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Abstract: Because of the harsh polar environment, the master strapdown inertial navigation system
(SINS) has low accuracy and the system model information becomes abnormal. In this case,
existing polar transfer alignment (TA) algorithms which use the measurement information provided
by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of
a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the
problems. Since the measurement information provided by master SINS is inaccurate, the accurate
information provided by the star sensor is chosen as the measurement. With the compensation
of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived.
Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF
is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate
the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is
better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed
in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.

Keywords: transfer alignment; star sensor; SINS; polar region; lever-arm effect; large misalignment
angle; AUKF

1. Introduction

As various countries pay more attention to the polar region, an increasing number of military
and civil activities are occurring in the polar region. Among the different kinds of polar navigation
techniques, the strapdown inertial navigation system (SINS) can perform best in the polar region [1–3].
In order to achieve a high accuracy of initial alignment in a short time, transfer alignment (TA) of SINS
is the optimal choice for moving base alignment [4,5]. However, due to the meridian convergence,
north-oriented SINS would suffer some problems in the polar region, such as overflowing calculation
and increasing errors [6–8]. Similarly, the state-of-the-art TA algorithm based on the north-oriented
SINS would have the same problems.

A grid frame and the grid inertial navigation mechanization proposed in [9]. By replacing the
traditional line of north orientation by the Greenwich meridian, the grid frame can solve the navigation
problems caused by meridian convergence. Based on the grid frame, a linear polar TA algorithm is
present in [10], which can be effective to ensure the TA accuracy in the polar region. In the case of
a large azimuth misalignment, angle a nonlinear polar TA algorithm is proposed in [11]. However,
due to the different installation locations of master and slave SINSs, lever-arm effect exists and would
decrease the accuracy of TA. To eliminate the influence of lever-arm effect, a polar TA algorithm with
the compensation of lever-arm effect is proposed in [12]. But the compensation algorithm is derived
under the small-misalignment-angle assumption. Therefore, it is necessary to derive a lever-arm effect
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compensation algorithm in the case of a large azimuth misalignment angle. Otherwise, the polar
TA algorithm proposed in [8] still use unscented Kalman filter (UKF) to estimate the misalignment
angles. However, due to the harsh polar region environment, such as strong winds and big waves,
the ship swing would be violent. Once the length of ship is less than the surge wave length, the violent
ship pitching would leave propellers idle above water, which would cause an excessive vibration of
the ship’s hull. Influenced by the vibration and temperature variation, the error characteristics of
inertial measurement unit (IMU) and external ancillary equipment would change. In this condition,
the statistical characteristic of noise would be uncertain, which would decrease the accuracy of UKF
and even cause a failure of UKF. Thus, the effectiveness of UKF would be influenced and reduced by
the uncertain statistical characteristic of noise. An adaptive UKF (AUKF) can adaptively adjust the
state information by using measurement information and residual error [13,14]. Thus, an AUKF is
introduced to adjust the harsh polar environment.

The polar TA algorithms presented in [10–12] are all based on an assumption that the master SINS
can be constantly calibrated by the global position system (GPS), which utilizes the satellites as anchors
to provide position information [15]. In this assumption, the error of master SINS is much smaller
than the error of slave SINS. Then, the master SINS can be approximately considered as error-free.
In practice, the position accuracy of GPS is seriously decreased by the multipath effect in high latitude
area [16]. Thus, the master SINS cannot be calibrated by GPS and considered as error-free. In this
condition, the master SINS is not accurate and the polar TA algorithms present in [10–12] cannot
be effective. To ensure the navigation accuracy without the calibration of GPS, some other external
navigation methods should be introduced to aid the polar TA. In [17], a star sensor is used in an
integrated navigation system of marine SINS. Using the inertial attitude matrix from the star sensor as
the reference information, the attitude error of SINS which increases with time can be corrected. In the
application of initial alignment, a multiplex two-position alignment method with the aid of star sensor
is proposed in [18], which can meet the high accuracy requirements. Star sensors are highly accurate
attitude sensitive instruments, widely used for attitude determination [19]. In a rapid TA, the attitude
measurement of TA filter is the misalignment angle between master and slave SINSs. In the case
that the master SINS has low accuracy, the misalignment angle would be inaccurate and the error of
misalignment angle would even more than 1◦. Because the star sensor can maintain a high attitude
accuracy in the polar region [20], the misalignment angle between the star sensor and slave SINS is
accurate. Since the velocity measurement of master SINS is inaccurate and the star sensor cannot
provide velocity, an attitude matching method is chosen as the matching method of TA. By choosing the
misalignment angle between the star sensor and slave SINS as the measurement of attitude matching
method, the alignment accuracy can be improved. In fact, the star sensor measurements are directly
used in the filter of TA instead of aiding the master SINS. Therefore, star sensors can be used in
assisting TA to accomplish the alignment in the polar region.

In this paper, a new polar TA algorithm with the aid of a star sensor and based on AUKF is
proposed. The main contribution of this paper is to ensure and improve the accuracy of polar TA in
the condition that the master SINS is inaccurate and the information of system model is abnormal.
Nonlinear state equations with the compensation of lever-arm effect are firstly derived under the grid
frame. In the case that the master SINS is inaccurate, star sensor is used to keep the high alignment
accuracy. By choosing the misalignment angle between star sensor and slave SINS as the measurement,
nonlinear measurement equations based on attitude matching method are derived. Then, the filter
models for polar TA are designed based on the attitude matching method. An AUKF is applied
to promote the alignment accuracy when the information of system model is abnormal. Therefore,
the algorithm proposed in this paper can effectively ensure and improve the accuracy of polar TA in
the harsh polar environment.

2. Polar TA Equations in the Grid Frame

Firstly, the relevant frames used in this paper should be defined: scale symbols
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m frame—body frame of master SINS;
s frame—body frame of slave SINS;
s′ frame—calculated body frame of slave SINS;
G frame—grid frame;
i frame—inertial frame;
t frame—geographic frame;
e frame—earth centered earth fixed frame.

In a grid frame, the plane which parallels to the Greenwich plane and passes through the location
of ship is the grid plane. And the intersecting line of grid plane and local-level is the grid north axis
line. Grid up axis line coincides with geographic up axis line. The line lies in level and perpendiculars
to the grid north axis line is the grid east axis line, which constitute the right frame with the grid
north axis [11]. In fact, the grid north axis line is always parallel to the Greenwich meridian. In the
grid frame, the North Pole is no longer the geographic pole and the meridian convergence can be
avoided. Therefore, the grid frame can solve the problems caused by the meridian convergence in the
polar region.

