a clinical standpoint.

Therefore, and according to this novel approach, our hypothesis is that it is possible (a) to create a
clinical severity score for the effect of noise on the ECG, (b) to characterize its consistency in terms of
its temporal and statistical distribution, and (c) to use it for LTM evaluation of signal quality, providing
a better criterion for diagnostic index extraction when compared to conventional quantitative noise
magnitude measurements.

To test this hypothesis, we scrutinized the following elements. First, we proposed to create and
use noise maps, defined as a simple overview of the temporal distribution of the proportion of noise
with different quality throughout time windows with adequate duration for long recordings. Second,
we propose to create a measurement of the noise clinical severity, according to the criteria of a specialist
on the impact that different noise intensities and presence will have on subsequently measured clinical
indices. This noise clinical severity will be potentially used as the gold standard for analyzing the
conventional quantitative noise measurements. We subsequently analyzed the noise clinical severity
measurement for long-term recordings from ECG external event recorders (EER) in 10 patients and in
one case from 7 day Holter monitoring on a detailed timeline. A preliminary version of this work has
been previously introduced [30].

The scheme of the paper is as follows. In Section 2, we describe our patient database and the
LTM Holter patient case. The clinical severity criteria for ECG noise are also described, as well as
the state-of-the-art proxies for quantitative noise and the definition of noise maps. The results are
presented, and the achieved noise classification criteria are summarized in Section 3, together with the
noise maps for clinical and quantitative noise criteria; the noise statistical distributions are scrutinized
both in the EER database and in the LTM Holter case example. Some relevant considerations for
the powerline noise and the inter-observer variability are also included therein. The discussion and
conclusion of the present work are finally addressed in Section 4.

2. Materials and Methods

This section is structured as follows. Firstly, the recordings used to address the LTM analysis
are presented in two scenarios. Secondly, the methodology followed for launching a clinical severity
gold standard is summarized, and several quantitative metrics of noise are introduced. For all of these
kinds of noise, their characterization is then addressed in terms of their time distributions, by defining
the noise maps, and in terms of their amplitude distribution, by using their by-sample statistical
distribution of the estimated noise.

2.1. Materials

The data used for this study were gathered from two different continuous-recording ECG sources,
namely, an EER (Sorin SpiderFlash-t) and a 7 day Holter device (Delmar Reynolds Lifecard CF).
Data were obtained from clinical indications from the Arrhythmia Department of the University
Hospital Virgen de la Arrixaca at Murcia, Spain.

EER devices perform continuous ECG ambulatory monitoring, and they also analyze the signal
in real time, looking for QRS complexes (corresponding to ventricular depolarization deflections).
Arrhythmic event detection is based on the rate and regularity of the QRS series [31], but in practice,
noise and artifacts also often trigger the event recording, even during sinus rhythm. Every detected
event (arrhythmia, artifact, or noise) triggers an automatic recording with a duration of about 30
to 300 s, at a sampling frequency of 200 Hz. The system has three electrodes, yielding two signals
for subsequent analysis. Our database consisted of data from 10 patients (5 women and 5 men,
65.20 ± 23.52 years) who had been referred to the hospital for palpitation, syncope, or presyncope
evaluation.

The use of the EER recordings as a convenient support for LTM was decided upon after
considerations by medical staff. From a clinical point of view, the interest of the short recordings of
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EER in this scenario is twofold. On the one hand, they are a real problem in clinics, as these devices are
likely to be working intensely and used during the next years. On the other hand, they almost certainly
select the most interesting segments of the continuous signal, either for being real arrhythmias or for
being artifacts, that are considered as arrhythmias by the device. In the second case, these segments
represent noise with similar properties to the arrhythmias, which is what we wish to classify correctly
(for instance, 50 Hz noise and a constant line for amplifier saturation can be more readily detected, and
these do not hold much clinical interest). Our view is that if we are able to discriminate well between
the noise in these EER recordings, it will be easier to work with LTM in Holter recordings, which often
includes less-noisy signal regions to the global patient map.

A continuous and exhaustive classification and labeling of noise severity in one 7 day Holter
recording was also made. The mean left-ventricular ejection fraction (LVEF) in this database
was 36.6 ± 9.6%; 86.8% of patients were in the New York Heart Association (NYHA) class I or
II and their ages were 54.1 ± 13.9 years. All the records were continuously registered at a
sampling frequency of 128 Hz. Noise clinical severity was evaluated in only 1 out of the 53 heart
failure patients of the database because of the high complexity and time-consuming process of
labeling (see [10] for more details). More than 10,000 screens from this recording were manually
supervised and labeled by a trained expert for more than 150 h.

