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Abstract: This paper studies the defect detection problem of adhesive layer of thermal insulation
materials. A novel detection method based on an improved particle swarm optimization (PSO)
algorithm of Electrical Capacitance Tomography (ECT) is presented. Firstly, a least squares support
vector machine is applied for data processing of measured capacitance values. Then, the improved
PSO algorithm is proposed and applied for image reconstruction. Finally, some experiments are
provided to verify the effectiveness of the proposed method in defect detection for adhesive layer of
thermal insulation materials. The performance comparisons demonstrate that the proposed method
has higher precision by comparing with traditional ECT algorithms.

Keywords: thermal insulation material; electrical capacitance tomography; defect detection; image
reconstruction; PSO

1. Introduction

Thermal insulation materials are widely used in aeronautics and astronautics for their
characteristics, such as light weight and heat insulation, etc. [1]. At present, the thermal insulation
materials are usually glued to the surface of spacecrafts by adhesive. In the complex space environment,
the adhesive layer defects of thermal insulation materials, such as cracks and bubbles in the rubber
may cause the thermal insulation materials broken off during flying, and hence, it is important to
detect the adhesive layer defects of thermal insulation materials for spacecraft safety. Along with the
development of new adhesive processes, traditional defect detection technologies no longer satisfy
the high accuracy requirements [1–3]. Therefore, developing new techniques and methods to detect
defects of adhesive layer for thermal insulation materials is an urgent work.

Recently, some interesting defect detection methods for thermal insulation materials and
composite materials with perfect physical properties, e.g., material uniformity, electrical conductivity,
etc. have been reported. For example, Park and Kyu [2], Sun and Zhou [3] presented a method
based on laser ultrasonic technology for defect detection of carbon fiber resin matrix composites pore
fastening holes and composite materials of high temperature resistant layers. Guo and Jing proposed a
method based on infrared thermal wave NDT for debonding flaws in some helicopter blades [4], which
was analyzed by the thermogram and the peak amplitude image of the second derivative thermogram.
A method for coating thickness testing and internal defects detection based on infrared thermal wave
was developed in [5], where the interior defects can be detected through measuring the thickness
of samples with infrared thermal wave. A method to find counterfeit drugs quickly and reliably
based on transmission spectroscopic terahertz (THz) measurement technique was developed in [6].
Palka and Krimi [7], Li and Ding [8] proposed a method based on terahertz time-domain spectroscopy
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for thickness detection of composite materials, which can obtain the thicknesses of all of the layers
of the composite materials based on a time-domain fitting procedure. A method based on laser
ultrasonic detection of drilling-induced delamination was presented for the test of composite laminates
in [9], where the laser ultrasonic C scan was used to test composite laminates, and the morphologies,
dimensions, and positions of drilling-induced delamination can be obtained. Zhang and Gao proposed
a method that applied wavelet transform and fuzzy pattern recognition to ultrasonic detection [10].
In this way, they can detect the bonding quality for thin composite plate.

The effectiveness of the aforementioned detection methods have been verified in some application
fields. However, some limitations are obvious in the field of defect detection for adhesive layer of
thermal insulation materials. Firstly, ultrasonic test is less satisfactory in performance for the insulation
materials that have loose structures or uneven characteristics. Secondly, infrared thermal wave test
cannot penetrate the adhesive layer defect for the materials which have strong heat-resistant. In other
words, infrared thermal wave was unable to effectively obtain the information of adhesive layer of
thermal insulation materials. Thirdly, terahertz test is greatly influenced by the characteristics of
thermal insulation materials. In addition, terahertz test is poor in obtaining the information of the
layer of medium distribution.

It is necessary to develop a new method for defect detection of adhesive layer of thermal insulation
materials. Towards this end, a defect detection method based on electrical capacitance tomography is
proposed in the paper. A detection system of planar electrode capacitance is adopted, and an Improved
Particle Swarm Optimization (IPSO) algorithm is proposed for the defect detection of adhesive layer of
thermal insulation materials. Then, an experiment of defect detection of the bonding layer of thermal
insulating materials is provided to verify the effectiveness of the proposed defect detection algorithm.
The obtained results demonstrate that the proposed defect detection method has higher performance
than the traditional Electrical Capacitance Tomography (ECT) methods.