2.1. State Equations

2.1.1. Velocity Error Equation

In the ideal condition, the velocity differential equations of master and slave SINSs in the grid
frame are as follows [9,10]:

.
V

G
m = CG

mfm
m −

(
2ωG

ie + ωG
eG

)
× VG

m + gG
m (1)

.
V

G
s = CG

s fs
s −

(
2ωG

ie + ωG
eG

)
× VG

s + gG
s (2)

where VG
m, CG

m, fm
m and gG

m are the velocity, attitude matrix, specific force and gravity of master SINS,
respectively; VG

s , CG
s , fs

s and gG
s are the velocity, attitude matrix, specific force and gravity of slave SINS

in the ideal condition, respectively; ωG
ie is the rotational angular velocity of the earth and ωG

eG is the
angular velocity of G frame relative to e frame, which can be expressed as:

ωG
ie = CG

g ω
g
ie =

 ωG
iex

ωG
iey

ωG
iez

 =

 −ωie cos L sin σ

ωie cos L cos σ

ωie sin L

 (3)

ωG
eG =

 ωG
eGx

ωG
eGy

ωG
eGz

 =


1
τf
− 1

Ry
1

Rx
− 1

τf
κ
τf
− κ

Ry


[

VGE

VGN

]
(4)

where vGE and vGN are the east and north velocity in the grid frame, respectively; Rx, Ry, τf and κ are
the simplified calculation parameters which can be expressed as follows:

1
Rx

= sin2 σ
RMh

+ cos2 σ
RNh

1
Ry

= cos2 σ
RMh

+ sin2 σ
RNh

1
τf

=
(

1
RMh
− 1

RNh

)
sin σ cos σ

κ = sin λ cos L√
1−cos2 L sin2 λ

(5)

where L and λ is the latitude and longitude, respectively; σ is the angle between true north and grid
north axis; RMh and RNh are radius of curvature in meridian and prime vertical, respectively.
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Due to the errors of IMU and calculation errors in slave SINS, the practical velocity differential
equation of slave SINS in the grid frame can be written as:

.
V

G
s′ = CG

s′ f̂
s
s −

(
2ω̂G

ie + ω̂G
eG

)
× VG

s′ + ĝG
s (6)

where VG
s′ and CG

s′ are the velocity and attitude matrix of slave SINS in the practical condition,
respectively; f̂s

s, ω̂G
ie , ω̂G

eG and ĝG
s are measurement values of slave SINS, respectively; measurement

errors δf̂s
s, δω̂G

ie , δω̂G
eG and δĝG

s can be expressed as δf̂s
s = f̂s

s − fs
s, δω̂G

ie = ω̂G
ie −ωG

ie , δω̂G
eG = ω̂G

eG −ωG
eG

and δĝG
s = ĝG

s − gG
s , respectively, and:

δωG
ie = ωG

ie

 − cos ϕ cos σ

− cos ϕ sin σ

0

δσ +

 sin ϕ sin σ

− sin ϕ cos σ

cos ϕ

δϕ (7)

δωG
eG =


0 0

vGE
R2

e

0 0 − vGE
R2

e
vGN sin σ

Re sin2 ϕ
0

vGN cot ϕ sin σ

R2
e


 δϕ

δλ

δh

+

 0 − 1
Re

0
1

Re
0 0

0 − cot ϕ sin σ
Re

0


 δvGE

δvGN

δvGU

+

 0
0

vGN cot ϕ sin σ

R2
e

δσ (8)

where:
δσ =

sin ϕ

1− cos2 ϕ sin2 λ
δλ +

sin λ cos λ cos ϕ

1− cos2 ϕ sin2 λ
δϕ (9)

From Equations (7)–(9), we can obtain that δω̂G
ie and δω̂G

eG are mainly caused by the position errors.
During the very short time of TA, the position errors are close to zero. Therefore, δω̂G

ie and δω̂G
eG can be

omitted in TA.
Because:

fs
s = fs

m + as
r = Cs

mfm
m + as

r (10)

where as
r is the lever-arm acceleration in s frame.

Therefore:
f̂s
s = fs

s + δfs
s = Cs

mfm
m + as

r + δfs
s (11)

where δfs
s is the accelerometer error of slave SINS.

Subtracting Equation (6) from (1):

.
V

G
s′ −

.
V

G
m = CG

s′ f̂
s
s − CG

mfm
m −

(
2ω̂G

ie + ω̂G
eG
)
× VG

s′ +
(
2ωG

ie + ωG
eG
)
× VG

m + ĝG
s − gG

m

= CG
s′ f̂

s
s − CG

mCm
s

(
f̂s
s − as

r − δfs
s

)
−
(
2ωG

ie + ωG
eG
)
×
(
VG

s′ − VG
m
)
+ δgG

s

= CG
s′

(
I− Cs′

mCm
s

)
f̂s
s + CG

mam
r + CG

mCm
s δfs

s −
(
2ωG

ie + ωG
eG
)
×
(
VG

s′ − VG
m
)
+ δgG

s

(12)

Due to the different locations of master and slave SINSs, the lever-arm effect exists in TA, which
produces the lever-arm velocity:

VG
r = CG

m(ω
m
im × rm) (13)

and:
.
V

G
r =

d
dt

{
CG

m(ω
m
im × rm)

}
=

d
dt

{
CG

i Ci
m(ω

m
im × rm)

}
= CG

mam
r −

(
ωG

ie + ωG
eG

)
× VG

r (14)

Subtracting Equation (12) from (14):

.
V

G
s′ −

.
V

G
m −

.
V

G
r = CG

s′

(
I− Cs′

mCm
s

)
f̂s
s + CG

mam
r + CG

mCm
s δfs

s − CG
mam

r

−
(
2ωG

ie + ωG
eG
)
×
(
VG

s′ − VG
m
)
+
(
ωG

ie + ωG
eG
)
× VG

r + δgG
s

= CG
s′

(
I− Cs′

mCm
s

)
f̂s
s −

(
2ωG

ie + ωG
eG
)
×
(
VG

s′ − VG
m − VG

r
)
+ CG

s′C
s′
mCm

s δfs
s −ωG

ie × VG
r

(15)
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Define the velocity error of TA in the grid frame as follows:

∆VG = VG
s′ − VG

m − VG
r (16)

Thus:
∆

.
V

G
=

.
V

G
s′ −

.
V

G
m −

.
V

G
r (17)

and:
∆

.
V

G
= CG

s′

(
I− Cs′

mCm
s

)
f̂ s
s −

(
2ωG

ie + ωG
eG

)
× ∆VG + CG

s′C
s′
mCm

s δfs
s −ωG

ie × VG
r (18)

Substituting Equation (13) into (18), the velocity equation of polar TA in the grid frame is:

∆
.
V

G
= CG

s′

(
I− Cs′

mCm
s

)
f̂s
s −

(
2ωG

ie + ωG
eG

)
× ∆VG + CG

s′C
s′
mCm

s δfs
s −ωG

ie × CG
mωm

im × rm (19)

In conclusion, the schematic diagram of the velocity error equation is shown in Figure 1:

Sensors 2017, 17, 2417  5 of 20 

 

 

     
     

s

ˆ

2

ˆ 2

G G G G s m s G m G m s G m

s m r s m s s m r m s s m r

G G G G G G

ie eG s m r

G s m s G G G G G G s m s G G

s m s s ie eG s m r s m s s ie r

G G

ie eG









 



 

  

      

      

         

 

  

 

V V V C I C C f C a C C f C a

V V V g

C I C C f V V V C C C f V

 

(15) 

Define the velocity error of TA in the grid frame as follows: 

G G G G

s m r   V V V V  (16) 

Thus: 

G G G G

s m r   V V V V  (17) 

and: 

   ˆ 2G G s m s G G G G s m s G G

s m s s ie eG s m s s ie r
 

           V C I C C f V C C C f V  (18) 

Substituting Equation (13) into (18), the velocity equation of polar TA in the grid frame is: 

   ˆ 2G G s m s G G G G s m s G G m m

s m s s ie eG s m s s ie m im
 

          V C I C C f V C C C f C r     (19) 

In conclusion, the schematic diagram of the velocity error equation is shown in Figure 1: 

 

Figure 1. Schematic diagram of the velocity error equation. 

2.1.2. Attitude Error Equations 

In the ideal condition, the attitude differential equations of master and slave SINSs in the grid 

frame are as follows [9,10]: 

G G m

m m Gm
   C C  (20) 

G G s

s s Gs
   C C  (21) 

where s

Gs  is the angular velocity of s  frame relative to G  frame and m

Gm  is the angular velocity 

of m  frame relative to G  frame, which can be expressed as: 

m m m m m G

Gm im iG im G iG   C      (22) 

where m

im  is the gyroscope error of master SINS and G

iG  is the angular velocity of G  frame relative 

to i  frame. 

Due to the errors of slave SINS, the practical attitude differential equation of slave SINS in the 

grid frame can be written as: 

ˆG G s G s

s s Gs s Gs



   
         C C C   (23) 

where ˆ s

Gs  is the practical s

Gs  measured by slave SINS, which can be presented as: 

ˆ ˆ ˆs s s

Gs is iG     (24) 

where ˆ s

iG  is the practical G

iG  on s  frame, and ˆ s

is  is the practical gyroscope output of slave SINS: 

Figure 1. Schematic diagram of the velocity error equation.

2.1.2. Attitude Error Equations

In the ideal condition, the attitude differential equations of master and slave SINSs in the grid
frame are as follows [9,10]:

.
C

G
m = CG

m[ω
m
Gm×] (20)

.
C

G
s = CG

s [ω
s
Gs×] (21)

where ωs
Gs is the angular velocity of s frame relative to G frame and ωm

Gm is the angular velocity of m

frame relative to G frame, which can be expressed as:

ωm
Gm = ωm

im −ωm
iG = ωm

im − Cm
GωG

iG (22)

where ωm
im is the gyroscope error of master SINS and ωG

iG is the angular velocity of G frame relative to
i frame.

Due to the errors of slave SINS, the practical attitude differential equation of slave SINS in the
grid frame can be written as:

.
C

G
s′ = CG

s′

[
ωs′

Gs′×
]
= CG

s′ [ω̂
s
Gs×] (23)

where ω̂s
Gs is the practical ωs

Gs measured by slave SINS, which can be presented as:

ω̂s
Gs = ω̂s

is − ω̂s
iG (24)

where ω̂s
iG is the practical ωG

iG on s frame, and ω̂s
is is the practical gyroscope output of slave SINS:

ω̂s
is = ωs

is + δωs
is = ωs

im + ωs
f + δωs

is (25)

where ωs
im is the gyroscope error of master SINS on s frame, ωs

f is the flexural deformation angle and
δωs

is is the gyroscope error of slave SINS.
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Define the misalignment angle φG
m between s′ frame and m frame as measurement angle, and it

can be described as: .
C

m
s′ = Cm

s′

[
ωs′

ms′×
]
= Cm

s′ [ω̂
s
ms×] (26)

where Cm
s′ is the direction cosine matrix from s′ and m frame and ω̂s

ms is the practical angular velocity
of s frame relative to m frame.

Refer to using Euler angle algorithm to obtain attitude differential equation in SINS algorithm,
s′ frame can transfer to m frame by the rotation of Z axis→X axis→Y axis, and the corresponding
rotation angles are φG

mz, φG
mx and φG

my:

ωs′
ms′ =

 cφG
my 0 −sφG

my
0 1 0

sφG
my 0 cφG

my


 1 0 0

0 cφG
mx sφG

mx
0 −sφG

mx cφG
mx


 0

0
.
φ

G
mz

+

 1 0 0
0 cφG

mx sφG
mx

0 −sφG
mx cφG

mx


 0

.
φ

G
my
0

+


.
φ

G
mx
0
0



=

 cφG
my 0 −cφG

mxsφG
my

0 1 sφG
mx

sφG
my 0 cφG

mxcφG
my




.
φ

G
mx

.
φ

G
my

.
φ

G
mz

 =

 cφG
my 0 −cφG

mxsφG
my

0 1 sφG
mx

sφG
my 0 cφG

mxcφG
my

 .
φ

G
m

(27)

where c represents cos and s represents sin.
Thus:

