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Abstract: Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with
high frequency Cloud to Ground (CG) lightning strikes clustered together. Generally, hotspot regions
are located in the central, central east, and south central regions of the study region. About 94% of
annual lightning occurred during warm months (June to August) and the daily lightning frequency
was influenced by the diurnal heating cycle. The association rule mining technique was used to
investigate frequent CG lightning patterns, which were verified by similarity measurement to check
the patterns’ consistency. The similarity coefficient values indicated that there were high correlations
throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland
forests, and wetland shrub areas. It was also found that lightning and wildfires occur in two distinct
areas: frequent wildfire regions with a high frequency of lightning, and frequent wild-fire regions
with a low frequency of lightning. Further, the preference index (PI) revealed locations where the
wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated
with the CG lightning hazard map and specific land use types.

Keywords: association rule mining; cloud to ground (CG) lightning; hotspot analysis; wildfire hazard
in Alberta

1. Introduction

Cloud to Ground (CG) lightning is a common meteorological hazard in Canada, and it is a leading
cause of many types of fatalities, injuries, property damage, forest fires, and interruptions to business,
as well as damage to almost every electrical or electronic system. About 9 to 10 lightning-related
deaths and 19 to 164 injuries occur each year in Canada, costing between $3.6 and $79.2 million [1].
The lightning activity is a major natural ignition source for global wildfires and was parameterized as
a driving factor to generate simulated wildfire model [2,3]. There is an average of 816 fires ignited by
lightning each year. These fires cause an average of $16.4 million in property damage and between
3900 and 5300 insurance claims are estimated to be filed against lightning-related property damage
(excluding fires) each year [4]. Around 75% of all forest fires are caused by lightning, with these fires
accounting for about 85% of the total area burned in Canada [5]. CG lightning is the single largest
cause of transients, faults and outages in electric power transmission and distribution systems in
lightning-prone areas, and lightning is a major cause of electromagnetic interference that can affect all
electronic systems [6].

Over the past few decades, a series of studies have focused on understanding lightning activity in
many countries and various areas using different lightning location systems. The lightning location
systems using natural lightning strikes to trees was presented by verification of lightning location
accuracy in Finland [7]. The severity of lightning damages based on different sorts of trees was
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investigated with multiple parameters in Finland [8] and a hemlock-hardwood forest of the northern
United States [9]. The relative proportions of intra-cloud to ground lightning ratio computed
over the US in their combined analyses of NASA Optical Transient Detector (OTD) and National
Lightning Detection Network (NLDN) Data Sets [10]. Spatial and temporal lightning flash density
and occurrence are investigated in Canada [11–15], the United States [16], Europe [17], Estonia [18],
the Mediterranean [19] and the Global scale [20,21]. The consistent results from all lightning pattern
researches in different countries or areas are that the vast majority of lightning over land occurred
during the warm months (May to October) with a strong peak in cloud to ground lightning between
June and July and minimum seasonal lightning occurring in cold months (December to February).
In addition, lightning strikes seem to be affected by the influence of the diurnal heating cycle.
The distribution of lightning correlates well with the diurnal temperature cycle over land. The patterns
can vary depending on topography, with the existence or nonexistence of water, weather conditions,
and other specific properties as well. In fact, scientists are still unsure where and under what
conditions lightning strikes occur. The research motive came from the question: If there are enough
geo-coordinated lightning data, it may be possible to find a specific lightning pattern statistically.

There are not many published research outcomes for the relationship between CG lightning and
land properties. These works examine possible impacts of land uses, soil types, elevation, vegetation
cover, surface temperature, convective available potential energy (CAPE), etcetera, on lightning [22–25].
Usually they normalize the frequency of all the number of lightning strikes on a property and compare
which classes within the property have more CG lightning frequency than other classes in each
property. This study considers individual lightning record data with corresponding land properties
(i.e., elevation, slope, land uses, soil types) to find a specific lightning pattern using association rule
mining techniques. We can determine those association rules that highlight general trends in the
database. Association rule mining is a very efficient way to find frequent patterns, but the efficacy of
finding frequent CG lightning patterns using data mining techniques has not yet been researched to
the best of our knowledge.

This paper has eight sections. In Section 2, we illustrate the general concept of association rule
mining. We also summarize related association mining techniques and present their advantages and
disadvantages for each algorithm. In Section 3, we explain the data we use for our research topic.
In Section 4, we explain methodologies or theories relevant to our research, step by step. In Section 5,
we verify the results of these methodologies. In Section 6, we verify the reliability of the outcomes.
In Section 7, we suggest possible future applications for our data mining results and present one
example of the potential application of our research, related to wildfires. In Section 8, we summarize
the results of each section and draw conclusions from our research. In the discussion section, we present
our research limitations and suggest a direction to improve this research in the future.

2. Background Knowledge of Association Rule Mining Techniques

Concept of Association Rule Mining

Association rule mining is a data mining technology used to find frequent patterns that satisfy the
user-specified factors in large databases. Agrwal and Srikant first came up with the idea of Association
Rule Mining to analyze transactional databases and derive association rules [26,27]. The Apriori
is a prototypical association rule mining algorithm [28] for mining frequent patterns for a large
transactional dataset with a user specified single minimum item support count. The support
count is an indication of how frequently the itemset appears in the dataset. However, the Apriori
algorithm assumes that all items in the database are of the same nature or have similar frequencies.
Therefore, if the minimum support is too high, those rules that include rare items are not found, and if
the minimum support is too low for extracting both frequent and rare items, it causes a combinable
explosion and high computation time. More recently, more advanced algorithms such as MSapriori [29],
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FP-Growth [30]. The CFP-Growth [31], and CFP-Growth++ [32] methods are proposed for making
association rule mining more effective and efficient.