2. Defect Detection Principle of ECT

ECT is a new nondestructive testing technology developed in recent years based on the mechanism
of capacitance sensitive, and it has been widely applied in the fields of industrial fluidized bed
monitoring, multidirectional flow detection, and medical science [8,9]. The basic principle of ECT
imaging technology is that the multiphase medium often has different dielectric constants, such
that the medium distribution images can be obtained through capacitance sensors. In this paper,
according to the dielectric properties of rubber insulation materials and the characteristics of material
surface structure, planar capacitive electrode substrate is used. As shown in Figure 1, an ECT system
contains three modules: capacitance sensor module, measurement and data acquisition module, and
image reconstruction module. The working process of the ECT system is as follows: acquire the
capacitance values via capacitance sensors firstly, and then transmit the values to the computer, and
finally reconstruct the field distribution image in computer.

Planar electrode plates of 12 electrodes are used in the capacitance sensor unit. In order
to guarantee the credibility and accuracy of measurement data, shielding processing is adopted
between the electrodes, and the interface of detection electrode, as well as in the data acquisition
unit. The different active electrodes are selected by a multiplexer. The capacitance measurement
system of the Intertek Testing Services (ITS) company is used in the measurement and data acquisition
unit for experimental data processing of capacitance plate collection. The sensitivity field of material
distribution is generated by using the software of ANSYS.
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Figure 1. Electrical Capacitance Tomography (ECT) system structure diagram. 

3. Reconstruction Algorithm of Image  

Reconstruction algorithm of image is to use the collected data from the measurement and data 
acquisition module of ECT system to build the image projection, and then one can obtain the field 
distribution diagram, which is used to defect detection and defect analysis for thermal insulation 
materials. Two key computational problems are required to be solved in ECT: the forward problem 
and the inverse problem. For the forward problem, inter-electrode capacitances are to be 
determined by the permittivity distribution. In this paper, a planar capacitive sensor array 
containing n = 12 electrodes is used, and then one has M = n(n − 1)/2 = 66 independent capacitance 
measurements.  

Without loss of generality, the effect of shielding layer to dielectric capacitor is neglected, and 
then based on the electrical principle, the capacitance can be computed as follows [10] 
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sensing field, and the sensitivity matrix of the sensor’s imaging field, respectively. The capacitance 
differences, which are produced by different material properties on tiny pixel areas, can be 
distinguished by sensitivity matrix. If we segment the material small enough, then the function of 
sensitivity distribution is affected slightly by medium distribution [10], and thus Equation (1) can be 
simplified as follows 
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where ( , )iS x y  is the sensitivity function of material capacitance iC . Then, one can linearize and 
discretize Equation (2), as follows 
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where C denotes the normalized capacitance vector, G is the normalized permittivity vector, and S 
represents the normalized sensitivity matrix. Thus, the forward problem is modeled by Equation (3). 

For the inverse problem, one needs to acquire the permittivity distribution based on 
capacitance measurements. Usually, the result of this problem is shown by a visual image, and thus 
this process is also called image reconstruction. 

If there exists the inverse of matrix S, we can solve Equation (3) directly by 
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Figure 1. Electrical Capacitance Tomography (ECT) system structure diagram.

3. Reconstruction Algorithm of Image

Reconstruction algorithm of image is to use the collected data from the measurement and data
acquisition module of ECT system to build the image projection, and then one can obtain the field
distribution diagram, which is used to defect detection and defect analysis for thermal insulation
materials. Two key computational problems are required to be solved in ECT: the forward problem and
the inverse problem. For the forward problem, inter-electrode capacitances are to be determined by the
permittivity distribution. In this paper, a planar capacitive sensor array containing n = 12 electrodes is
used, and then one has M = n(n − 1)/2 = 66 independent capacitance measurements.