.
φ

G
m = Cφω̂s

ms (28)

where:

Cφ =

 cos φG
my 0 sin φG

my
tan φG

mx sin φG
my 1 sin φG

mx
sin φG

my/ cos φG
mx 0 cos φG

my/ cos φG
mx

 (29)

According to Equation (27):

Cs′
m =

 cφG
mycφG

mz − sφG
mxsφG

mycφG
mz

−cφG
mxsφG

mz
sφG

mycφG
mz + sφG

mxcφG
mysφG

mz

cφG
mysφG

mz + sφG
mxsφG

mycφG
mz −cφG

mxsφG
my

cφG
mxcφG

mz sφG
mx

sφG
mysφG

mz − sφG
mxcφG

mycφG
mz cφG

mxcφG
my

 (30)

Similarly, define the misalignment angle φG
a between s′ frame and m frame as measurement angle,

and with the considering of flexural deformation angle θ, it can be described as:

Cs
m =

 cϕycϕz − sϕxsϕycϕz

−cϕxsϕz

sϕycϕz + sϕxcϕysϕz

cϕysϕz + sϕxsϕycϕz −cϕxsϕy

cϕxcϕz sϕx

sϕysϕz − sϕxcϕycϕz cϕxcϕy

 (31)

where ϕi = φG
mi + θi (i = x, y, z).

In the case of large azimuth misalignment angle, φG
mx and φG

my are small angle while φG
mz is large

angle, so Cφ becomes I3×3. Thus:
.

φ
G
m = ω̂s

ms (32)

According to Equation (26):

[ω̂s
ms×] = Cs′

m
.
C

m
s′ (33)

Because:
Cm

s′ = Cm
GCG

s′ (34)

The derivative of Cm
s′ is:

.
C

m
s′ =

.
C

m
GCG

s′ + Cm
G

.
C

G
s′ = Cm

G

[
ωG

mG×
]
CG

s′ + Cm
GCG

s′ [ω̂
s
Gs×] (35)
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Substituting Equation (35) into (33), Equation (33) can be rewritten as:

[ω̂s
ms×] = Cs′

m

[
Cm

G

[
ωG

mG×
]
CG

s′ + Cm
GCG

s′ [ω̂
s
Gs×]

]
= Cs′

G

[
ωG

mG×
]
CG

s′ + [ω̂s
Gs×] (36)

Because:
Cs′

G

[
ωG

mG×
]
CG

s′ =
[
Cs′

GωG
mG×

]
= −

[
ωs′

Gm×
]

(37)

Thus:
[ω̂s

ms×] = −
[
ωs′

Gm×
]
+ [ω̂s

Gs×] (38)

The vector form of Equation (38) is:

ω̂s
ms = −Cs′

GωG
Gm + ω̂s

Gs = −ωs′
Gm + ω̂s

Gs = −Cs′
mCm

s ωs
Gm + ω̂s

Gs (39)

therefore:
.

φ
G
m = −Cs′

mCm
s ωs

Gm + ω̂s
Gs (40)

where:
ωs

Gm = ωs
im −ωs

iG = ω̂s
Gs −ωs

f s − δωs
is + ω̂s

iG −ωs
iG (41)

Substituting Equation (42) into (41), the attitude equations of polar TA in the grid frame is:

.
φ

G
m =

(
I− Cs′

mCm
s

)
ω̂s

Gs + Cs′
mCm

s

(
ωs

fs + δωs
is − ω̂s

iG

)
.

φ
G
a = 0

(42)

In conclusion, the schematic diagram of the attitude error equation is shown in Figure 2:
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2.2. Measurement Equations

2.2.1. Modeling of the Star Sensor

A star sensor is a charge coupled device (CCD) sensor, which obtains a star atlas using its CCD
camera. Through a series of calculations such as extraction of stars, recognition of star atlas and attitude
calculation, the attitude of carrier is determined. Star sensors are highly accurate and autonomous
sensors, which have an unconstrained field of view and no cumulative error. Thus, star sensors are the
most accurate attitude sensitive instruments at present.

Star sensor errors can be modeled as two part errors: measurement error ωm′ and installation
error δa. As a high-accuracy attitude sensitive instrument, the measurement accuracy of a star sensor
can reach arc-second scale. In addition, the measurement error of a star sensor does not accumulate
with time. Therefore, the measurement error of a star sensor ωm′ can be modeled as a white noise
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process with zero-mean. Due to the installation error, the m′ frame does not coincide with m frame and
the direction cosine matrix from m′ frame to m frame can be expressed as:

Cm
m′ =

 1 δaz −δay

−δaz 1 δax

δay −δax 1

 = I− (δa×) (43)

where δa is the installation error of star sensor and can be expressed as follows:

δa = δas + δaw (44)

where δas is the constant error and δaw is the random error.
The output of star sensor is the direction cosine matrix from m′ frame to i frame Ci

m′ , Meanwhile,
the direction cosine matrix from G frame to i frame Ci

G can be obtained real-time. Therefore,
the direction cosine matrix from m frame to G frame CG

m′ can be calculated as:

CG
m′ = CG

i Ci
m′ (45)

2.2.2. Attitude Matching Method

In the case that the master SINS has low accuracy, TA with the aid of external information is
necessary to ensure the alignment accuracy. The star sensor can perform well and maintain high
accuracy in the polar region, so a star sensor can be used to assist the polar TA.

In a rapid TA, the attitude measurement of TA filter is the misalignment angle between s′ frame
and m frame φG

m. However, φG
m would be inaccurate in the case that the master SINS has low accuracy.

