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Abstract: We investigated the effect of a thin MgO underlying layer (~3 monoatomic layers) on
the growth of GaOx tunnel barrier in Fe/GaOx/(MgO)/Fe(001) magnetic tunnel junctions. To obtain
a single-crystalline barrier, an in situ annealing was conducted with the temperature being raised up
to 500 ◦C under an O2 atmosphere. This annealing was performed after the deposition of the GaOx on
the Fe(001) bottom electrode with or without the MgO(001) underlying layer. Reflection high-energy
electron diffraction patterns after the annealing indicated the formation of a single-crystalline layer
regardless of with or without the MgO layer. Ex situ structural studies such as transmission
electron microscopy revealed that the GaOx grown on the MgO underlying layer has a cubic
MgAl2O4-type spinel structure with a (001) orientation. When without MgO layer, however,
a Ga-Fe-O ternary compound having the same crystal structure and orientation as the crystalline
GaOx was observed. The results indicate that the MgO underlying layer effectively prevents the Fe
bottom electrode from oxidation during the annealing process. Tunneling magneto-resistance effect
was observed only for the sample with the MgO underlying layer, suggesting that Ga-Fe-O layer is
not an effective tunnel-barrier.

Keywords: magnetic tunnel junction; epitaxial growth; gallium oxide; tunneling magneto-resistance;
semiconductor

1. Introduction

Magnetic tunnel junctions (MTJs) have been intensively studied for various applications including
magnetic sensors [1–5]. In MTJs, tunneling magnetoresistance (MR) ratio is one of the most important
performance indexes and defined as (RAP − RP)/RP where RP and RAP are the resistances between
the two ferromagnetic (FM) electrodes with parallel and antiparallel magnetization alignments,
respectively. Fabrication of epitaxial structure is the key to achieving a high MR ratio because
the coherent spin-polarized tunneling in fully epitaxial MTJs yields giant MR ratios [6–8], even at
room temperature (RT), as reported in MTJs with insulating tunnel-barriers such as MgO [9–11],
MgAl2O4 [12], and MgGa2O4 [13].

Semiconductors (SC) have great potential as the tunnel-barrier of MTJ for a low resistance-area
product [14,15] because of its rather narrow band-gap, compared with insulators. Also, fully
single-crystalline FM/SC/FM structure is one of the important building blocks of a vertical-type spin
field-effect-transistor having nonvolatile memory functionality [16–19]. Here, the FM layer and SC layer
each respectively act as source/drain electrodes and channel layer of the FET. Note that it is impossible
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to realize this device by using an insulator as the channel layer. In our previous studies, we have
reported high MR ratios up to ~100% at RT in fully epitaxial Fe(001)/GaOx(001)/MgO(001)/Fe(001)
MTJs where GaOx is a wide-gap semiconductor with a MgAl2O4-type cubic spinal structure
(γ phase) [20,21]. Thanks to the coherent spin-polarized tunneling, the observed MR ratio is
several times higher than those reported in MTJs consisting of polycrystalline FM electrodes with
an amorphous GaOx barrier (at most ~22% at RT) [22–24]. This is the highest value among the reported
MTJs with a SC barrier at RT [14,15,22–31]. It was found in the fully epitaxial MTJs that the growth of
a few monoatomic (ML; 1 ML = 0.21 nm) MgO(001) underlying layers on the Fe(001) bottom electrode
are indispensable to realize a high MR ratio and that a tunneling MR (TMR) effect cannot be observed
without the MgO underlying layer. Cross-sectional observations of the Fe/GaOx/(MgO)/Fe showed
sharp barrier/electrode interfaces without having the Fe layers oxidized [20,21], as expected from
the observed high MR ratio. The reason for the absence of TMR effect however, is not clear since
the role of the MgO layer on the growth of the GaOx tunnel-barrier has not been clarified yet.

In this study, we performed detailed structural studies on the epitaxial MTJ structure to clarify
the effects of the MgO underlying layer on the growth of the GaOx barrier layer as well as their
influence upon the TMR effect.