Without loss of generality, the effect of shielding layer to dielectric capacitor is neglected, and
then based on the electrical principle, the capacitance can be computed as follows [10]

Ci =
x

D

ε(x, y) · Si(x, y, ε(x, y))dxdy, i = 1, 2, · · · , 66 (1)

where D, ε(x, y) and Si(x, y, ε(x, y)) are the electrode surface, the permittivity distribution of sensing
field, and the sensitivity matrix of the sensor’s imaging field, respectively. The capacitance differences,
which are produced by different material properties on tiny pixel areas, can be distinguished by
sensitivity matrix. If we segment the material small enough, then the function of sensitivity distribution
is affected slightly by medium distribution [10], and thus Equation (1) can be simplified as follows

Ci =
x

D

ε(x, y) · Si(x, y)dxdy (2)

where Si(x, y) is the sensitivity function of material capacitance Ci. Then, one can linearize and
discretize Equation (2), as follows

C = SG (3)

where C denotes the normalized capacitance vector, G is the normalized permittivity vector, and S
represents the normalized sensitivity matrix. Thus, the forward problem is modeled by Equation (3).

For the inverse problem, one needs to acquire the permittivity distribution based on capacitance
measurements. Usually, the result of this problem is shown by a visual image, and thus this process is
also called image reconstruction.

If there exists the inverse of matrix S, we can solve Equation (3) directly by

S−1C = G (4)
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Unfortunately, the matrix S cannot be obtained accurately, because there are three major difficulties
for the inverse problem. The first one is the “soft field characteristics [11]”, i.e., the measurement
sensitive field of ECT sensor is affected greatly by medium distribution. The second one is that
Equation (4) is an indeterminate equation, since the number of unknown variables N (i.e., the number
of pixels) is usually much larger than the number of equations M (i.e., the number of capacitance
measurements), and thus the solution is not unique. The third one is that Equation (4) is an ill
conditioned equation [12].

In the past few years, a number of image reconstruction algorithms have been developed
to address the ill posed and ill conditioned problems. In general, they can be categorized into
two groups: non-iterative (or single step) algorithms (e.g., Tikhonov Algorithm [9], Linear Back
Projection (LBP) Algorithm [10], etc.), and iterative algorithms (e.g., SIRT Algorithm [12], Landweber
Algorithm [13], etc.). Here, we introduce two typical algorithms.

3.1. LBP Algorithm

Linear Back Projection (LBP) is a non-iterative algorithm and it is the earliest algorithm for ECT
imaging technology [10], where if S is considered to be a linear mapping from the permittivity vector
space to the capacitance vector space, ST can be considered as a related mapping from the capacitance
vector space to the permittivity vector space. Then the approximated solution can be given as follows.

G = STC (5)

LBP algorithm is still widely used for on-line image reconstruction because of its simplicity.
However, it produces poor-quality image and can only provide qualitative information. LBP algorithm
is commonly used in qualitative analysis. However, for complex media distribution error detection, its
resolution accuracy for image reconstruction is relatively low.

3.2. Landweber Algorithm

The Landweber algorithm [13] is an iterative algorithm and is developed based on the foundation
of steepest descent method. Up to now, the Landweber algorithm has been widely used in the field of
ECT. The main principle is to correct the solutions of the equation in the minus gradient direction of
data residuals. The data residual gradient is shown as follows

∇ · 1
2
‖SG−C‖2 = ST(SG−C) (6)

and the iterative equation is
G(k+1) = G(k) + αST(C− SG(k)) (7)

where α is the positive scalar, which plays an important role in the process of iteration. However,
G (G = STC) is regarded as the initial guess in the process of iterative calculation, which will produce
a large error between the initial guess and real value [12]. Traditional ECT image reconstruction (either
the iteration or non-iteration) is flat of sensitivity field. However, in practical applications, phase
distribution of different types may cause the differences of sensitivity field. If the differences are
ignored, the accuracy of defect detection will be influenced seriously.

3.3. Defect Detect Algorithm Based on Improved PSO

3.3.1. Data Processing Based on LS-SVM

In ECT system, the measuring capacitance C will have relatively subtle change for the small
defects of adhesive layer of thermal insulation material; besides, the sensitivity matrix S is generally
considered to be constant, which will result in certain errors in the rubber with different defects. Thus,
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the experimental value of the capacitance Cm has a certain deviation in the calculative value of the
formula. The deviation is given as follows

∆C = Cm − S ·G (8)

where Cm is the normalized measurement value of the capacitance [13], and G is the matrix of dielectric
constant distribution.