In this condition, if φG
m is still chosen as the attitude misalignment, the accuracy of TA would be

decreased. Because the star sensor can maintain a high attitude accuracy in the polar region, the
misalignment angle between s′ frame and m′ frame φG

s is more accurate than φG
m. Therefore, φG

s can
be the replacement of φG

m as the attitude misalignment to improve the accuracy of TA.
In the case of large azimuth misalignment angle, Equation (30) can be rewritten as:

Cs′
m =

 cos φG
mz

− sin φG
mz

φG
my cos φG

mz + φG
mx sin φG

mz

sin φG
mz −φG

my
cos φG

mz φG
mx

φG
my sin φG

mz − φG
mx cos φG

mz 1

 (46)

The direction cosine matrix from m′ to s′ frame can be expressed as:

Cs′
m′ = Cm

m′C
s′
m = [I− (δa×)]Cs′

m (47)

Thus, the measurement vector of attitude matching method can be described as:

Zatt =

 Cs′
m′(2, 3)

Cs′
m′(1, 3)

Cs′
m′(1, 2)

+ ωa =

 δazφG
my + φG

mx + δax + ωax

−φG
my + δazφG

mx − δay + ωay

sin φG
mz + δaz cos φG

mz − δayφG
my sin φG

mz + δayφG
m x cos φG

mz + ωaz

 (48)

where ωa =
[

ωax ωay ωaz

]T
is the white noise of attitude measurement.

Neglecting the small second-order amount, Equation (48) can be rewritten as:

Zatt =

 φG
mx + δax + ωax

−φG
my − δay + ωay

sin φG
mz + δaz cos φG

mz + ωaz

 (49)
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To explain how the star sensor can help to improve the accuracy, the advantage of TA with the aid
of a star sensor is shown in Figure 3:
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3. Filter Models and Algorithm

Since the measurement information which has relationship with master SINS is inaccurate,
this information should be discarded from the measurement. To improve the accuracy of TA, an attitude
matching method is chosen as matching method and the accurate φG

s is used as the measurement.
An AUKF is introduced to estimate the states of TA in the case of the harsh polar environment.

3.1. Filter Models for Polar TA

Based on the state and measurement equations in chapter 2, the filter models for polar
TA, which consists of a dynamic model and an observation model, can be derived in the
following subsections.

At first, the gyro and accelerometer errors of slave SINS can be described as:

δωs
is = εs

s + εs
w; δfs

s = ∇s
s +∇s

w (50)

where εs
s is the gyro constant drift and εs

w is the gyro random drift; ∇s
s is the accelerometer constant

drift and ∇s
w is the accelerometer random drift.

Then, states of the dynamic model should be defined. The measurement misalignment angle φG
m,

actual physical misalignment angle φG
a , velocity error ∆VG, the gyro constant drift εs

s and accelerometer
constant drift ∇s

s are firstly chosen as the states. Then, the lever-arm vector is chosen as the state
to estimate and compensate the lever-arm effect. In order to achieve a high accuracy of the attitude
measurement, the installation error of star sensor δa is chosen as the state. Therefore, states of the
dynamic model are as follows:

X =

[(
∆VG

)T (
φG

m

)T
(εs

s)
T (∇s

s)
T
(

φG
a

)T
(rm)T (δa)T

]T
(51)

Combining Equations (19), (42), (44) and (50), the differential equations of states can be described
as follows:

∆
.
V

G
= CG

s′

(
I− Cs′

mCm
s

)
f̂s
s −

(
2ωG

ie + ωG
eG
)
× ∆VG + CG

s′C
s′
mCm

s ∇s
s −ωG

ie × CG
mωm

im × rm

.
φ

G
m =

(
I− Cs′

mCm
s

)
ω̂s

Gs + Cs′
mCm

s

(
ωs

fs + εs
s − ω̂s

iG

)
.
ε

s
s = 0
.
∇

s
s = 0

.
φ

G
a = 0

.
rm

= 0
δ

.
a = 0

(52)
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In the case of large azimuth misalignment angle, φG
mx and φG

my are small angle while φG
mz is large

angle. By neglecting the small second-order amount, Equations (30) and (31) can be rewritten as:

Cs′
m =

 cφG
mz

−sφG
mz

φG
mycφG

mz + φG
mxsφG

mz

sφG
mz −φG

my
cφG

mz φG
mx

φG
mysφG

mz − φG
mxcφG

mz 1

 (53)

Cs
m =

 cϕz

−sϕz

ϕycϕz + ϕxsϕz

sϕz −ϕy

cϕz ϕx

ϕysϕz − ϕxcϕz 1

 (54)

Therefore, the system model is nonlinear. In the case of the master SINS is not accurate, φG
s

is the replacement of φG
m as the attitude misalignment to improve the accuracy of TA. Therefore,

attitude matching method is used for filter models of polar TA and the observation can be defined as:

Z = φG
s (55)

According to Equation (49), the observation can be expressed as:

Z =

 φG
mx + δax + ωax

−φG
my − δay + ωay

sin φG
mz + δaz cos φG

mz + ωaz

 (56)

3.2. Adatipive Unscented Kalman Filter Algorithm

In general, the nonlinear discrete state and measurement equations, such as Equations (52)
and (54), can be written as follows:{

xk = f (xk−1, k− 1) + qk−1
zk = h(xk, k) + rk

(57)

where xk ∈ Rn is the state, zk ∈ Rn is the measurement, qk ∼ N(0, Qk−1) is the Gaussian system noise,
rk ∼ N(0, Rk) is the Gaussian measurement noise, f (·) is the nonlinear function of the state and h(·) is
the nonlinear function of the measurement.

The algorithm procedure of UKF can be described as follows:

1. Initialization of state parameter:{
x̂0 = E[x0]

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
] (58)

2. Calculation of the sigma points:

χk−1 =
[

x̂k−1 x̂k−1 +
(√

(n + λ)Pk−1

)
i

x̂k−1 −
(√

(n + λ)Pk−1

)
i

]
, i = 1, 2, . . . , n (59)

and the associated weights:
Wm

0 = λ/(n + λ)

Wc
0 = λ/(n + λ) +

(
1− α2 + β

)
Wm

i = Wc
i = 0.5/(n + λ), i = 1, 2, . . . , 2n

(60)

where Wm
i and Wc

i are the associated weights of mean value and covariance, respectively.
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3. Time Updating:

χi,k|k−1 = f (χi,k−1), x̂−k =
2n

∑
i=0

Wm
i χi,k|k−1 (61)

P−k =
2n

∑
i=0

Wc
i

[
χi,k|k−1 − x̂−k

][
χi,k|k−1 − x̂−k

]T
+ Qk (62)

zi,k|k−1 = h(χi,k−1), ẑ−k =
2n

∑
i=0

Wm
i zi,k|k−1 (63)

4. Measurement Updating

Pzk ,zk =
2n

∑
i=0

Wc
i

[
zi,k|k−1 − ẑ−k

][
zi,k|k−1 − ẑ−k

]T
+ Rk (64)

Pxk ,zk =
2n

∑
i=0

Wc
i

[
χi,k|k−1 − x̂−k

][
zi,k|k−1 − ẑ−k

]T
(65)

Kk = Pxk ,zk · P
−1
zk ,xk

, x̂k = x̂−k + Kk
(
zk − ẑ−k

)
(66)

Pk = P−k −Kk · Pzk ,zk ·K
T
k (67)

Although UKF is effective in estimating the nonlinear states, it still has some limitations. Firstly,
UKF is sensitive to the initial value choice. If the initial value has an error, the performance of the UKF
would be reduced. Secondly, the interference of environment and unconfirmed statistical characteristic
of noise would also decrease the accuracy of UKF. Therefore, an AUKF is proposed to estimate the
misalignment angles of TA in the harsh polar environment.