Whereas a single 7 day patient can be seen as limited and could have too patient-specific noise,
this approach represents a trade-off between viability and scope of the present study. The time
required for the continuous labeling of the 7 day Holter was about 150 h, which was around 20 days
of continuous work only to label and effectively a longer period than this for a researcher workload.
Hence, we considered that this first work was necessary, as far as that it would provide us with relevant
considerations to be taken into account for effectively developing the gold standard. If we wish to
expand the gold standard in the future to a wider set of 7 day Holter recordings, then it is necessary to
have a starting point that is informative enough to later make it viable and efficient from a human
resource viewpoint.

Nevertheless, as a comparison to the scope provided by the EER database, the MIT Noise Stress
database [32,33] is often used as the gold standard in this environment (although with different
purposes of algorithm tuning). This widely used database consists of about 6 h, with segments
of 12 half hours in two patients (118 and 119) and artificially added noise with six different SNRs.
In this work, only in EER did we build more than 6.5 h of detailed and continuously time labeled
segments in 10 patients; hence both databases are comparable in terms of duration, and the present
database has an improved scope in terms of representing different patients.

2.2. Noise Clinical Severity

This work deals with the quality of the ECG, under the assumption that good quality means clinical
validity of the signal, whereas poor quality compromises the clinical value of the ECG for diagnosis
support. According to this view, and rather than noise elimination, our attention here is devoted to noise
quantification for the purpose of identifying clinically invalid segments to analyze ECG measurements on
them. Therefore, the establishment of quality criteria with clinical validity is the first point to be tackled.

We defined and validated a set of noise severity criteria in real ECG signals obtained from EER
devices in 10 patients (see [30] for details on the database). An expert cardiologist (A.G.A.) made a
qualitative description of the noise levels in Holter recordings in terms of their impact on the clinical
diagnosis of basic parameters, such as the ECG waveform and heart rate distortion. After several
iterations, a trained expert (E.E.V.) manually labeled the ECGs from our patient database. We note
that it would have been ideal to have had two observers for each of the recordings in order to generate
the labels, but this represented a limitation in terms of workload. Nevertheless, a set of recordings
was initially scrutinized with the use of two observers, and given that there was a high concordance
between them, an agreement could be readily achieved by a set of rules after training the expert in
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a representative set of complicated examples; an iterative process was used to review the doubtful
cases together.

After this long iterative process, we established and applied the following set of criteria to be
used as labels in the ECG segments:

• Noise-free (type 0): segment without noise.
• Low noise (type 1): some noise present in the segment, but P and T waves (corresponding to atrial

deporalization and ventricular repolarization, respectively) and the QRS complexes are readable
and their morphology can be identified.

• Moderate-noise (type 2): noisy segment in which only the QRS complexes are reliably identified,
in at least three consecutive beats.

• Hard-noise (type 3): noisy segment with hardly recognizable or unrecognizable QRS complexes.
• Other noise (type 4): segments are calibration pulses or straight lines because of the complete

absence of signal or amplifier saturation.

It can be seen that these proposed noise criteria are based on the clinical impact of the noise
on the parameters to be measured in the ECG, independently of power noise and signal magnitude
descriptions. We noted that this final noise classification was closely related to those provided by other
references (e.g., [27]). However, and in contrast to other works, our approach created a continuously
running labeling for all the times of all the signals in our database. Therefore, after achieving uniform
criteria and classifying all the EER segments in these types of noise, we obtained a running gold
standard for noise taxonomy in terms of its clinical severity.

2.3. Noise Measurements using Quantitative Metrics

In order to scrutinize the impact of the noise on the ECG clinical interpretation, we also analyzed
the relationship between noise intensity and clinical severity. The measure of the distortion in an ECG
recording was undertaken here for three types of noise, namely, baseline wander (BW), powerline
interference (PLI), and standard deviation noise (SDN). BW and PLI were chosen because they are
the most usual types of noise in cardiac records, and they are also easy to extract from the ECG
signals. In addition, SDN is a novel measure proposed in this work, which was designed to take
into account events that make the signal unreadable, such as signal loss or gain saturation due to
electrode disconnection.

Among the existing methods to quantify noise, the following implementations were used here:

1. BW was calculated by using a cubic spline with a third-order polynomial interpolation and a 0.8 s
time window for node estimation.

2. The quantification of PLI was made with a notch filter with the center frequency at 50 Hz.
3. The proposed SDN was extracted by following these steps: (a) the standard deviation of the signal

was computed in blocks of 0.5 s; (b) every 10 blocks, the mean and the standard deviation were
calculated; (c) finally, the mean plus twice the standard deviation was used as a measure of the
noise for each block.

Figure 1 shows several illustrative estimated examples of these noise types. We note that in general,
these are not in fact independent from each other, as BW is partly included in the SDN calculation, and
vice versa. In any case, we used these to scrutinize the different quantitative measurements in terms of
the expected quality and to compare them with the noise clinical severity.