Among them, CFP-Growth++ introduces four pruning techniques to reduce search space so that
we can save time. It uses a better principle to identify the item that never generates any frequent
pattern through constructing a compressed MIS-Tree [31]. In addition, the CFP-Growth++ algorithm
searches and finds suffix patterns that can generate frequent patterns at higher order only instead
of searching all the possible patterns of suffix patterns in the MIS-Tree [32]. In our experimentation,
we used the library called SPMF [33] for finding frequent patterns using CFP-Growth++.

3. Data Descriptions

3.1. Cloud-To-Ground (CG) Lightning Data

The Canadian Lightning Detection Network (CLDN) was established in 1998 and consists of over
80 lightning sensors distributed across Canada. The CLDN is part of the larger North American
Lightning Detection Network (NALDN) that monitors lightning over most of North America.
The NALDN is the largest lightning detection network in the world. The CLDN runs 24 h a day,
7 days a week, 365 days a year, and detects cloud-to-ground lightning strikes and a small percentage
of cloud-to-cloud lightning. The CLDN is capable of detecting up to 45,000 lightning strikes
an hour, although typically the maximum number of strikes per hour in Canada is less than 25,000.
The CLDN’s lightning sensors determine the strength, polarity (positive or negative charge) and time
of lightning strikes, all from the electromagnetic pulse the lightning produces [34]. The total number
of CG lightning frequency and the size of data for Alberta from 2010 to 2016 are about 300,000 and
118 megabyte (MB) respectively.

3.2. Terrain Elevation and Terrain Slope Data

We obtained a terrain elevation data from Shuttle Radar Topography Mission (SRTM) [35]
1 Arc-Second Global data for our study area (the Province of AB, Canada). The absolute vertical
accuracy of the elevation data will be 16 m (at 90% confidence). This radar system will gather data
that will result in the most accurate and complete topographic map of the Earth’s surface that has ever
been assembled. The unit of elevation is meters as referenced to the WGS84/EGM96 geoid. We then
calculate terrain slope based on this digital elevation model using ArcGIS software (ESRI, Redlands,
CA, USA) [36]. The terrain elevation and terrain slope data for Alberta, Canada were derived from
this SRTM 1 Arc-second global data.

3.3. Land Uses Data

The Land Uses (LU) map (Figure 1) covers all areas of Alberta at a spatial resolution of 30 m.
The LU classes follow the protocol of the Intergovernmental Panel on Climate Change (IPCC) and
consist of: Forest, Water, Cropland, Grassland, Settlement and Other land (barren land, ice, rock and
unclassified). The LU maps were prepared using existing source data, including a variety of land cover
(LC) and crop maps and various topographic layers such as Buildings and Structures, Hydrography,
Industrial and Commercial Areas, Transportation and Wetlands from the “Canada Vectors”, a digital
cartographic product in vector format (CanVec) supplied by Natural Resources Canada (NRCan).
Details about the data and their accuracy are given in Data Product specifications [37].

3.4. Soil Types Data

Soil Landscapes of Canada data (SLC version 3.2, Soil Landscapes of Canada Working
Group, Ottawa, ON, Canada Figure 2) is the latest revision of the Soil Landscapes of Canada,
which was developed by Agriculture and Agri-Food Canada to provide information about the
country’s agricultural soils at the provincial and national levels. SLCs provide GIS coverage that
shows the major characteristics of soil and land for the whole country. The information is organized
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according to a uniform national set of soil and landscape criteria based on permanent natural attributes.
They are based on existing soil survey maps that have been recompiled at 1:1,000,000 scale. SLC
polygons may contain one or more distinct soil landscape components and may also contain small
but highly contrasting inclusion components. We could get a distinct type of soil to identify the soil
great group according to the Canadian System of Soil Classification, 3rd edition [38]. There are ten
classes in the Canadian System of Soil Classification and the major levels used in the classification
include: Order, Great Group and Subgroup. We used the first level (Order) within the System for
distinct soil types [38,39].
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Figure 1. Land uses of Alberta (source: Natural Resources Canada, NRCan).

3.5. Canadian National Fire Database (CNFDB)

The Canadian National Fire Database (CNFDB) is a collection of wildfire data from various
sources; these data include fire locations (point data) and fire perimeters (polygon data) as provided
by Canadian fire management agencies (provinces, territories, and Parks Canada) [40]. The properties
of the wildfires are composed of agency information (province, territory, parks) illustrating which
agency collected the fire data, wildfire occurrence dates, coordinates, fire size (hectares), cause of
fire as reported by each agency, and fire types. These data will be used in the application section
(Section 7) to demonstrate how the frequent pattern results from data mining can be utilized. We only
use lightning-caused wildfire data, among all possible different causes of fire, in order to know the
impact of the CG lightning strikes on wildfire outbreak.
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4. Methodologies

4.1. Spatial Distribution of Lightning Strikes Activity (Hotspot Analysis)

The research purpose of this section is to investigate how CG lightning is distributed spatially
over Alberta. We count CG lightning frequency in each municipal boundary to see which areas have
more lightning. The study is based on the cloud to ground (CG) lightning data from 2010 to 2014.
Hotspot analysis enables us to know not only where high-value regions cluster together but also
where low-value regions cluster. Several processes precede actually carrying out hotspot analysis.
The flow chart of the processes is below (Figure 3). We will summarize these processes first and
then we will explain each step in greater detail. All processes are performed by ArcGIS 10.3 software
(ESRI, Redlands, CA, USA) [36].

Sensors 2017, 17, 2413  10 of 32 

 
Figure 2. Soil Types (soil great group by the Canadian System of Soil Classification 3rd edition [38]). 

4. Methodologies 

4.1. Spatial Distribution of Lightning Strikes Activity (Hotspot Analysis) 

The research purpose of this section is to investigate how CG lightning is distributed spatially 
over Alberta. We count CG lightning frequency in each municipal boundary to see which areas have 
more lightning. The study is based on the cloud to ground (CG) lightning data from 2010 to 2014. 
Hotspot analysis enables us to know not only where high-value regions cluster together but also 
where low-value regions cluster. Several processes precede actually carrying out hotspot analysis. 
The flow chart of the processes is below (Figure 3). We will summarize these processes first and then 
we will explain each step in greater detail. All processes are performed by ArcGIS 10.3 software (ESRI, 
Redlands, CA, USA) [36]. 