The algorithm procedure of AUKF is similar to that of UKF. The differences of AUKF are
Equations (64), (66) and (67):

Pzk ,zk =
1
αk

2n

∑
i=0

Wc
i

[
zi,k|k−1 − ẑ−k

][
zi,k|k−1 − ẑ−k

]T
+ Rk (68)

Pxk ,zk =
1
αk

2n

∑
i=0

Wc
i

[
χi,k|k−1 − x̂−k

][
zi,k|k−1 − ẑ−k

]T
(69)

Pk =
1
αk

P−k −Kk · Pzk ,zk ·K
T
k (70)

where αk is the adaptive factor which satisfies 0 ≤ αk ≤ 1. With the proper value of αk, the prediction
and measurement information of system model can be balanced. The calculation of αk is as follows:

αk =

{
1, tr(vkvk

T) ≤ tr(P)
tr(P)

tr(vkvk
T)

, tr(vkvk
T) > tr(P)

(71)

where vk is the residual error and vk = zk − ẑ−k .
From Equation (69) we can obtain that when the information of system model becomes abnormal,

αk would gradually toward to zero, which means that the information of system model is abandoned.
It is obviously that the adaptive factor αk can adaptively adjust the state information by using
measurement information and residual error.
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4. Results

With the aid of a star sensor and based on the AUKF, a new polar TA algorithm is proposed in this
paper. In order to test and verify the effect of the new polar TA algorithm, an experiment is conduct in
this chapter, which also includes the results and analyses.

Because the authors’ country is located in the mid-low latitude region, it is hard to conduct
experiments in the polar region. To solve the problem caused by geographic restriction, the experiment
is conducted in the form of semi-physical simulation.

4.1. Experiment Condition

In practical application, the experimental data of Inertial Measurement Unit (IMU) can be
expressed as follows: {

ω̂b
ib = ωb

ib + δωb
ib

f̂b
= fb + δfb (72)

where the superscript b represents the body frame of SINS, which includes master and slave body
frames—m frame and s frame. Thus, ω̂b

ib is the practical angular velocity measured by gyro, δωb
ib is the

gyro drifts and ωb
ib is the true angular velocity of SINS. So is the data of accelerometer.

No matter the data is gained from simulation or experiment, the true values of IMU ωb
ib and fb are

same. Once the attitude variation and maneuvers of the ship are confirmed, the values of ωb
ib and fb

can be gained by simulation. Moreover, the drifts of IMU δωb
ib and δfb can be extracted from practical

measured data, which is provided by the experimental tools shown in Figure 4.
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As shown in Figure 4, the IMU, which consists of three-axis gyroscopes and accelerometers, is
contained in a SINS. Meanwhile, the SINS and IMU are installed on a turntable, which can provide a
high-precision three-axis rotary movement. Through the test in non-polar areas, the practical measured
data which contains IMU biases can be provided. Thus, the IMU data of experiment can be obtained
from the practical measured data and simulation data in non-polar areas.

In order to make the experiment closely to the practical application, various sea states and ship
maneuvers are considered. The sea states include calm and medium sea states, and the maneuvers
include static, uniform linear motion and linear motion with constant acceleration.

(1) In this paper, attitudes of ship are set as sine functions and are set as follows: when ship sails in
calm sea state, the amplitude/period of pitch angle, roll angle and yaw angle are 1◦/3 s, 1◦/5 s
and 1◦/7 s, respectively; when ship sails in medium sea state, the amplitude/period of pitch
angle, roll angle and yaw angle are 9◦/3 s, 6◦/5 s and 8◦/7 s, respectively; the initial phase and
heading are 0◦ and 0◦, respectively. units not in italics and with a space after number
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(2) Maneuvers of ship are set as follows: the initial latitude ϕ is 85◦ and initial longitude λ is 130◦;
when ship is in uniform linear motion, the velocity of ship is set as 10 nm/h; when ship is in
linear motion with constant acceleration, the initial velocity of ship is set as 10 nm/h and the
acceleration of ship is set as 0.1 m/s2.

(3) Drifts of IMU extracted from practical measured data are as follows: the three-axis gyro
constant drifts are −5.4217 × 10−9 rad/s, 6.9875 × 10−9 rad/s and 2.0264× 10−8 rad/s,
respectively; the three-axis accelerometer constant drifts are −4.3785 × 10−6 m/s2,
5.1478× 10−6 m/s2 and 4.6584 × 10−6 m/s2, respectively; the three-axis gyro random
drifts variances are (9.785× 10−7 rad/s)2, (4.527× 10−6 rad/s)2 and (2.874× 10−6 rad/s)2,

respectively; the three-axis accelerometer random drifts variances are (0.00245m/s2)
2
,

(0.00578m/s2)
2

and (0.000624 m/s2)
2
, respectively.

(4) In the case of a large azimuth misalignment angle, the true values of actual physical misalignment
angles are set as φG

ax = 0.6◦, φG
ay = 0.4◦ and φG

ax = 8◦, respectively. The lengths of three-axis
lever-arm rm are 5m, 0m and 2m, respectively. The constant installation error of star sensor δas

are set as 0.08◦, 0.07◦ and 0.09◦, respectively; the random installation error of star sensor δaw are
set as 0.02◦, 0.03◦ and 0.05◦, respectively. Simulation time is 60 s and filter frequency is 100 Hz.
In the condition that the master SINS is not accurate, the initial attitude errors of master SINS are
set as 1.2◦, 1.5◦ and 2.8◦, respectively.