By using multiphase medium with different permittivities, the image of medium distribution can
be obtained through measuring the obtained permittivities by capacitance sensors.

The errors between capacitance measurements and theoretical simulation capacitance values
can be obtained through training samples, which are trained by least squares support vector
machine (LS-SVM).

The vector norm of Equation (8) is as follows

y = ‖∆C‖ = ‖Cm − S ·G‖ = f(x) : Rn → R1 (9)

where Rn is the n dimensional real vector set and R1 is the real set.
In Equation (9), the measurement capacitance can be viewed as the input vector while the norm

of the difference vector between the measurement capacitance vector and the computed capacitance
vector is viewed as the output vector.

As training samples used by LS-SVM, the measurement capacitance vectors of defects are used as
the input samples, and the norm of capacitance deviation vectors of the same defects are used as the
output samples. According to the theory of SVM, the more the training samples are used, the stronger
the generalization ability is [14]. In this paper, three kinds of common defects of composite material
bonding structure (i.e., fracture defect, bubbles, lack of glue) are considered as a sample set, where
each kind of defects have 32 samples with each sample has only one type defect at a particular position,
and totally 96 training samples are used.

3.3.2. Image Reconstruction Algorithm Based on Improved PSO

Particle swarm optimization (PSO) algorithm was first proposed in 1995 by the American social
psychologist James Kennedy and electrical engineer Russell Eberhart [15]. After that, some other
similar algorithms were further proposed. In these algorithms, the evolution of PSO algorithm is also
used by the concept of “community” and “evolution”. It is also based on the fitness of individuals
(particles) size in these algorithms. The difference is that the particle swarm algorithm to each operator
as in n dimensional search space does not have a weight and volume of small profit, and in the search
space at a certain speed, it changes the speed by the individual’s flight experience and group of flight
dynamic adjustment [16]. Particle swarm optimization algorithm is a kind of self-adaptive random
algorithm based on group hunting strategy, which is an algorithm of simple implementation and fast
convergence with few parameters. At present, although the PSO algorithm has some limitations, it can
be used after some appropriate improvements [15,17].

In this case, we set the search space in D dimensions with a total of N particles. The ith
particle position is represented as Xi = (xi1, xi2, . . . , xiD) and the ith particle’s position varying rate is
represented as Vi = (vi1, vi2, . . . , viD). The position of each individual particle changes as follows

vid(t + 1) = ω · vid(t) + c1 · r1[pid(t)− xid(t)] + c2 · r2 · [pgd(t)− xid(t)] (10)

xid(t + 1) = xid(t) + vid(t + 1) (11)

where c1, c2 are positive constants which are called as the acceleration factors, r1, r2 are random
numbers between [0, 1], ω is called the inertial factor, i is the ith particle (1 ≤ i ≤ N), and d is
the dimension of each particle (1 ≤ d ≤ D). The initial position and speed of particle swarm are
randomly generated, and are iterated according to Equations (10) and (11). The Improved Particle
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Swarm Optimization (IPSO) algorithm is presented based on the Basic Particle Swarm Optimization
(BPSO), where the main improvements are shown as follows

1. According to the analysis of ECT imaging principle, capacitance testing equipment, and image
reconstruction algorithm, a modified fitness function is presented as F = min(‖CM−SGk‖− ‖∆C‖),
where ‖∆C‖ is the output trained by LS-SVM. Then, with the LS-SVM training results, one can
optimize the fitness function, and compensate or eliminate the errors induced by the sensitivity
matrix S and measuring device.

2. Based on the principle of PSO, the initial value is randomly generated, and Equation (11) is
expressed as G(t+1) = G(t) + vid(t), where vid(t) is obtained by Equation (10). A nonlinear and
dynamic adjustment method is then presented to adjust the inertia weight ω in Equation (10)
as follows

ω =

ωint − (ωint −ωend) · F−Fmin
Favg−Fmin

F < Favg

ωint F ≥ Favg
(12)

where F is the fitness value of particle at present, Favg is the average fitness, and Fmin is the
minimum fitness, i.e., the fitness of the best particle. Firstly, the value of ωint is kept unchanged,
and the value of ωend is the minimum value for cumulative value of ω in each iteration (a given
initial value: ωint = 1.2, ωend = 0.8) [17]. The inertial factor is changed with the adaptation degree
of each generation.