 

Figure 3. Flow chart of spatial lightning pattern analysis by statistical method. Figure 3. Flow chart of spatial lightning pattern analysis by statistical method.



Sensors 2017, 17, 2413 6 of 31

First, taking into account the cloud to ground (CG) lightning data for the study period from
2010 to 2014, we counted how many lightning strikes actually transpired in the predefined 84 Alberta
municipalities. In order to overcome the size variations, we normalized the number of CG lightning
flashes within a district by dividing it by the area of each district. The next step for carrying out hotspot
analysis is specifying a threshold distance for neighboring features, which is called a neighborhood.
The neighborhood consists of the features that are analyzed together in order to assess local clustering.
The neighborhood is defined by a threshold distance band. To set the threshold distance band,
the Incremental spatial autocorrelation tool [41] in ArcGIS 10.3 [36] is implemented. The Incremental
spatial autocorrelation tool essentially finds appropriate distances where spatial clustering is most
pronounced, by using incremental distances. However, we need to select both the starting distance and
the distance increment values to implement the tool. The ‘Calculating distance band from neighbor
count’ tool in ArcGIS 10.3 helps for this step. This tool tells us the minimum, average, and maximum
distances when each feature has one neighbor. As we mentioned, we need to find a reasonable
distance value that includes possible neighborhood features. Measuring spatial autocorrelation is
one way to find the appropriate distance. Global Moran’s I [41] measures spatial autocorrelation
based simultaneously on feature location and feature values. It can tell us whether a set of features
is clustered, dispersed or random. To identify a spatial pattern of the normalized incidence of CG
lightning data, we performed hotspot analysis (one of the spatial analysis tools in ArcGIS 10.3),
which enabled us to identify the statistically significant hotspot where high incidence data values
cluster together. The hotspot analysis calculates Getis-Ord G∗i statistic [42] as follows:

G∗i =
∑n

j=1 wi,jxj − X ∑n
j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(1)

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j, and n is
equal to the total number of features:

X =
∑n

j=1 xj

n
(2)

S =

√
∑n

j=1 x2
j

n
−
(
X
)2 (3)

G∗i Statistic is a Z-score so no further calculation is required. A Z-score is simply a measurement of
standard deviation. This score serves as a basis for deciding whether we can reject the null hypothesis.

4.2. Temporal Distribution of Lightning Strikes Activity

There are slightly different maximum and minimum CG lightning occurrence densities in
other studies but this temporal distribution is in agreement with several studies that have been
conducted on global and local regional scales [11,14,16–18,20,21,23,25,43–45]. The results are similar
to all lightning pattern research conducted in different countries or areas where the vast majority
of lightning over land occurred during the warm months (May~October) with a strong peak in
cloud to ground lightning (June~July) and minimum seasonal lightning occurrence in cold months
(December~February). In addition, lightning strikes seem to be affected by the influence of the diurnal
heating cycle. We assumed that the temporal distribution of CG lightning over Alberta was similar to
that of other regions. To identify the temporal trend of the lightning over Alberta precisely, we divide
all lightning occurrence counts by month and distribute each month’s count hourly. The resulting
graphs, tables and interpretations are shown in the results section (Section 5.2).
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4.3. Discovery of Frequent CG Lightning Patterns Using CFP-Grwoth++ Algorithm

We carried out experiments to identify the implicit lightning frequency patterns under given
conditions. These given conditions are expressed in the four land physical properties (i.e., Elevation,
Slope, Land Uses, and Soil Type). We subdivided each property into 10 classes of elevation data,
10 classes of slope data, 15 classes of land uses data, and 10 classes of soil type data. We used
the Jenks natural breaks optimization method [46] for dividing elevation and slope data. The land
uses classes follow the protocol of the Intergovernmental Panel on Climate Change (IPCC) and
consist of: Forest, Water, Cropland, Grassland, Settlement and Other land (barren land, ice, rock and
unclassified). There are distinct types of soil according to the Canadian System of Soil Classification [38].
Therefore, each lightning strikes record has those four different properties.

The main purpose of this experiment is to identify the relationships between those four properties
and lightning strikes, or to see whether there are any particular frequent patterns and whether the
frequent patterns are consistent throughout the study period. The main theory of CFP-Growth++
was implemented for this study but assigning minimum item support (MIS) values are modified in
this study. Based on the original MIS functions, the user-specified MIS values are chosen by iterative
calculation to generate the best result. However, the appropriate method to find the MIS value for each
item differs slightly because we have an unequal range of coverage area for each item. Therefore, it is
possible that a larger coverage area for one item has relatively more lightning strikes than a smaller
coverage area for another, even though the larger area has a lower rate of lightning strikes per unit
area. The modified MIS functions consider the characteristics of uneven coverage area size of each
item and take the rare item problem into account as well. The modified MIS functions are as follows:

MIS (A) = Min {MIS (a1), MIS (a2) . . . MIS (ak)} (4)

MIS(ai) =

{
M(ai) if M(ai) > LS

LS Otherwise
(5)

M(ai) = Round off (β′ f(ai)) (6)

β′ =
Aai

AT
(7)

The value f(ai) is the actual frequency (or the support expressed in percentage of the data
set size) of item ai in the data. The value LS is the user-specified lowest minimum item support
allowed. β (0 ≤ β ≤ 1) is a parameter that controls how the MIS values for items should be related
to their frequencies. The modified part is for β (0 ≤ β ≤ 1) value. Originally, the β value was
a user-specified value and it is based on the iterative calculation to find the best MIS values. This is not
only a non-standard way of choosing this MIS value, but it also fails to consider the different coverage
area sizes. The value Aai is the coverage area of item ai, while AT is the total study area. By using
this modified β value (β′), we can fit for individual item characteristics. This modified MIS function
can prevent possible problems, already mentioned above, when a larger coverage area for an item
has relatively more lightning strikes than a different item’s smaller area, even though the larger area
has fewer lightning strikes per unit area. The sequence result of non-modified MIS functions is in the
larger coverage area of an item having fewer lightning strikes per unit area, which could cause it to be
extracted as a frequent item. Therefore, we use the modified MIS function in this research.