Once the measurements of noise intensity are available, either from the clinical severity
criteria or from the three quantitative metrics, the ECG signal can be characterized in terms of its
distortion. The noise characterization was tackled from two complementary viewpoints, namely, time
distribution and amplitude distribution. The methods for the time and amplitude characterization are
explained next.
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Figure 1. Illustrative examples of estimated noises for the different quantitative types analyzed in
this work. Each panel (a–c) shows two sub-panels, one for the cardiac signal extracted from the event
recorder, and another for the noise of different kinds and estimated from that same signal: (a) cardiac
signal with significant presence of powerline interference (PLI) noise; (b) cardiac signal when relevant
baseline wander (BW) noise is present; (c) cardiac signal when standard deviation noise (SDN) noise
exhibits high values. Axis represent signal amplitude (vertical, in mV) vs. time (horizontal, in s).

2.4. Time Characterization with Noise Maps

We propose to tackle the characterization of the noise severity in the time domain by means of a
new graphical representation, to be called noise maps. A noise map allows us to look at the quality of
an ECG at a glance; thus we are able to scrutinize the extent to which the quality of the signal changes
with time, and thus a noise map just depicts the noise level in a given ECG recording over time and for
all the recording times.
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Noise maps can be used when the noise intensity is determined either by clinical or
quantitative criteria. In both, the following steps are followed to build a noise map from an ECG recording:

• First, the ECG signal is divided into segments, which are labeled according to their noise power;
the labels for clinical severity were defined in Section 2.2.

• Afterwards, quantitative noise is split into four unevenly distributed levels, which in this work
were adjusted in the event recorder noise distributions in order to match the quantitative noise
map as closely as possible for an expert observer (FMM) to the clinical severity noise maps.
This action generates a segmentation on the ECG, for which a list needs to be stored that includes
the reference number of each segment, its starting and ending times, and its noise severity labels.

• Finally, label category changes are used for the time instants to define different-size segments
corresponding to the set of samples with the same label.

As a result, a noise map is the depiction of these label segments as a function of continuous time.
We note that, for the quantitative noise measurements, the instantaneous noise can be readily defined
and used as the basis for the noise maps.

An example of a noise map can be seen in Figure 2, which corresponds to a 75 s ECG excerpt taken
from an EER and labeled according to noise clinical severity criteria. Every heartbeat from the signal is
tagged with a single label; hence, the label segments do not overlap each other. This representation
reports reasonably well on the noise severity evolution over the recording. In this case, the severity
ranges from noise-free (type 0) up to hard-noise (type 3). More than half of the ECG excerpt is labeled as
type 2 (moderate-noise) or 3 (hard-noise). These segments stand for noisy blocks, which can scarcely be
used for a reliable analysis of the full heartbeat. Therefore, and despite the short duration, the example
corresponds to a noisy ECG when analyzed from a clinical viewpoint. This is consistent with the
characteristics of the EER database because, as mentioned before, the result of an EER acquisition is
the continuous recording of either arrhythmic or noise events, which can be likely labeled within some
of the previously defined noise categories.

650 660 670 680 690 700 710 720
Time (s)

-4

-2

0

2

4

A
m

p
li
tu

d
e
 (

m
V

) 

ECG signal

650 660 670 680 690 700 710 720
Time (s)

0

1

2

3

4

Q
u

a
l 
n

o
is

e

Patient 1 Lead 1

Figure 2. Noise map representation (bottom) of the clinical severity of noise observed in a 75 s
electrocardiogram (ECG; top). Horizontal lines extend during the time periods for which each segment
has been labeled by an expert. There are noise-free segments in blue (type 0) and segments in green,
where the P and T waves, as well as the QRS complexes, are readable (type 1). In yellow segments,
only the QRS complexes can be reliably identified (type 2), whereas segments with hardly recognizable
QRS complexes, in red (type 3), are those for which no clinical parameter can be trustfully measured
because of severe noise.
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2.5. Statistical Characterization of the Noise Amplitude

Besides the representation of noise distribution over time, noise maps are also conceived to display
coincidences between clinical severity and quantitative noise. Nonetheless, it may be considered that
noise severity, when defined from a clinical point of view, can be somehow related to the quantitatively
determined noise power. For this reason, the quality analysis of the ECG is next accomplished
through the analysis of the naive amplitude, defined here as the absolute value of the estimated
instantaneous noise.

Let p (n) stand for the ECG noise probability density function (pdf), n(t), and let p (nv),
v = {bw, pli, sdn}, be the specific noise pdf’s for the previously used quantitative components. We note
that we assume that no further noise sources are present and that they are independent, which will not
be true in general; nonetheless, these distributions are used here for descriptive purposes of different
noise sources. Then, the following signal model is used:

x(t) = xc(t) + nbw(t) + npli(t) + nsdn(t) + e(t) (1)

where both x(t) and xc(t) are the noisy and the noiseless ECG, respectively; nv(t), v = {bw, pli, sdn}
refers to the quantitative noisy components; and e(t) is an error term representing any other
non-considered noise source that is still present in the signal. In order to further analyze the relationship
between noise clinical severity and quantitative noise, we consider the conditional pdf with respect to
the discrete levels of noise clinical severity, defined in Section 2.2 and denoted here as l0, l1, l2, l3 and l4.
Hence, we can define the conditional pdf of each type of noise in terms of the noise clinical severity for
their comparison, which, for the example of BW noise, is given by

p(nbw) =
4

∑
i=0

p(nbw|li)Pbw(li) (2)

where li denotes the type of noise clinical severity, p(nbw|li) is the conditional distribution of BW
noise with respect to type li, and Pbw(li) is the prior probability of that type of noise in the BW noise
component. These conditional pdf’s can be similarly established for the other noise components.