3. Population will search the extreme value that is decided by Pigbest and Pgbest after several
iterations. If no better position of population than Pgbest is found in the iteration process, the
algorithm will stagnate. Since the change of Pgbest can reflect the change of Pigbest, the change
of the best personal position of each particle can be used as the only judgment foundation for
variation. In this paper, the minimal fitness value is used as the benchmark, and the fitness value
at the tth iteration is obtain as follows

Ft,avg =
1
N

N

∑
i=1

Ft,pbest ,i (13)

where Ft,pbest ,i is the best personal position of several particles at the tth iteration. When the
condition B : (Ft+1 < Ft,avg) is satisfied at the t+1th iteration, the optimal process is regarded as
good (either too large or too small values of K will influence the result of genetic algorithm [18]
(in this paper, K = 3). One can reduce the particle complexity and increase the speed of the
algorithm by decreasing the particle number at this moment. When the adaptive condition does
not satisfy condition B (i.e., Ft+1 = Ft,avg, lasts up to three generations), the diversity of the
population will be lost, and then the particle variability can be kept by increasing the number of
particles.

4. One can keep the diversiform direction of movement for each particle while decreasing the
computation complexity of the proposed algorithm by improving the number of particles.
Firstly, we give two boundary values pop _min and pop _max. If population size has reached
pop _max and it still needs to increase the particles, the population size is reduced by a particle.
If population size has reached pop _min and it still needs to decrease the particles, the population
size remains. The continuous generation (Consecutive Generations, CG) strategy is used to
reduce the particles [18], i.e., we delete particles randomly which are not at the best locations in
the current particle swarm as well as not at the optimal positions for the particle swarm. Then,
the uniform mutation (Uniform Mutation, UM) [19] strategy is used to increase the particles.
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vnp, xnp and pBestnp are used as the new particle’s speed, current location, and optimal position
separately in history, respectively. The updates of variation are given as follows:{

pBestd
np = Xd

min + λ× (Xd
max − Xd

min) d = U[1, D]

pBestd
np = pBestd

gb otherwise
(14)

where d is the dimension randomly selected to mutate, and Xd
max and Xd

min are upper and lower bounds
of the search space, respectively.

The flat electrode substrate is chosen according to the characteristics of the ceramic porous
thermal insulation material. Therefore, based on the previous analysis of basic principle of electrical
capacitance tomography and the image reconstruction algorithms (such as LBP algorithm and
Landweber algorithm), an Improved Particle Swarm Optimization (IPSO) algorithm is proposed.

The proposed IPSO algorithm considers the change of sensitivity matrix S caused by different
defect fields. The change of S matrix is optimized by the training of LS-SVM, which is different from
the traditional ECT imaging algorithm. On this basis, the results trained by the LS-SVM are added to
the fitness function of IPSO algorithm. In order to find the optimal particle, a calculating strategy of
nonlinear inertial parameter ω is adopted.

At the same time the evaluation index of the particle falls into local optimum and the method of
the particle to overstep the local extremum are put forward. On this basis, the IPSO algorithm for ECT
image reconstruction has been proposed, which fundamentally solves the issue of iteration caused
by the initial information error. Moreover, the proposed algorithm can enhance the overall searching
capability and local optimum jumping capability. Furthermore, based on the IPSO algorithm, we can
reconstruct the ECT image for the defect detection of adhesive layer of thermal insulation materials.

4. Experiment Study

A nondestructive defect detection technology for adhesive layer of thermal insulation materials is
presented based on the IPSO method for ECT image reconstruction in Section 3. Three types of glue
line defects (Air bubbles, Irregular defect samples, Wide glue line), which always occur in aerospace
applications, are studied in this section.