5. Results

5.1. Hotspot Analysis (Spatial Distribution of CG Lightning)

The hotspot analysis was conducted to identify statistically significant hotspot regions where high
incidence CG lightning counts cluster together on predefined 84 Alberta municipalities. Using this
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method, we documented the spatial distribution of CG lightning, showing the hotspot analysis results
for the entire combined study period (Figure 4).
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This map shows clear spatial patterns indicating that most hotspot regions were located in central,
central east, and south central regions of the study area, and coldspots are more typically found in
northern areas. There are areas in which the lightning strikes occur frequently or rarely, and there are
also areas in which locations containing statistically significant high or low number of lightning strikes
values cluster together.

Since we used only the spatial location of lightning strikes to identify the presence or absence of
spatial patterns, we cannot explain what types of topographical characteristics influence the spatial
patterns. We are therefore limited in describing the precise relationship between lightning strikes and
topographical characteristics (land properties). Therefore, we will use an Association Rule Mining
technique to identify the kinds of factors, and their combinations, that are related to the locations
where CG lightning flashed. We will do so using four different topographical characteristics, enabling
us to find the frequent patterns that have the four different factors (land properties) in much of the
lightning strikes data.

5.2. Temporal Distribution of CG Lightning Activitiy

Figure 5 shows the average hourly (Mountain Standard Time) lightning strikes counts by month
in the Province of Alberta during the period of 2010 to 2014, and Table 1 shows their percentage of
total lightning strikes counts. A total of 93.8% of annual lightning occurred in the warm months
of June through August. Lightning activity was at its peak in July (45.7%). There are almost no
lightning activities (0.0019%) in the cold months of December through February. Lightning strikes
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density steadily increases from about 10:00 local time (MST) to afternoon peaks occurring between
17:00 and 20:00 local time (MST). They then decline steadily to a morning minimum between 04:00 and
11:00 local time. Table 1 also shows that during the study period about 99.5% of all lightning strikes in
the province of Alberta occurred between May and September.Sensors 2017, 17, 2413  10 of 32 
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Table 1. Percentage of average lightning counts by month between 2010 and 2014.

Month % Total

December 0.0004
January 0.0011 0.0019%

February 0.0004
March 0.0188
April 0.2673 3.3875%
May 3.1014
June 18.8760
July 45.6683 93.8473%

August 29.3030
September 2.5636

October 0.1893 2.7633%
November 0.0105

5.3. Frequent CG Lightning Patterns Using CFP-5.3. Growth++ Algorithm

To find frequent patterns of CG lightning over Alberta, we used the CFP-Growth++ algorithm,
but with the modified MIS function described in Section 4.3. We divided the frequent patterns of data
mining results into five classes using the Jenks natural breaks optimization method. The classes are
designated ‘High Risk’, ‘Risk’, ‘Moderate’, ‘Low Risk’ and ‘No Risk’. The average number of frequent
patterns is about four hundred annually out of fifteen hundred given all possible combinations.
We present ‘High risk’ and ‘Risk’ results for the entire research period (2010–2014) only here (Table 2).
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Table 2. CG lightning frequent patterns on four land properties (2010–2014).

2010 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 12 25 39 6210
5 11 29 44 6117
3 13 25 39 5638
2 11 26 38 4059

2010 Risk

6 12 25 39 3432
6 13 25 39 3230
4 11 29 43 3042

3 11 26 39 2904
4 11 30 43 2888
4 11 30 44 2474
3 11 29 43 2313
4 12 30 44 2283
4 12 30 43 2223
1 11 33 38 2132
6 14 25 39 2049
1 11 25 37 2039
6 11 25 39 1947
3 11 24 39 1875
5 14 25 39 1854
4 12 29 43 1840
3 14 25 39 1743
7 14 25 39 1696
2 11 25 37 1673
7 13 25 39 1662

2011 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 12 25 39 7450
5 11 29 44 6269
3 13 25 39 6126
5 13 25 39 5502
2 11 26 38 4738
6 12 25 39 4437
6 13 25 39 4109

2011 Risk

3 11 26 39 3328
6 11 25 39 2628
6 14 25 39 2566
5 14 25 39 2413
4 11 30 44 2410
4 11 30 43 2304
4 12 30 44 2250
3 11 29 43 2205
4 11 29 43 1993

2012 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 12 25 39 10,321
5 11 29 44 8530
5 13 25 39 7769
3 13 25 39 7153
6 12 25 39 6702
6 13 25 39 6268

2012 Risk

2 11 26 38 5101
3 11 26 39 4556
6 11 25 39 3929
6 14 25 39 3887
5 14 25 39 3628
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Table 2. Cont.

2013 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 11 29 44 11,829
5 12 25 39 7880

2013 Risk

4 11 30 44 4783
6 12 25 39 4687
2 11 26 38 4592
6 13 25 39 4552
4 12 30 44 4329
3 11 26 39 3371
4 11 30 43 3351

2014 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 11 29 44 10,570
5 12 25 39 8155

2014 Risk

2 11 26 38 5675
4 11 30 43 5402
4 11 30 44 5224
4 11 29 43 4792
4 12 30 44 4712
6 12 25 39 4255
3 11 26 39 4107
6 13 25 39 4064
1 11 33 38 3886
4 12 30 43 3786
1 11 25 37 3646

We noticed the frequent patterns sorted in descending order of support counts are quite similar
among all years of the study period, but we need to measure how similar patterns occurred statistically
in order to prove that the CG lightning on our four different land properties is consistent or highly
similar throughout all the study years. In addition, if we can find consistent CG lightning patterns
on those land properties, we can use these frequent patterns for many applications in a variety of
fields. In Section 6 (Verifications), we present a way of measuring similarity for our results sets and
demonstrate the similarity value between two comparable results of all results sets. Each code number
represents a category of land properties (i.e., Elevation, Slope, Land Uses, and Soil Types) and we
explain all code numbers and their properties in Appendix A.