3. Results

3.1. Analysis of the Conditional Distributions

The log-scaled histograms depicted in Figure 3 correspond to the distributions of the right-hand side
in Equation (2), and each curve represents one level of noise clinical severity. Left (right) panels correspond
to noise in EER (7 day Holter) recordings. From top to bottom, the distributions are shown for PLI noise
in panels (a,b), for BW noise in panels (c,d), and for SDN noise in panels (e,f). Each plot represents the
value of the quantitative noise conditionally separated according to the clinical severity label.

All the curves represent the full range of existing values for the noise in the horizontal axis; thus,
we may see that PLI noise (upper plots) for noise-free segments has a distribution confined to 0.4 mV in
EER and to 1 mV in 7 day Holter. In both cases, the amplitude distributions for different levels overlap
one another; hence, the PLI amplitude alone does not yield a measurement of the noise clinical severity.
A similar result is obtained for BW noise (middle plots). The distributions of Figure 3c exhibit heavier
tails than the previous distributions, which makes it evident that high values of BW noise may not
correspond with hard-noise in terms of clinical severity. Distributions for 7 day Holter (Figure 3d) are
also heavy tailed and fairly similar to those of EER. The heaviest-tailed distribution is the hard-noise
distribution in 7 day Holter, which is almost uniform. This fact again prevents us from making a
division in terms of clinical severity just by using the BW noise amplitude as a criterion.

A similar situation occurs again with SDN noise for EER (Figure 3e), where the hard-noise covers
the full voltage range, hence avoiding the labeling according to clinical severity criteria. Regarding the
distributions of the remaining noises, these are lower in amplitude and are concentrated in specific
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regions, exhibiting blank spaces (values in the vertical axis lower than 100 µV) in between. In the 7 day
Holter case (Figure 3f), the noise distributions coexist in an interval that goes up to the local minimum
for the hard-noise distribution (around 12 mV). This overlapping means again that small variations
in the SDN noise can be labeled in different clinical severity categories. After this minimum, all the
distributions behave similarly to those in Figure 3e, with the aforementioned incapability of labeling
the signal according to the clinical severity criteria based on SND noise. We note that the differences in
the noise amplitude of the horizontal axis for distributions of the same class of noise are due to the
different nature of the data and that normal ECG segments seldom appear in EER records because they
capture noisy events, whereas many normal sinus ECGs can be often found in the 7 day Holter record.
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Figure 3. Estimated distributions (from scaled log-histograms) for the different noise types in external
event recorder (EER) (a,c,e) and 7 day Holter (b,d,f) recordings. Noise samples (in duration, seconds,
as multiplied times the sampling period) are represented in terms of the noise with the same voltage
level (in mV). The color code is similar to that for the noise maps: noise-free segments—blue;
low-noise—dashed, green; moderate-noise—crosses, yellow; hard-noise—dotted, red; and other
noises—dash–dot, black. Axis represent number of samples scaled to their time duration (vertical, in s)
vs. amplitude (horizontal, in mV).
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3.2. Results of Noise Maps for EER

Table 1 shows the durations of the different clinical severity noises for each patient in both leads
of the EER and according to their clinical severity, which overall were 3 h 27 m 56 s (noise-free, 26.77%),
3 h 1 m 15 s (low-noise, 25.67%), 4 h 4 m 50 s (moderate-noise, 31.52%), 1 h 29 m 18 s (hard-noise,
11.50%), and 53 m 27 s (other noise, 6.88%).

Given that the quantitative noise amplitude is given as a continuous-variable function, a set
of labels must be determined in order to present these as noise maps. We used labels to represent
noise-free, as well as low-, moderate-, and hard-noise segments. To obtain each category, a set of
different thresholds was manually set by using the amplitude histograms for all the quantitative noise.
In order to set the different thresholds, the following rules were used: (a) the noise-free threshold was
set in order to contain the near-zero values, (b) the hard-noise threshold was set to isolate the heavy
tails of the distribution, and (c) the threshold to separate the low-noise and the medium-noise was set
in about the middle of the regions delimited by the noise-free and hard-noise thresholds.