The experimental cases are as follows: 18 × 18 cm2 materials of porous ceramic are used for the
experiments. The glue line is 16 × 16 cm2 epoxy resin, and the adhesive thickness is 3 mm. The full
yard (full adhesive) and the empty yard (full air) are shown in Figures 2 and 3.
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4.1. Experiment Results 

4.1.1. Experiment for Imitation of Small Air Bubble Defects 

We use a 16 × 16 cm2 epoxy resin in this experiment. To simulate the traditional defects of 
cementing structure such as the bubbles and lacks of plastic induced by pressing, here we consider 
the Sample 1 with six pieces of 2 × 2 cm2 square holes as the defect, as shown in Figure 4. 

Four algorithms of LBP, Landweber, BPSO and improved PSO algorithms are applied for defect 
detection of Sample 1, respectively. The simulation results are shown in Figure 5. One can find from 
Figure 5a,b that LBP algorithm can only roughly detect location, size, and contour information of the 
defect. From Figure 5c–f, the Landweber and BPSO algorithms can reflect defect, which certainly 
show a little better detection performance than the LBP algorithm. However, the defect marginals of 
reconstructed images by the three algorithms are not very clear, which makes defect edge 
segmentation from the reconstructed images difficult. 

It is worth pointing out that, seen from Figure 5g,h, the proposed IPSO algorithm in the paper 
shows the significant advantages to the defect location, size, in addition, contour information of the 
defect can be more clearly reconstructed by the proposed IPSO algorithm. It is obvious that the 
defect location, size, and contour information of the defect can be more clearly reconstructed by the 
proposed IPSO algorithm than the other three algorithms. 
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Figure 3. The complete sample with adhesion.

4.1. Experiment Results

4.1.1. Experiment for Imitation of Small Air Bubble Defects

We use a 16 × 16 cm2 epoxy resin in this experiment. To simulate the traditional defects of
cementing structure such as the bubbles and lacks of plastic induced by pressing, here we consider the
Sample 1 with six pieces of 2 × 2 cm2 square holes as the defect, as shown in Figure 4.

Four algorithms of LBP, Landweber, BPSO and improved PSO algorithms are applied for defect
detection of Sample 1, respectively. The simulation results are shown in Figure 5. One can find from
Figure 5a,b that LBP algorithm can only roughly detect location, size, and contour information of
the defect. From Figure 5c–f, the Landweber and BPSO algorithms can reflect defect, which certainly
show a little better detection performance than the LBP algorithm. However, the defect marginals of
reconstructed images by the three algorithms are not very clear, which makes defect edge segmentation
from the reconstructed images difficult.

It is worth pointing out that, seen from Figure 5g,h, the proposed IPSO algorithm in the paper
shows the significant advantages to the defect location, size, in addition, contour information of the
defect can be more clearly reconstructed by the proposed IPSO algorithm. It is obvious that the defect
location, size, and contour information of the defect can be more clearly reconstructed by the proposed
IPSO algorithm than the other three algorithms.
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4.1.2. Experiment for Rubber Fracture Defects

Another type defect, which has two bubbles in glue line with one large and another small, as
shown in Figure 6, is considered in this subsection. We call the defect as Sample 2. In order to assess
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the quality of image easily, two defects are separately replaced by two small circles with the areas of
7 cm2 and 1 cm2, respectively. The rubber block is surrounded by foam rubber with 2 cm wide and
16 cm length foam (the permittivity of foam rubber is similar to the permittivity of air).

LBP, Landweber, BPSO, and the proposed IPSO algorithms are applied for the defect detection
of Sample 2. The experimental results are shown in Figure 7. It can be seen from Figure 7 that
when compared with Figure 7a–f using LBP, Landweber and BPSO algorithms, the performance of
reconstructed images Figure 7g,h, using the proposed IPSO are significantly improved and more
detailed information of defects, such as the size, shape, edge, etc. are displayed clearly, which
demonstrates the effectiveness and superiority of the proposed algorithm.

Sensors 2017, 17, x FOR PEER REVIEW  10 of 15 

 

7 cm2 and 1 cm2, respectively. The rubber block is surrounded by foam rubber with 2 cm wide and 16 

cm length foam (the permittivity of foam rubber is similar to the permittivity of air).  