5.4. CG Lightning Hazard Maps

Based on these frequent tuples and support counts in Section 5.3, we generated CG lightning
hazard maps and can illustrate which high CG lightning risk regions combine the four different land
properties. The procedure for generating CG lightning hazard maps for the period from 2010 to 2014
is as follows. First, we collect all CG lightning data from 2010 to 2014. Each CG lightning data has
patterns, which are sequences of four different land properties and their support counts. The CG
lightning data is also geo-referenced data so that we can distribute the lightning points over Alberta.
These distributed CG lightning points can show where CG lightning occurs more frequently and
how particular combined land properties are more closely related with CG lightning strikes over
Alberta. To make a continuous hazard map of CG lightning hazards, we use the Inverse Distance
Weighted (IDW) interpolation tool [47,48] in ArcGIS 10.3 software [36]. Basically, the IDW interpolation
determines cell values using a linearly weighted combination of a set of sample points. The weight
is a function of inverse distance. Below are the resulting CG lightning hazard maps for each of 2010,
2011, 2012, 2013, 2014 (Figure 6) and the combined map for the period from 2010 to 2014 (Figure 7).
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It is evident that high CG lightning risk areas are similarly positioned throughout the study
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along the east side of the Rocky Mountains. We can identify their corresponding land properties and
their support counts (how much more frequent they are than other patterns) in frequent pattern results
from the data mining results.

6. Verifications

6.1. Simiilarity Measure (Consistency Test) for Results

In this section, we measure the similarity between two frequent itemsets results from five years
results. Similarity is a quantity that reflects the strength of relationship between two objects or two
features. This quantity usually ranges between −1 and +1, or is normalized to between 0 and 1.
Distance measures dissimilarity [49].

If the frequent patterns from the data mining algorithm have a consistency or high similarity
throughout the years, we can conclude that the lightning data has specific patterns and these
patterns have homogeneity. Our data mining result is multivariate categorical (nominal) data
type. For continuous and bivariate data, the notion of similarity is relatively well established,
but for categorical data and multivariate data, the similarity computation is not straightforward.
For continuous data, the Minkowski Distance is a general method used to compute distance between
two continuous multivariate points [50]. In contrast, we are not measuring a similarity between two
individual results for a year; rather, we are measuring the similarity between two different sets. In other
words, we need to measure the similarity between two clusters (sets) composed of a discrete (nominal)
multivariate data type. There are many criteria in the literature (see [51–54]) for comparing two sets or
groups with a view to measuring their similarity. However, there are some limitations in that literature.
For instance, the literature [52] may not permit overlapping or joint clusters (sets), or it [53,54] may
consider measuring similarity for overlapping clusters, but assume that a cluster does not contain
duplicates. Given these limitations, the conventional methods in the literature are not applicable
to our frequent itemset results. We explain our data type and structure first (Table 3) and propose
an improved method of measuring similarity to overcome these limitations. The variables (Var1~Var4)
are independent of each other and describe each land property. As we can see here, there are many
joint (overlapping) frequent tuples within each result. For example, in the 2010 results (Table 3, left),
the Elevation property 5 in the first pattern is duplicated in the second. Furthermore, the support count
of each frequent pattern implies that there are duplicates. There are more details about the limitations
in measuring similarity between two groups in the literature [52–54].

Table 3. Sub-set frequent pattern result 2010 (left) and 2011 (right).

2010 2011
Var1

(Elevation)
Var2

(Slope)
Var3

(Land Uses)
Var4

(Soil Types)
Support
Counts

Var1
(Elevation)

Var2
(Slope)

Var3
(Land Uses)

Var4
(Soil Types)

Support
Counts

5 12 25 39 6210 5 12 25 39 7450
5 11 29 44 6117 5 11 29 44 6269
3 13 25 39 5638 3 13 25 39 6126
2 11 26 38 4059 5 13 25 39 5502
6 12 25 39 3432 2 11 26 38 4738
6 13 25 39 3230 6 12 25 39 4437

To take care of those limitations, we use a Best Match algorithm [53], which takes as its input the
two cluster sets, C1 (Si=1,...,n) and C2(Sj=1,...,m), and a set difference measure. We modify this algorithm
by converting support counts into a ranking score to assign a weight value for each frequent pattern.
The Best Match algorithm determines how well the frequent patterns reflect each other. Specifically,
for each frequent pattern (Si) ∈ C1, we can compute its best representative in C2 by:

S
(
Si, S′

)
= max

j=1,...,m
S
(

Si, S′j
)

(8)
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This formula is slightly different from the original Best Match algorithm for finding the minimum
of dissimilarity (distances) among all comparable patterns, but this formula (Equation (12)) finds
maximum similarity among all comparable patterns. To measure the similarity between two nominal
frequent patterns, we used Jaccard’s coefficient, which measures asymmetric information on variables.
Since our variables are in the form of categorical (nominal) data, we cannot measure the variable in
a quantitative way. We assigned a range of numeric indices to represent each item of variables. This is
called consistent labeling. To calculate similarities or distances between two data sets represented by
nominal variables, we need to convert these nominal variables into binary dummy variables that have
binary values. A binary dummy variable is one that takes the value 0 or 1 to indicate the absence or
presence of some categorical effect.

We can calculate the binary distance between the two binary dummy variables using Jaccard’s
coefficient (Similarity) formula given by:

Simi,j =
p

p + q + r
(9)

where p is the number of variables that are positive (1) for both objects; q is the number of variables
that are positive (1) for the ith object and negative (0) for the jth object; and r is the number of variables
that are negative (0) for the ith object and positive (1) for the jth object.