The threshold divisions, as well as the histograms of each kind of noise, are shown in Figure 4.
In order to set the threshold values, only the EER histograms were used, because these provided us
with a wider view of the noise, as the records came from different patients and covered very different
situations related to noise. We note that the horizontal axis has a much lower magnitude in the PLI
noise, as far as that its amplitude is in general much lesser than that of BW and SDN noise. However,
in all of these, the distributions are shown to be mostly exponential-like (PLI and BW noise) and
with heavy tails, although SDN is slightly different and centered. The thresholds were chosen on
the histogram regions, aiming to separate the low-amplitude region (close to zero amplitude), the
heavy-tail region (large amplitude values), and different trends in the distribution mass morphology
to separate low from medium regions.
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Figure 4. Histograms and thresholds established for the different quantitative noise types present
in external event recorder (EER) (a) and 7 day Holter (b) recordings. Horizontal axis is the noise
amplitude (in mV) as explained in Section 2.3, and vertical axis represents the number of samples
per voltage bin. We note that the tails are better visualized in the logarithmic scale for the histogram
of sample counts (insider plots in each panel). Axis represent number of samples (vertical) vs. their
amplitude (horizontal, in mV).

The visualization of noise maps in long recordings can be operatively limited; hence, we also
introduced the use of noise bars, as seen in the example in Figure 5. Noise bars were obtained by
aggregating the durations of the same types of noise in fixed-duration segments, known as time bars,
and then normalizing these in each time bar. We note that the time bar was 30 s in length for EER
patients. Thus, a vertical bar stands for one single time segment, which shows the ratio of each kind
of noise present throughout that time period. The same color code is used so that the lower (upper)
part of the bar conveys the lower (harder) noise levels. This provides a profile view, giving a good
idea of how clean or noisy a recording is and how many and which clinical parameters are possible to
measure through it. Different time segments are separated by a blank bar for the case of EER when
stored segments are not continuous in time.
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Table 1. Duration (s) of noise types in leads 1 (left) and 2 (right) for external event recorder (EER; 1–8, 23 and 27) and 7 day Holter (7d) recordings.

N. Pat Total Duration Free Low Moderate Hard Other Free Low Moderate Hard Other

1 2843,00 1383,55 774,36 621,97 57,26 5,88 1563,73 984,01 244,52 44,87 5,88
2 2433,00 195,11 719,02 994,89 480,24 43,76 180,68 725,48 994,67 488,42 43,76
3 2854,00 52,53 307,62 1891,07 434,43 168,36 32,50 287,83 1483,24 810,95 239,49
4 1673,00 338,98 44,54 861,47 392,53 35,49 345,50 31,84 514,52 745,66 35,49
5 4214,07 3451,95 709,36 10,19 29,76 12,82 3268,71 892,67 10,19 29,76 12,75
6 2134,00 65,05 611,16 1025,32 50,13 382,35 49,65 831,60 822,24 51,24 379,28
7 1172,00 376,00 356,04 394,61 37,70 7,67 403,24 364,32 357,38 39,41 7,67
8 3114,00 77,08 366,84 1561,03 512,31 596,76 50,16 341,99 1240,41 884,84 596,61

23 1278,00 31,38 501,94 347,98 86,20 310,51 31,38 501,94 347,98 86,20 310,51
27 1588,00 289,45 761,25 483,28 48,16 5,88 289,45 761,25 483,28 48,16 5,88

7d 606716 33602,99 500037,07 10355,21 1252,02 61468,7 36306,41 500046,92 10355,13 1252,02 58755,52

N. Pat: denotes number of patient.
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Figure 5. Example of external event recorder (EER) noise bars to compare qualitative and quantitative
noise. Each bar represents 30 s segments of the recording, for patient 1 (a) and patient 3 (b).

Figure 5 shows the noise bars of patients 1 and 3, for noise clinical severity in terms of PLI, BW,
and SDN (from top to bottom). In patient 1, according to the noise clinical severity (upper plot), all the
clinical measurements are allowable (noise-free, in blue) except for a small section at the beginning
(in red, 2 or 3 bars) and another predominantly yellow section (15 to 20 and 65 to 80 bars), where only
QRS are morphologically recognizable. In contrast to the gold standard, if the noise analysis were based
only on PLI (second plot), an area defined to be allowable according to the clinical standard would
have been labeled as useless for measuring morphological parameters (yellow section). If we only look
at the BW map (third plot), the first section would have been tagged as non-usable, which is not true
according to clinical severity. The rest of the recording would have been identified as valid, which
would have caused a wrong parameter measurement in those areas for which the clinical severity map
is mainly labeled in yellow. If we analyze the quality according to the SDN noise map (lower plot),
most of the recording would be valid, except for a couple of small areas tagged in red. However, these
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unacceptable areas in terms of quality can indeed be used to measure the morphological parameters.
Given these differences, none of the combination of the three methods provides the definition produced
by the gold standard.

Similar observations can be stated regarding patient 3. In this case, the gold standard advises us
of a more distorted ECG than that of patient 1. For example, the noise maps from SDN and BW inform
incorrectly that the signal has long noiseless periods (type 0, in blue), whereas the clinical severity map
indicates that only the QRS complex is morphologically recognizable (type 1, in green).