LBP, Landweber, BPSO, and the proposed IPSO algorithms are applied for the defect detection 

of Sample 2. The experimental results are shown in Figure 7. It can be seen from Figure 7 that when 

compared with Figure 7a–Figure 7f using LBP, Landweber and BPSO algorithms, the performance of 

reconstructed images Figure 7g,h, using the proposed IPSO are significantly improved and more 

detailed information of defects, such as the size, shape, edge, etc. are displayed clearly, which 

demonstrates the effectiveness and superiority of the proposed algorithm.  

5
c
m

5
c
m

3.5cm
10cm

2
c
m

2cm

 

Figure 6. Sample 2 of defect. 

  

(a) Reconstruction image by LBP algorithm (b) 3D reconstruction image by LBP algorithm 

 
 

(c) Reconstruction image by Landweber algorithm (d) 3D reconstruction image by Landweber algorithm 

Figure 6. Sample 2 of defect.

Sensors 2017, 17, 2440 10 of 15 

 

7 cm2 and 1 cm2, respectively. The rubber block is surrounded by foam rubber with 2 cm wide and 
16 cm length foam (the permittivity of foam rubber is similar to the permittivity of air).  

LBP, Landweber, BPSO, and the proposed IPSO algorithms are applied for the defect detection 
of Sample 2. The experimental results are shown in Figure 7. It can be seen from Figure 7 that when 
compared with Figure 7a–f using LBP, Landweber and BPSO algorithms, the performance of 
reconstructed images Figure 7g,h, using the proposed IPSO are significantly improved and more 
detailed information of defects, such as the size, shape, edge, etc. are displayed clearly, which 
demonstrates the effectiveness and superiority of the proposed algorithm.  

5
cm 5c
m

3.5cm
10cm

2
c
m

2cm

 

Figure 6. Sample 2 of defect. 

 
(a) Reconstruction image by LBP algorithm (b) 3D reconstruction image by LBP algorithm 

 
(c) Reconstruction image by Landweber algorithm (d) 3D reconstruction image by Landweber algorithm 

Figure 7. Cont.



Sensors 2017, 17, 2440 11 of 15
Sensors 2017, 17, 2440 11 of 15 

 

 
(e) Reconstruction image by BPSO algorithm (f) 3D reconstruction image by BPSO algorithm 

 
(g) Reconstruction image by IPSO algorithm (h) 3D reconstruction image by IPSO algorithm 

Figure 7. Images reconstructed by different algorithms for Sample 2. 

In addition, it is worth pointing out that, from all of the subfigures in Figure 7, all the 4 
algorithms cannot be able to detect the smaller defect, which makes the smaller one missed in the 
reconstructed images. Our analysis of the results may be that the reconstructed images of the 
smaller defect are submerged by the ones of the large defect. Besides, to the best of our knowledge, 
at present, small defect below 1 cm2 cannot be detected by using current detection algorithms 
including our proposed algorithm. 

4.1.3. Experiment for Rubber Fracture Defects 

To simulate the traditional defects of cemented structure, e.g., the fracture of adhesive layers, u 
slot defect with the entire length being 15 cm and the width 5 mm, as shown in Figure 8, is 
considered. We call the defect as Sample 3. 

Similarly, LBP, Landweber, BPSO and the proposed IPSO algorithms are applied to detect the 
defects of Sample 3. The experimental results are shown in Figure 9. It can be seen from Figure 9 
that, when compared with Figure 9a–f using LBP, Landweber, and BPSO algorithms, the effect of 
reconstructed images Figure 9g,h using the proposed IPSO are significantly improved, and more 
detailed information of defects, such as the size, shape, edge, etc. are displayed more clearly, which 
also demonstrates the effectiveness and the superiority of the proposed IPSO algorithm. 

It is worth noting that because the capacitance distribution from 12-electrode capacitance 
sensors is used, the quality of reconstructed images is not effective to some defects with sizes being 
below the cm-level. The accuracy of reconstructed images is influenced by the less original data of 
capacitance to a certain extent. However, in the real applications, the destructive effect of below the 
cm-level’s defect of adhesive layer of thermal insulation materials is far less than that of the above 
cm-level’s defect. Obviously, for the defect detection of defect area greater than 1 cm2, the IPSO 
algorithm can achieve significantly better performance than the classical algorithms. 