We compute how well C2 can be represented by C1 by summing similarity coefficients from
each member of C1 to its respective best representative in C2. We can make this similarity coefficient
symmetric by also summing the similarity coefficients from every member of C2 to its corresponding
best representative in C1 [53].This gives the final symmetric measure:

Sim(C1, C2) =
n

∑
i=1

max
j=1,...,m

Sim
(

Si, S′j
)
+

m

∑
j=1

max
i=1,...,n

Sim
(

S′j , Si

)
(10)

We can normalize this similarity using the number of clusters |C1| + |C2| to make the final
similarity score range from 0 to 1. There is one more thing that we need to consider about this
similarity measure on our data sets. As we mentioned in the discussion of our data type, we have
support counts for each frequent itemset. Therefore, we need to consider these support counts when
we measure the similarity; we can do so by assigning weight values according to the support counts.
To clarify, here is one example (Figure 8).
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Figure 8. Example of Similarity Measure without Weight factors (Support Counts).

Table 3 is frequent itemset results for each year and they are sorted in descending order based on
support counts. If we give rankings by its support count, the data look like below (Table 4).
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Table 4. Ranked frequent pattern result of 2010 (left) and 2011 (right).

2010 2011
Var1

(Elevation)
Var2

(Slope)
Var3

(Land Uses)
Var4

(Soil Types)
Support
Counts

Var1
(Elevation)

Var2
(Slope)

Var3
(Land Uses)

Var4
(Soil Types)

Support
Counts

5 12 25 39 Rank 1 5 12 25 39 Rank 1
5 11 29 44 Rank 2 5 11 29 44 Rank 2
3 13 25 39 Rank 3 3 13 25 39 Rank 3
2 11 26 38 Rank 4 5 13 25 39 Rank 4
6 12 25 39 Rank 5 2 11 26 38 Rank 5
6 13 25 39 Rank 6 6 12 25 39 Rank 6

The similarity coefficient in Figure 8 is about 0.9333 but this method ignores the very important
information added by the support count for each frequent pattern. The support count of each frequent
pattern illustrates how a frequent pattern is more important (frequent) than another within the result
itself. The sheer volume of its support count can vary depending on the absolute size of input data.
Therefore, when we measure similarity between two clusters, we need to focus on the relative order
of priority for each cluster and consider rank differences between the two patterns as a weighting
factor. To illustrate a potential influence from these rankings, we will give you an example using
Table 4. When we measure maximum similarity based on S4 ∈ C1 against S′j=1,...,6 ∈ C2, the maximum
similarity can be found in S′5; Their Jaccard’s coefficient value is 1 even if there is a difference of one
rank. When there is a rank difference between two comparable frequent patterns, we need to consider
how their ranks differ and deduct their similarity coefficient value, which depends on the differences,
by assigning a weight factor (Wi,j ∈ [0, 1]). In this way, the similarity coefficient value of S4 (rank 4)
against S′5 (rank 5) must be less than 1 because there is a difference of rank. In other words, we would
only set the similarity number at 1 (maximum similarity value), when each frequent pattern from each
cluster is the same and their rank order is the same. Therefore, we contemplate the conformity of each
pattern and set a corresponding ranking order. The following formula is the expanded scope of the
Best Match algorithm [53]:

Sim(C1, C2) =
n

∑
i=1

max
j=1,...,m

Wi,jSim
(

Si, S′j
)
+

m

∑
j=1

max
i=1,...,n

Wi,jSim
(

S′j , Si

)
(11)

where the weight factor is given by:

Wi,j =


(
|C2|−|rj−ri|
|C2|

)p
if |C2|≥|C1|(

|C1|−|rj−ri|
|C1|

)p
otherwise

ri, rj : Rank order of a frequent pattern respectively. p ∈ [0, 1].
The weight value is from 0 to 1 and the p value in the weight factor may be estimated by a decision

maker using the weight of the most important criterion. p = 1 indicates decreasing weight values with
same interval and p = 0 indicates equal weight values. Basically, p values (0 < p < 1) make the weight
values proportionally decrease as the rank differences increase. For example, when we measure the
weight values for two frequent patterns results of Table 4, the possible rank differences are from 0 to 5
and the number of clusters are six for both |C1| and |C2|. The larger the rank differences between two
frequent patterns from each cluster, the smaller the weight values generated; the degree of decrease for
the weight values is based on the user-specified p-value. As p decreases from 1 to close to 0 (non-zero)
in Figure 9, the weight value slowly decreases as the rank differences increase. If the p value is 0, this is
equivalent with the original Best Match algorithm [53], ignoring rank differences of the two frequent
patterns. Figure 9 shows the possible weight distribution by different p-values for Table 4.
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If we calculate the similarity by considering weight values for rank differences based on the Best
Match algorithm with p = 1 for a given example (Table 4), the similarity measurement result can be
calculated as below (Figure 10).Sensors 2017, 17, 2413  10 of 32 
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The Best Match algorithm is modified by assigning weight factors based on rank similarity
results in the 0.8694 similarity coefficient value (Figure 10), which is lower than 0.9333 (Conventional
Best Match algorithm, Figure 8). This is because there are rank dissimilarities between two possible
comparison frequent tuples from two clusters respectively. We compute all the similarity coefficient
values between two frequent pattern data sets (clusters) throughout five results, from 2010 to 2014,
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with different p values (0 < p ≤ 1) that can be chosen by the decision maker. Listed below are the final
similarity coefficient results (Table 5) using the modified Best Match algorithm by assigning weight
factors based on rank similarity.