2. Experimental Procedures

MTJ films as shown in Figure 1 were grown by molecular beam epitaxy (MBE) in the identical
type of growth chamber as mentioned in our previous study [20,21].
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in situ annealing at 350 °C for 10 min under an ultra-high vacuum (<1 × 10−9 Torr) to improve 
surface morphology of the Fe bottom electrode. After the growth of a 0.7 nm-thick MgO underlying 
layer (~3 MLs), a GaOx layer (~1.5 nm) was deposited on the Fe bottom electrode at 80 °C under an 
O2 pressure of 1 × 10−6 Torr. Because the surface of the GaOx layer in the as-grown state is 
amorphous [21], an in situ annealing for crystallizing the surface region of the GaOx layer was 
carried out at temperatures up to 500 °C under an O2 pressure of 1 × 10−7 Torr. After the annealing, 
the Fe upper electrode was grown at 100 °C and then annealed again for 10 min at 350 °C under the 
vacuum to improve the crystalline quality and morphology. Finally, Co-pinned and Au-cap layers 
were deposited at RT. The Co layer enhances the coercive force of Fe upper electrode so as to realize 

Figure 1. The structure of the magnetic tunnel junction (MTJ) stack designed for this study. Figures at
both sides show growth temperatures and in situ annealing conditions.

In growing oxide layers, single-crystal Ga2O3 and MgO blocks were used as source materials.
Prior to the growth, the MgO(001) substrate was heated at 800 ◦C for surface cleaning. Then, the MgO
buffer layer and Fe bottom electrode are respectively grown at 300 and 100 ◦C, followed by an in
situ annealing at 350 ◦C for 10 min under an ultra-high vacuum (<1 × 10−9 Torr) to improve
surface morphology of the Fe bottom electrode. After the growth of a 0.7 nm-thick MgO underlying
layer (~3 MLs), a GaOx layer (~1.5 nm) was deposited on the Fe bottom electrode at 80 ◦C under
an O2 pressure of 1 × 10−6 Torr. Because the surface of the GaOx layer in the as-grown state is
amorphous [21], an in situ annealing for crystallizing the surface region of the GaOx layer was carried
out at temperatures up to 500 ◦C under an O2 pressure of 1 × 10−7 Torr. After the annealing, the Fe
upper electrode was grown at 100 ◦C and then annealed again for 10 min at 350 ◦C under the vacuum to
improve the crystalline quality and morphology. Finally, Co-pinned and Au-cap layers were deposited
at RT. The Co layer enhances the coercive force of Fe upper electrode so as to realize the antiparallel
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magnetization alignment (so called pseudo-spin valve structure). For comparison, we also prepared
the same structure but without the MgO underlying layer on the Fe bottom electrode.

Tunnel junctions (3 × 12 µm2) for the magneto-transport measurements were fabricated using
conventional micro-fabrication techniques [20,21]. Magneto-transport properties of the tunnel junction
were measured using a conventional two probe method. The magnetic fields were applied parallel
to the major axis of the junction corresponding to the easy axis of the magnetization direction of
the FM electrodes.

3. Results and Discussions

Figure 2a,b show the reflection high-energy electron diffraction (RHEED) images of the GaOx

layer for the MTJ samples with or without the MgO underlying layer respectively, after the in situ
annealing, with the temperature being raised up to 500 ◦C under the O2 atmosphere.
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For the sample with MgO underlying layer, a fully epitaxial Fe/GaOx/(MgO)/Fe structure was 
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Figure 2. Reflection high-energy electron diffraction (RHEED) images of the GaOx layer grown on
the (a) MgO underling layer and (b) Fe bottom electrode after an in situ annealing ([110] azimuth of
MgO substrate).