(5) The initial state estimation covariance matrix P0, system process noise covariance matrix Q,
and measurement noise covariance matrix R are set as follows:

P011 = P022 = P033 = (0.1m/s)2, P044 = (1.2◦)2, P055 = (1.5◦)2, P066 = (2.8◦)2

P077 = (5.4217× 10−9 rad/s)2, P088 = (6.9875× 10−9 rad/s)2, P099 = (2.0264× 10−8 rad/s)2

P01010 = (4.3785× 10−6 m/s2 )
2

, P01111 = (5.1478× 10−6 m/s2)
2
, P01212 = (4.6584× 10−6 m/s2)

2

P01313 = (0.6◦)2, P01414 = (0.4◦)2, P01515 = (8◦)2, P01616 = (5m)2, P01717 = 0, P01818 = (2m)2

P01919 = (0.08◦)2, P02020 = (0.07◦)2, P02121 = (0.09◦)2

Q11 = (9.785× 10−7 rad/s)2 , Q22 = (4.527× 10−6 rad/s)2, Q33 = (2.874× 10−6 rad/s)2

Q44 = (0.00245m/s2)
2
, Q55 = (0.00578m/s2)

2
, Q66 = (0.000624 m/s2)

2

Q77 = (0.02◦)2, Q88 = (0.03◦)2, Q99 = (0.05◦)2

R11 = R22 = R33 = (0.1m/s)2, R44 = R55 = R66 = (0.01π/180rad)2

(73)

(6) The initializations of the filter state vector are set as follows:

X1 = X2 = X3 = 0.1m/s, X4 = 1.2◦, X5 = 1.5◦, X6 = 2.8◦

X7 = 5.4217× 10−9 rad/s, X8 = 6.9875× 10−9 rad/s, X9 = 2.0264× 10−8 rad/s
X10 = 4.3785× 10−6 m/s2 , X11 = 5.1478× 10−6 m/s2, X12 = 4.6584× 10−6 m/s2

X13 = 0.6◦, X14 = 0.4◦, X15 = 8◦, X16 = 5m, X17 = 0, X18 = 2m
X19 = 0.08◦, X20 = 0.07◦, X21 = 0.09◦

(74)

4.2. Results and Analyses

In the rapid TA, the estimation errors of actual misalignment angle φG
a is the main parameter

to evaluate the performance of TA. The 3-sigma standard deviations (3σ) estimated by the filter is
a parameter to evaluate the performance of filter. Firstly, a comparison should be conducted to check
that the initialization was correct and whether the filter performs consistently. The comparison of
3-Sigma standard deviations with the errors are shown in Figures 5 and 6.
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Figure 5. Comparison of 3-sigma standard deviations with the errors when ship sails in calm sea static.
(a) when ship is static; (b) when ship sails in uniform linear motion.
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Figure 6. Comparison of 3-sigma standard deviations with the errors when ship sails in medium
sea static. (a) when ship sails in uniform linear motion; (b) when ship sails in linear motion with
constant acceleration.

As shown in Figures 5 and 6, the errors are less than +3σ and greater than −3σ under different
sea states and maneuvers. The errors are within the range of 3-sigma standard deviations (±3σ),
which indicates that the filter is correctly tuned and the initialization was correct. Then, the verifications
for the superiority of designed TA model and the performance of AUKF are conducted in the
following sections.

4.2.1. Verification for the Superiority of Designed TA Model

With the aid of star sensor and based on the AUKF, a new polar TA algorithm proposed in this
paper aims to improve the accuracy of polar TA when master SINS is not accurate. In order to verify
the performance of the new polar TA algorithm, it is necessary to introduce the comparison validation.
Firstly, the superiority of the designed TA model should be verified. Thus, the new polar TA model
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proposed in this paper is defined Model 1. The previous polar TA model proposed in [11] is defined as
Model 2, which is described as:

δ
.
V

G
=
(

CG
s′ − CG

s

)
fs −

(
2ωG

ie + ωG
eG
)
× δVG

s′ −
(
2δωG

ie + δωG
eG
)
× VG + CG

s′ δf + CG
s′∇s

s
.

φ
G
m =

(
Cs

m − Cs′
m

)
ωm

Gm + ω f − εs
s − εs

w
.
∇

s
s = 0

.
ε

s
s = 0

.
φ

G
a = 0

(75)

Z =
[

δVG
x δVG

x δVG
x φG

mx φG
my φG

mx

]T
(76)

In calm and medium sea state, the estimation errors of φG
a for different models are shown in

Figures 7 and 8.
Estimation errors of φG

a under different sea states and maneuvers are shown in Figures 7 and 8.
From the figures, it is obvious that the estimation errors of Model 1 are less than the errors of Model 2.
This shows that the Model 1 has more improvement in the accuracy of polar TA than Model 2.
To detailed analysis the improvement effect, estimation errors (RMS) of φG

a for different models are
shown in Table 1.
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Figure 7. Estimation errors of φG
a when ship sails in calm sea static for different models. (a) when ship

is static; (b) when ship sails in uniform linear motion.

Table 1. Estimation errors (RMS) for different models (ULM = Uniform linear motion, LMAC = Linear
motion with constant acceleration).

Parameters Model
Calm Sea State Medium Sea State

Static ULM ULM LMAC

φG
ax/(◦)

Model 1 0.0894 0.0920 0.1027 0.1122
Model 2 0.2128 0.2159 0.2673 0.3066

φG
ay/(◦) Model 1 0.0721 0.0723 0.0753 0.0876

Model 2 0.2418 0.3233 0.3746 0.3102

φG
az/(◦)

Model 1 0.1853 0.1865 0.0717 0.0659
Model 2 0.6129 0.5834 0.6654 0.5638
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Figure 8. Estimation errors of φG
a when ship sails in medium sea static for different models. (a) when

ship sails in uniform linear motion; (b) when ship sails in linear motion with constant acceleration.

As shown in Table 1, three-axis estimation errors of Model 1 are less than the errors of Model 2.
Compared with Model 2, the φG

ax, φG
ay and φG

az errors of Model 1 are all decreased and the decreased
amounts are as follows:

(1) φG
ax: when ship is in calm sea state, the static and ULM errors of Model 1 are decreased to 42.0%

and 42.6%, respectively; when ship is in medium sea state, the ULM and LMAC errors of Model 1
are decreased to 38.4% and 36.6%, respectively.