Table 5. Similarity coefficient by modified Best Match algorithm with differrent p-values.

p = 1.0

2010 2011 2012 2013 2014

2010 1 0.877 0.869 0.867 0.871
2011 1 0.878 0.854 0.862
2012 1 0.877 0.863
2013 1 0.857
2014 1

p = 0.8

2010 2011 2012 2013 2014

2010 1 0.887 0.88 0.878 0.881
2011 1 0.889 0.864 0.872
2012 1 0.886 0.875
2013 1 0.867
2014 1

p = 0.6

2010 2011 2012 2013 2014

2010 1 0.897 0.891 0.889 0.891
2011 1 0.90 0.875 0.882
2012 1 0.895 0.886
2013 1 0.877
2014 1

p = 0.4

2010 2011 2012 2013 2014

2010 1 0.908 0.903 0.901 0.902
2011 1 0.912 0.887 0.893
2012 1 0.904 0.898
2013 1 0.888
2014 1

p = 0.2

2010 2011 2012 2013 2014

2010 1 0.919 0.915 0.912 0.913
2011 1 0.924 0.899 0.904
2012 1 0.913 0.911
2013 1 0.898
2014 1

The minimum similarity coefficient value is about 0.85 (85%) and the maximum similarity
coefficient value is about 0.95 (95%), with different p values for all possible combinations of two
frequent tuple sets of two years. These results that there are high correlations between the two frequent
sets results of all possible two year’s results; this means that there are quite consistent similarities or
consistent patterns for all years. In other words, there are quite consistent frequent lighting patterns
for the four different land properties (i.e., Elevation, Slope, Land Uses, and Soil Types).

6.2. Additional Verification Process by Comparison between 2010–2014 and 2015–2016 Data Mining Results

In the early stages of our research, we had only 2010–2014 CG lightning data and carried
out all the related experiments with this data. It is highly desirable that we use the latest dataset
(2015–2016) to see whether our experimental results (2010–2014) remain reliable when we compare
them to results for the latest dataset. We conducted Association Rule Mining with the more recent
dataset to test how consistent these new results are with the old results. We did so by measuring
similarity values and comparing the two CG lightning hazard maps from the two different periods
(2010–2014 and 2015–2016). Here are the two frequent pattern results, 2010–2014 and 2015–2016
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(Table 6), using Association Rule Mining (CFP-Growth++ algorithm). We also divided the frequent
patterns of data mining results into five classes (‘High Risk’, ‘Risk’, ‘Moderate’, ‘Low Risk’ and
‘No Risk’) using the Jenks natural breaks optimization method. We present ‘High risk’ and ‘Risk’
results only.

Table 6. CG-lightning frequent patterns on four land properties from 2010 to 2014 and from 2015
to 2016.

2010–2014 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 11 29 44 43,315
5 12 25 39 40,016

2010–2014 Risk

2 11 26 38 24,165
6 12 25 39 23,513
6 13 25 39 22,223
3 11 26 39 18,266
4 11 30 44 17,730
4 11 30 43 16,503
4 12 30 44 16,196
4 11 29 43 15,379

2015–2016 High Risk

Item 1 (Elevation) Item 2 (Slope) Item 3 (Land Uses) Item 4 (Soil Types) Support Count

5 11 29 44 26,055
5 12 25 39 19,813

2015–2016 Risk

6 12 25 39 11,956
6 13 25 39 10,779
4 11 30 44 9754
2 11 26 38 9443
4 12 30 44 9072
3 11 26 39 9020
4 11 29 43 8279
4 11 30 43 8165
3 11 29 43 7033
6 11 25 39 7000
6 14 25 39 6909
5 14 25 39 6672

We recognize that the frequent patterns for 2010–2014 and for 2015–2016 are quite similar. We also
measure the similarity coefficient value between these two results to demonstrate that they have
a similar quantitative numerical value. The methodology of measuring similarity among Association
Rule Mining results is described in Section 6.1. We measure the similarity by changing parameter
p-values (p = 1, 0.8, 0.6, 0.4 and 0.2). The similarity results (Table 7) are described below:

Table 7. Similarity coefficient results using the Modified Best Match algorithm with different p-values
(p = 1, 0.8, 0.6, 0.4 and 0.2) between 2010–2014 and 2015–2016.

p = 1 p = 0.8 p = 0.6 p = 0.4 p = 0.2

Similarity Coefficient Value (2010–2014 vs. 2015–2016) 0.920 0.927 0.933 0.939 0.946
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The above results show that there is a very high correlation between the two frequent sets results
for 2010–2014 CG lightning and 2015–2016 CG lightning. In other words, there are quite consistent
similarities or patterns for all years.

In Section 6.1, we only measure a similarity value for two individual years, but the combined
frequent patterns from 2010 to 2014 and 2015 to 2016 and their two similarity values show much greater
similarity than do the individual year’s results. The similarity measurement results between 2010–2014
and 2015–2016 tells us there are quite consistent frequent lighting patterns for the four different land
properties (i.e., Elevation, Slope, Land Uses, and Soil Types). In addition, we generated 2010–2014 and
2015–2016 CG lightning hazard maps (Figure 11) to see if the new 2015–2016 CG lightning hazard areas
have spatial distribution of the lightning on four land properties consistent with that of 2010–2014 CG
lightning hazard areas. The methodology for generating hazard maps is described in Section 5.4.
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As mentioned before in Section 5.4, most recognizable high CG lightning risk areas are located in
southern Alberta along the east side of the Rocky Mountains. We can find their corresponding land
properties and their support counts in frequent pattern results from the data mining results. We find
a very similar spatial distribution of the CG lightning hazardous area for the new dataset (2015–2016)
when we compare it with the 2010–2014 dataset.

6.3. Comparsion of CG Lightning Hazard Map (2010–2014) with Actual Raw CG Lightning Data (2015–2016)

The CG lightning hazard map for 2010–2014 based on data mining results is divided into 20 classes
that occupy the same size of area. The risk values of the map are sorted in ascending order for these
20 classes, where each class has about 5% of the total study area (Table 8). The hazard map based on
the data mining results and the unprocessed raw CG lightning data are independent of each other.
What we want to know is whether the higher CG lightning risk classes have more actual CG lightning
from 2015 to 2016. In answering this question, we can verify whether the result patterns from data
mining techniques are reliable.