Figure 6 shows the noise bars for all of the eight EER patients with the four noise types, allowing
us to scrutinize the correspondences among different noise types in this patient population. Panel (a)
shows the gold standard noise bars for each patient, and these allow us to see that some recordings have
very good quality; hence, these provide an excellent basis for measuring both waveform parameters
and rhythm parameters based on the cardiac cycle, particularly in patients 1 and 5, for whom mostly
green and blue bars are predominant. We also have questionable quality recordings for patients 2, 4,
and 8, for whom red and black bars are predominant; hence measured parameters in these recordings
should be either discarded or dealt with using extreme caution. Finally, we were able to measure the
cardiac rhythm most of the time in patients 3, 6, and 7 (mostly yellow and green bars), but in these
cases, morphological parameters were either avoided or dealt with using caution. Blank bars indicate
the cases for which the stored EER segments were not continuous in time, given that these recordings
were triggered either by arrhythmic events or noise artifacts, whereas in 7 day Holter recordings,
pauses were often recorded through the isoelectric line and can be seen mostly in black bars.

Panel (b) shows the noise bars according to the BW noise, and its concordance with panel (a)
is low. For instance, most of the patients have a stronger presence of blue and green bars, which
should promote the calculation of all the clinical parameters in all the patients and is misleading.
Similar conclusions could be drawn in panels (c) and (d) for PLI noise and SDN noise. We note
also that, for the three quantitative cases, regions identified as non-suitable for measuring clinical
parameters (mostly red bars) are generally different from each other, and are mostly different from the
gold standard.
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Figure 6. Noise bars of all the analyzed noise types for every patient in the external event recorder
(EER) database: (a,b) noise clinical severity according to the gold standard; (c,d) baseline wander (BW)
noise component; (e,f) powerline interference (PLI) noise component; and (g,h) standard deviation
noise (SDN) component. Blank bars indicate those cases for which the stored EER segments are not
continuous in time.

3.3. Specific Considerations of PLI Noise

As seen in Figure 4, the histograms of the estimated PLI noise could give the reader the idea of
extremely low-noise power being present in the present database. We would like to emphasize that
the method used for estimating the PLI noise essentially consisted of a notch filter and the subtraction
of the filtered signal from the unfiltered signal. This means that, when no PLI noise was present,
an extremely small residual was extracted, and if the recordings had long PLI-noise-free periods,
this would represent noticeable density mass with low-noise amplitudes. Moreover, this PLI simple
estimation method is sensitive to wide-band artifacts, such as electrode disconnection, saturation, and
others. However, it would suffice to include here a quantitative estimation of PLI presence in the
recordings for the present work, focusing on clinical severity of the noise.

Figure 7 shows two signal examples, both on the dependence of the estimated PLI noise with
other noise sources, and on the amplitude histogram and the relevance of its tails when the noise is not
present throughout the signal. The difference between a high- and a low-PLI-contaminated segment
can be observed in panel (a), where lower noise is present in the estimated 50 Hz noise in the first
half but is due to artifacts, and much clearer noise is present in the second half, which is due to the
true presence of 50 Hz noise. In panel (b), there is no 50 Hz noise present, so that the estimated PLI
noise exhibits a low amplitude, and in this case, the histogram has intense mass density in very low
noise amplitudes. From observing these partial-signal amplitude histograms, one can note that the
significant information in this kind of noise is found in the tails, and that the cleaner the database,
the more the pdf mass will concentrate on extremely low amplitudes. This is one of the reasons for
representing the overall pdf with a logarithmic scale in the preceding figures.
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Figure 7. Additional considerations of the estimated powerline interference (PLI) noise: (a) example of
external event recorder (EER) segment with high presence of PLI noise; (b) example of EER segment
with all kinds of quantitative noise.

We note also that the thresholds that are used in this work are not set intending to be universally
established, but instead, we simply wished to show a quantification of the PLI noise, together with
the other noises, and use these in the available recordings to scrutinize their correspondence with the
clinical severity criterion. The use of other thresholds besides those herein would be recommended in
terms of different applications. Nevertheless, after noting that there was not a great amount of PLI
noise in the used recordings, we analyzed two new cases of EER (labeled here as patients 23 and 27),
which were selected according to a noticeable presence of their PLI noise. Their noise bars can be
seen in Figure 6 and are compared with the other cases; it could be confirmed that the PLI noise was
represented by existing records in the previous dataset.

3.4. Considerations of Inter-Observer Variability

Aiming to have some information on the variability of the inter-observer criteria, we obtained the
concordance of the two newly available recordings used in the preceding subsection. Another author
(FMM) was trained to follow the designed criteria and labeled patients 23 and 27 according to these.
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Whereas this represents an a posteriori analysis of the inter-observer variability, it still brought into
scene some relevant considerations.