Figure 7. Images reconstructed by different algorithms for Sample 2.

In addition, it is worth pointing out that, from all of the subfigures in Figure 7, all the 4 algorithms
cannot be able to detect the smaller defect, which makes the smaller one missed in the reconstructed
images. Our analysis of the results may be that the reconstructed images of the smaller defect are
submerged by the ones of the large defect. Besides, to the best of our knowledge, at present, small defect
below 1 cm2 cannot be detected by using current detection algorithms including our proposed algorithm.

4.1.3. Experiment for Rubber Fracture Defects

To simulate the traditional defects of cemented structure, e.g., the fracture of adhesive layers, u
slot defect with the entire length being 15 cm and the width 5 mm, as shown in Figure 8, is considered.
We call the defect as Sample 3.

Similarly, LBP, Landweber, BPSO and the proposed IPSO algorithms are applied to detect the
defects of Sample 3. The experimental results are shown in Figure 9. It can be seen from Figure 9
that, when compared with Figure 9a–f using LBP, Landweber, and BPSO algorithms, the effect of
reconstructed images Figure 9g,h using the proposed IPSO are significantly improved, and more
detailed information of defects, such as the size, shape, edge, etc. are displayed more clearly, which
also demonstrates the effectiveness and the superiority of the proposed IPSO algorithm.

It is worth noting that because the capacitance distribution from 12-electrode capacitance sensors
is used, the quality of reconstructed images is not effective to some defects with sizes being below the
cm-level. The accuracy of reconstructed images is influenced by the less original data of capacitance to
a certain extent. However, in the real applications, the destructive effect of below the cm-level’s defect
of adhesive layer of thermal insulation materials is far less than that of the above cm-level’s defect.
Obviously, for the defect detection of defect area greater than 1 cm2, the IPSO algorithm can achieve
significantly better performance than the classical algorithms.
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4.2. Evaluation of Algorithms by Experiment

In this subsection, we will further evaluate the performance of the four algorithms. Two evaluation
criteria will be used in this paper: the image correlation Ic, which is the similarity degree between
the reconstruction image and the test object image, and the relative image error Ie. They are shown
as follows
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where e(k)i is the ith element in the final reconstructed image E(k), E(k) is the average of pixels in the
E(k) space, and e0

i is the ith element in the original simulated image E0. The clearer the reconstruction
image is, if the lower Ie is and the higher Ic is [19].

The computing results under the four algorithms are shown in Tables 1 and 2. Table 1 shows
the image correlation coefficients of the reconstructed images for Sample 1, Sample 2, and Sample 3
using LBP, Landweber, BPSO and IPSO, respectively. Table 2 shows the errors of the reconstructed
images of Sample 1, Sample 2 and Sample 3 based on LBP, Landweber, BPSO and IPSO, respectively.
Obviously, the simulation results in Tables 1 and 2 demonstrate that the proposed IPSO scheme has
higher significant effect for defect image reconstruction than the other three algorithms.

Table 1. Image correlation Ic (%) by different algorithms.

Sample 1 Sample 2 Sample 3

LBP 0.5680 0.6087 0.4787
Landweber 0.4680 0.6829 0.6853

BPSO 0.7648 0.6946 0.6992
IPSO 0.8484 0.7737 0.7712
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Table 2. Relative image error Ie by different algorithms.

Sample 1 Sample 2 Sample 3

LBP 2.1927 1.2625 3.6358
Landweber 2.3209 0.8923 4.7879

BPSO 2.1230 0.9321 4.5827
IPSO 1.0999 0.8317 3.5059

5. Conclusions and Future Work

This paper develops a novel non-destructive method for defect detection of adhesive layer of
thermal insulation materials based on the proposed IPSO algorithm. In the method, the least squares
support vector machine is utilized at first for data processing of measured capacitance values, and then
the improved PSO algorithm is proposed for the optimization of image reconstruction. Simulation and
experiment results demonstrate that when compared with the traditional algorithms such as LBP
algorithm and Landweber algorithm, the proposed IPSO algorithm can display the defect information
including size, shape, and edge of the defects more clearly. Future work will be implemented to further
identify the feature of defects.
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