(2) φG
ay: when ship is in calm sea state, the static and ULM errors of Model 1 are decreased to 29.8%

and 22.4%, respectively; when ship is in medium sea state, the ULM and LMAC errors of Model 1
are decreased to 20.1% and 28.2%, respectively.

(3) φG
az: when ship is in calm sea state, the static and ULM errors of Model 1 are decreased to 30.23%

and 31.97%, respectively; when ship is in medium sea state, the ULM and LMAC errors of
Model 1 are decreased to 10.8% and 11.7%, respectively.

Results of Models 1 and 2 demonstrate that Model 1 is obviously superior to Model 2 in promoting
the accuracy of polar TA in the case of the master SINS is not accurate.

4.2.2. Verification for the Performance of AUKF

Because the algorithm proposed in this paper is based on the AUKF, a compared algorithm should
be introduced to verify the effectiveness of the AUKF. Therefore, the second compared algorithm has
the same model with the algorithm proposed in this paper but it is based on an UKF. In calm and
medium sea state, the estimation errors of φG

a for different models are shown in Figures 9 and 10.
As shown in Figures 9 and 10, the errors of AUKF are less than the errors of UKF. And it indicates

that AUKF is more adaptive than UKF in responding to the unconfirmed statistical characteristic of
noise caused by the harsh polar environment. Estimation errors (RMS) of φG

a for different models are
shown in Table 2 to detailed analysis the improvement effect.
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Figure 9. Estimation errors of φG
a when ship sails in calm sea static of different filters. (a) when ship is

static; (b) when ship sails in uniform linear motion.
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Figure 10. Estimation errors of φG
a when ship sails in medium sea static of different filters. (a) when

ship sails in uniform linear motion; (b) when ship sails in linear motion with constant acceleration.

Table 2. Estimation errors (RMS) of different filters (ULM = Uniform linear motion, LMAC = Linear
motion with constant acceleration).

Parameters Filter
Calm Sea State Medium Sea State

Static ULM ULM LMAC

φG
ax/(◦)

AUKF 0.0894 0.0920 0.1027 0.1122
UKF 0.2384 0.2477 0.2318 0.3015

φG
ay/(◦) AUKF 0.0721 0.0723 0.0753 0.0876

UKF 0.2515 0.2505 0.2394 0.3513

φG
az/(◦)

AUKF 0.1853 0.1865 0.0717 0.0659
UKF 0.3639 0.3641 0.2292 0.2709
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As shown in Table 2, three-axis estimation errors of AUKF are less than the errors of UKF.
Compared with UKF, the φG

ax, φG
ay and φG

az errors of AUKF are all decreased and the decreased
amounts are as follows:

(1) φG
ax: when ship is in calm sea state, the static and ULM errors of Model 1 are decreased to 37.5%

and 37.1%, respectively; when ship is in medium sea state, the ULM and LMAC errors of Model 1
are decreased to 44.3% and 37.2%, respectively.

(2) φG
ay: when ship is in calm sea state, the static and ULM errors of Model 1 are decreased to 28.7%

and 28.9%, respectively; when ship is in medium sea state, the ULM and LMAC errors of Model 1
are decreased to 31.5% and 24.9%, respectively.

(3) φG
az: when ship is in calm sea state, the static and ULM errors of Model 1 are decreased to 50.9%

and 51.2%, respectively; when ship is in medium sea state, the ULM and LMAC errors of Model 1
are decreased to 31.3% and 24.3%, respectively.

Results of AUKF and UKF indicate that AUKF has more effectiveness than UKF to ensure and
improve the TA performance in responding to the harsh environment of the polar region.

5. Discussion

As shown in the results, the new polar TA algorithm with the aid of a star sensor and based
on AUKF is more effective than the state-of-the-art algorithms. Compared with the state-of-the-art
algorithms, the new polar TA algorithm proposed in this paper has the following advantages:

(1) In the condition that the master SINS has low accuracy, the measurement information would be
inaccurate. In Model 2, the measurement VG and φG

m become inaccurate due to the low accurate
master SINS, so the alignment accuracy of Model 2 is decreased. Because the star sensor can keep
a high attitude accuracy in the polar region, the misalignment angle between s′ frame and m′

frame φG
s is more accurate than φG

m. By choosing attitude matching method and using φG
s as

the measurement, measurement information of Model 1 can keep accurate. Meanwhile, due to
the estimate of δa, the value of φG

s can be constant corrected. Thus, Model 1 can achieve a high
alignment accuracy with the aid of star sensor.

(2) Model 2 does not consider and compensate the lever arm effect, which exists in the practical
application of TA. By estimating and compensating the lever-arm rm, Model 1 can reduce and
eliminate the influence caused by lever-arm. Therefore, Model 1 has more effectiveness in
promoting the accuracy of TA.

(3) Since the harsh environment of the polar region, the information of system model is abnormal.
With the proper value of adaptive factor, AUKF can balance the prediction and measurement
information and adaptively adjust the state information. Thus, the proposed algorithm based on
AUKF can and perform better than the state-of-the-art algorithm based on UKF in adjusting the
harsh polar environment and improving the estimating accuracy.

Due to the aid of a star sensor and the compensation of lever-arm effect, Model 1 has a higher
accuracy than Model 2. Moreover, the performance of AUKF is better than that of UKF in improving
the accuracy of polar TA. Therefore, the new polar TA algorithm proposed in this paper is more
effective than the state-of-the-art algorithms.

6. Conclusions

In the case of the low accurate master SINS and the abnormal system model information caused
by the harsh polar environment, a new polar TA algorithm with the aid of a star sensor and based
on AUKF is proposed. Nonlinear state equations with the compensation of lever-arm effect are
derived in the grid frame. Then, the star sensor is modeled and the accurate φG

s is chosen to replace
the innaccurate φG

m. By choosing attitude matching method and using φG
s as the measurement,

the nonlinear measurement equations are derived. Combined the state and measurement equations,
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the filter models for polar TA are designed. To solve the abnormal information of system model,
an AUKF is introduced to estimate the states of the designed polar TA models. Experimental results
have demonstrated that polar TA algorithm proposed in this paper is obviously superior in ensuring
and improving the accuracy of polar TA, especially in the harsh environment.
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