The RHEED images of both samples showed similar streaky patterns, indicating the formation
of single-crystalline layer with an atomically flat surface in both samples. Also, very similar streaky
patterns appeared in the image of the Fe upper electrodes after the annealing in the vacuum. No clear
difference from the RHEED observations was observed between both samples. We found however,
a remarkable difference in cross-sectional transmission electron microscopy (TEM) images between
both samples as given in Figure 3a,b.
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Figure 3. Cross-sectional transmission electron microscope (TEM) images of the MTJ samples (a) with
(b) without the MgO underlying layer ([100] azimuth of the MgO substrate). Broken lines indicate
the interfaces among the layers. The inset of Figure 3b shows electron nano-beam diffraction pattern at
the point indicated by an asterisk symbol.
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For the sample with MgO underlying layer, a fully epitaxial Fe/GaOx/(MgO)/Fe structure was
recognized as shown in Figure 3a. Total thickness of the GaOx/MgO layers was estimated to be about
2.2 nm which is close to the designed total thicknesses of the MgO (0.7 nm) and GaOx (~1.5 nm)
layers. In the case without the MgO underlying layer (Figure 3b), on the other hand, a thick (~15 nm)
unknown single-crystalline layer appeared between the Fe upper and bottom electrodes. Note that
the thickness of the Fe bottom electrode largely decreased due to the formation of the thick unknown
layer. These results imply that a part of the Fe bottom electrode was oxidized and intermixed with Ga
caused by the in situ annealing at high temperature up to 500 ◦C under the O2 atmosphere.

Electron nanobeam diffraction (NBD) patterns revealed that the unknown layer (the inset of
Figure 3b) could be assigned as a cubic MgAl2O4-type spinel structure which is identical to that
of the GaOx tunnel-barrier. Crystal orientations of the Fe electrodes and the spinel layer were also
determined as upper Fe(001)[110] ‖ spinel (001)[100] ‖ bottom Fe(001)[110] from the NBD analysis.
The observed crystal orientations of the Fe electrodes and oxide (spinel) layer are identical to those
of epitaxial Fe/γ-GaOx/(MgO)/Fe MTJ [20,21]. Therefore, it is not surprising that there is no clear
difference in the RHEED images between the samples with or without the MgO underlying layer.

We performed a composition analysis in the vicinity of the spinel layer by an energy-dispersive
X-ray spectroscopy (EDX) as displayed in Figure 4a–c, together with the cross-sectional scanning TEM
image observation (Figure 4d) as the EDX analysis.
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underlying layer using an energy-dispersive X-ray spectroscopy (EDX); (d) bright-field scanning TEM
image of the same area. Broken lines indicate the interfaces between the spinel layer and Fe electrodes.

The spinel layer clearly consists of Fe, Ga, and O. Large amount of the distributions of Ga and Fe
compositions were detected within the layer whereas O composition was also being detected with
uniform distribution. This suggests that (Fe, Ga)2O3 and (Fe, Ga)3O4 are the possible materials for
the observed spinel layer. It should be mentioned here that we have observed in a similar structure
as the present sample with the MgO underlying layer, that there are the two distinct layers of GaOx

and MgO without being subjected to losing the thickness of the Fe bottom electrode [20]. The results
indicate that a very thin (~3 MLs) MgO underlying layer effectively acts as an oxygen-preventing layer
to the Fe bottom electrode during the annealing under the O2 atmosphere.

TMR effect was only observed in sample with MgO underlying layer. The observed MR ratio was
91% at RT, which is close to the reported values in the epitaxial Fe/GaOx/(MgO)/Fe MTJs [20,21] and
several times larger than those of the MTJs with an amorphous GaOx barrier [22–24]. For the sample
without the MgO layer however, no TMR effect was observed down to 20 K. We observed a metallic
behavior in temperature dependence of the junction resistances, i.e., the junction resistance decreased
with decreasing temperature. Moreover, although there is a 15 nm-thick Ga-Fe-O spinel layer between
the electrodes, the junction resistances were almost comparable to the parasitic resistance (~10 Ω at RT)
which mainly comes from the resistance of the Fe bottom layer. The results imply that the spinel layer
has poor electrical characteristics as an insulator.
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4. Conclusions

We have grown epitaxial Fe/GaOx/(MgO)/Fe(001) MTJ structure with or without the MgO
underlying layer and investigated the effects of the MgO layer on the growth of GaOx tunnel barrier
together with their influence on the TMR effect. It was demonstrated that, when the MgO layer is absent,
a thick Ga-Fe-O layer having a spinel-type crystal structure was formed by conducting in situ annealing
with the temperature being raised up to 500 ◦C under the O2 atmosphere. As a result, no TMR effect
was observed in the sample without the MgO layer. The results indicate that the MgO underlying
layer effectively prevents the Fe bottom electrode from oxidation during the annealing process.
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