Table 2 shows the confusion matrix for the concordance between both labelers (only for lead 1) in
these recordings. We can see that types 3 and 4 are extremely concordant, whereas types 0–2 are less
concordant; this is an expected result because of the partly subjective nature of the labeling. We note
that the greater differences take place with neighbor severity types, a fact that was previously observed
by other authors. For instance, a similar observation in [27] was solved by accounting for neighbor
classes in the concordance measurement. We preferred here to retain the established classification
and note that the concordance is in general high, as quantified by the Cohen’s kappa coefficient of
0.6987 [34]. We further note that types 0 and 1 (no noise and low-level noise) could even be put together
in the same class, as they both yield good quality clinical indices with either no processing or with
very light processing. In this case, and for informative purposes only, the confusion matrix is given in
the same table when we put together types 0 and 1, and the Cohen’s kappa coefficient is raised up to
0.7217. This last result implies that, given the cost of the continuous labeling, in combination with the
impact of considering types 0 and 1 as separate on the measurement, it could be recommended to put
together these two classes from a practical point of view.

Table 2. Confusion matrices, in minutes, for Cohen’s kappa coefficient in segments for external event
recorder (EER) patients 23 and 27, for the established classification of clinical noise intensity (up) and
after merging noise-free and low-noise classes (type 0 and 1).

Observer 2

Free Low Moderate Hard Others

Free 3.67 1.86 0.00 0.00 0.00
Low 0.30 20.46 0.29 0.00 0.00

Observer 1 Moderate 0.05 6.92 6.88 0.01 0.00
Hard 0.00 0.03 0.06 2.14 0.01

Others 0.00 0.00 0.00 0.00 5.08

Observer 2

Free-Low Moderate Hard Others

Observer 1

Free–Low 26.30 0.29 0.00 0.00
Moderate 6.97 6.88 0.01 0.00

Hard 0.03 0.06 2.14 0.01
Others 0.00 0.00 0.00 5.08

3.5. Results of the 7 Day Holter Case

In the 7-day Holter recording, the following amounts of noise were found (Table 1): 9 h 42 m
35 s (noise-free, 5.76%), 5 d 18 h 54 m 2 s (low-noise, 82.42%), 2 h 52 m 35 s (moderate-noise, 1.71%),
20 m 52 s (hard-noise, 0.2%) and 16 h, 41 m 52 s (other noise, 9.91%). Differences were observed in
the shape of their histograms (Figure 4. For instance, there was less PLI noise in the 7 day Holter
case (much narrower histogram). In addition, the BW and SDN distributions, which had their largest
probability close to zero in the EEG, had close to a non-zero mean value in the 7 day Holter. This was
checked to have happened because in this single case, the noise level often remained at a quasi-constant
level. Even so, the widths of the histograms were qualitatively comparable, although with a lower tail
for extreme amplitudes in both types of noise in the Holter case. Nevertheless, the same thresholds
obtained from the EER recordings were used for the 7 day Holter case, as the former represented a
wider population, to avoid overfitting to one single histogram.

Figure 8 shows the noise maps for all the noise from this LTM recording. A comparison between
quantitative noise bars and the gold standard shows that we could extract morphological parameters
and cycle with clinical reliability in virtually all of the recording, except for the black sections,
which correspond to disconnections and recharges during day 7. Compared with the PLI noise
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map, the whole record is mostly free of network noise, just as we saw in the first histogram of Figure 4b,
for which, in this record, there was hardly any noise of this type. In the case of BW, the noise maps are
overall in compliance with the gold standard regarding the low noise level (green), indicating that all
the clinical measurements could be mostly taken. Nevertheless, we could discard a good number of
sections (in yellow) of morphological parameters, without the need for this. The SDN noise map shows
an extremely changeable behavior. It incorrectly marked valid black regions (those of the beginning),
and it also incorrectly labeled as invalid (in red) at least three large regions. Accepting that in this case,
the BW could be a relatively acceptable proxy to the gold standard, the populational characteristics
of the EER recordings suggest that a wider population in 7 day Holter recordings exhibits larger
dispersion and discordance, even for BW color bars.

Finally, Figure 9 shows the front-end of our proposed noise maps when used with the 7 day Holter.
The first panel shows the noise bars for the entire Holter, and the segments of different severity according
to the gold standard are shown in the second panel. A high presence of low noise in more than 80%
of the recording (in green) allows to measure all the clinical measurements, both in morphology and
rhythm. The third row with two plots shows noise bars and their corresponding noise maps to measure
the amount of BW, PLI or SDN components, so that qualitative versus quantitative comparisons can be
performed to show the significance of the ECG clinical distortion. The lower panel shows the color-labeled
ECG segment, which can be navigated on the second row and adjusted in time length.
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Figure 8. Example of noise bars for one lead of the 7 day Holter case. Each bar represents 1 h of
recording (total of about 170 h) .
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Figure 9. Noise maps’ interface of the 7 day Holter recording (lead 1). See text for details.

4. Discussion

In this work, attention has been paid to noise quantification with the purpose of identifying
clinically invalid ECG segments rather than noisy segment elimination, in terms of the clinical
parameters (morphology and rhythm) that can be reliably measured from them. For this purpose,
we first proposed a four-type criterion of noise clinical severity. The concept of noise maps has been
defined as the representation of the temporal distribution of the noise proportion with qualitative levels,
as well as with other discrete magnitude noise severity levels as assigned for different quantitative
types of noise. Whereas the labeling process has been extremely time-consuming, the proof of concept
shows that the noise maps with the clinical criteria show consistency with time and with statistical
amplitude distributions. Hence, this work presents a solid basis, to be extended in the future for
training intelligent systems capable of automatically determining the noise level severity from a
complete ECG recording.

Our proposal is different from other noise descriptions based only on the level of the SNR
estimated by mathematical metrics. When ECG signals are filtered to eliminate noise components
(e.g., low and high frequencies), the ECG morphology-based magnitudes, which are usually useful for
detecting cardiac pathologies, could be modified or distorted by these filters. Most of previous efforts
in the ECG-noise study domain focus on the mitigation or removal of the noise in ECG recordings
from public databases, for example, MIT-BIH Arrhythmia or Noise Stress Test databases. Differently
from our present research, these database recordings are not continuously labeled in terms of their
signal quality. In addition, these studies seldom describe a detailed noise scale classification, but
only the usual BW, muscle artifact, and PLI noise powers [35–38], and controlled noise with different
SNR values is often added to the ECG signal [39–41] or is assigned in global terms of acceptable or
unacceptable signals for the ECG quality assessment [29,42,43].

To our best knowledge, the concept of noise maps with noise severity criteria has never been
raised. In the scarcity of published evidence to support noise clinical severity descriptions, methods
are mainly designed with the purpose of testing the denoising algorithms proposed by their authors.
For example, the MIT-BIH Arrhythmia database was used in [27] to train a support vector machine
classifier to perform quality classification of clean ECG signals with added noise of three different
kinds, namely, muscle artifacts, BW interference, and electrode motion, with different SNR levels.
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Similarly to our work, they identified four types of quality level noise (minor, moderate, severe, and
extreme). In [44], the cardiologists manually re-annotated the quality of 1500 10-s recordings and
25 60-min recordings, and they identified three types of noise from an energy point of view, namely,
low-, medium-, and high-energy noise. In [40], six noise corruption levels were established, from
no-noise to noise-positive detection, according to ECG amplitudes and slopes in different frequency
bands). In [45], the authors described a mathematical algorithm for noise level estimation based
on thresholds and comparison with R-waves. None of these studies scrutinized the statistical and
temporal distribution of a clinically established gold standard for the noise severity.

It has been pointed out previously that noise components in one application could be interpreted
as ECG signals in others, so that SNR can be an inexact measurement for clinical quality [46].
Although several studies have been published with 24 h Holter recordings, only some segments
of a few minutes are considered to test different algorithms, and few detailed noise descriptions
can be found [35]. With the recent increase in wireless mobile wearables and LTM clinical devices,
the necessity of analyzing continuous segments is today even more evident [4]. Our results show that
this is possible from a statistical and time-evolution point of view.

Study limitations. In this work, we have made an effort to assemble a database with continuous
and detailed labeling. This specification can be difficult to merge with LTM, as intensive labeling
over 7 day Holter turned into an extremely time-consuming task, as pointed in the methods section.
We aimed to overcome this limitation by working on EER, which still was a time-consuming task,
but to a lesser extent. The workload required to obtain a continuous labeling was one of the major
challenges that we faced throughout the process. Nevertheless, it allowed us to create a reasonably
wide database from which to start, a set of tools, and the interdisciplinary workflow to expand it.
Future works will be devoted to using this high-quality and continuous database as the base for larger
studies, likely by using machine learning techniques and semi-supervised working flows, such as
those provided by incremental learning techniques.

5. Conclusions

ECG Holter recordings are commonly corrupted by noise. If ECG signals are filtered to eliminate
these noise components, the ECG morphology and rhythm measurements can be modified and may
distort accurate clinical classification. We propose a measurement of the noise clinical severity (noise
maps) to be used for analyzing conventional quantitative noise measurements. In contrast to other
studies, which add artificial noise to a clean baseline ECG, our approach used a real database with real
noise (a single 7 day Holter and 10 EER recordings), and both the proposed criteria and the noise maps
were based on the clinical needs for ECG interpretation. We conclude that their use is a highly desirable
direction to improve the data quality when analyzing the measurements of long-term scenarios, such
as EER recordings or 7 day Holter monitoring. With the relevance of the emerging modalities of LTM
in current health and wellness scenarios nowadays, this represents a current necessity.
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