Based on our assumptions, the higher the risk level of the class, the greater the count of 2015–2016
lightning data that must appear. The actual CG lightning strikes in each class quantify how many
lightning strikes flash within that class. Table 9 records all relevant data.
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Table 8. The divided classes’ value ranges of the hazard map (2010–2014) and the area size percentage
of total frequency of CG lightning (2015–2016).

Class Code Number Hazard Map Value Ranges and Percentage of Risky Levels Area Size Percentage over Total

1 15–769.41 (0–1.77%) 5%
2 769.41–1229.74 (1.77–2.83%) 5%
3 1229.74–1623.63 (2.83–3.74%) 5%
4 1623.63–2046.80 (3.74–4.72%) 5%
5 2046.80–2650.59 (4.72–6.11%) 5%
6 2650.59–3255.78 (6.11–7.51%) 5%
7 3255.78–3961.87 (7.51–9.14%) 5%
8 3961.87–4794.87 (9.14–11.06%) 5%
9 4794.87–5898.45 (11.06–13.61%) 5%

10 5898.45–7202.03 (13.61–16.62%) 5%
11 7202.03–8243.86 (16.62–19.03%) 5%
12 8243.86–9339.75 (19.03–21.56%) 5%
13 9339.75–10,097.06 (21.56–23.31%) 5%
14 10,097.06–11,423.83 (23.31–26.37%) 5%
15 11,423.83–13,946.35 (26.37–32.19%) 5%
16 13,946.35–16,222.81 (32.19–37.45%) 5%
17 16,222.81–18,223.84 (37.45–42.07%) 5%
18 18,223.84–23,756.30 (42.07–54.84%) 5%
19 23,756.30–36,759.70 (54.84–84.86%) 5%
20 36,759.70–43,315 (84.86–100%) 5%

Table 9. The actual CG lightning (2015–2016) for each class of CG lightning hazard map (2010–2014).

Class Code Number Hazard Map Value Ranges and
Percentage of Risky Levels

Raw CG Lightning
Counts (2015–2016)

Percentage of Raw CG Lightning
Count of Total (2015–2016)

1 15–769.41 (0–1.77%) 39,461 4%
2 769.41–1229.74 (1.77–2.83%) 36,632 4%
3 1229.74–1623.63 (2.83–3.74%) 40,946 4%
4 1623.63–2046.80 (3.74–4.72%) 36,169 4%
5 2046.80–2650.59 (4.72–6.11%) 43,331 5%
6 2650.59–3255.78 (6.11–7.51%) 38,394 4%
7 3255.78–3961.87 (7.51–9.14%) 37,341 4%
8 3961.87–4794.87 (9.14–11.06%) 38,791 4%
9 4794.87–5898.45 (11.06–13.61%) 40,591 4%

10 5898.45–7202.03 (13.61–16.62%) 45,861 5%
11 7202.03–8243.86 (16.62–19.03%) 49,284 5%
12 8243.86–9339.75 (19.03–21.56%) 48,505 5%
13 9339.75–10,097.06 (21.56–23.31%) 41,939 4%
14 10,097.06–11,423.83 (23.31–26.37%) 44,127 5%
15 11,423.83–13,946.35 (26.37–32.19%) 57,014 6%
16 13,946.35–16,222.81 (32.19–37.45%) 57,621 6%
17 16,222.81–18,223.84 (37.45–42.07%) 58,592 6%
18 18,223.84–23,756.30 (42.07–54.84%) 61,979 6%
19 23,756.30–36,759.70 (54.84–84.86%) 66,609 7%
20 36,759.70–43,315 (84.86–100%) 70,793 7%

Sum 953,980 100%

Table 9 shows the actual CG lightning distribution (2015–2016) for classes (by class code number)
of CG hazard maps (2010–2014) derived from data mining results. If we look at the CG lightning count
values in Table 9, the general trend shows that raw CG lightning counts increased when the hazard
map ranges (code numbers) increased. We can check the lightning frequency graph (Figure 12) of raw
CG lightning sorted into classes based on the hazard map results (2010–2014).

We calculated a hazard map based on the data mining results. It consisted of two parts: four
different land properties and their supports. We made a continuous CG lightning hazard map over
Alberta, Canada based on those mining results. The unprocessed raw CG lightning data’s general
frequency trends from 2015 to 2016, classed into the hazard map from 2010 to 2014, increases as the
risk classes (class code numbers) increase. This trend is notably more dominant in classes ranging from
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code number 13 to 20. On the other hand, there are still quite a significant number of CG lightning
strikes in lower risk areas. This may suggest some research limitations.
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Figure 12. CG lightning frequency (2015–2016) into classes of hazard map classes (2010–2014).

We limited our analysis to the four land properties (i.e., Elevation, Slope, Land Uses, and Soil
Types), but there could be many other triggers for lightning flashes on the surface. Despite the limited
assumptions we set, the general trends of CG lightning for 2015–2016, classed on the hazard map for
2010–2014, show that higher risk areas on the hazard map have more actual CG lightning. We can
also check these patterns by generating a density map of CG lightning. The lightning density map is
based on the calculation of a magnitude-per-unit area from the lightning point features that fall within
a neighborhood. We used the Point Density tool [55] in ArcGIS software [36] to make this density map
(Figure 13 (Right)).
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We divided the Province of Alberta into two clusters to look at the regions of high CG lightning
density. The first cluster includes higher lightning risk areas (code numbers 17–20), which cover
20% of the total study area (Figure 13 (Left)), and the second cluster includes lower lightning risk areas
(code numbers 1–16), which cover 80% of the total study area. In addition, we can check Table 9 for the
corresponding percentage of the CG lightning counts from 2015 to 2016, which for these two clusters
(groups of code numbers) are 26% and 74%, respectively. In Figure 14, the area marked in white is the
same as the high risk (first cluster) regions in Figure 13 (Left). The contour lines describe a density map
of raw CG lightning for 2015–2016. We can see that most high CG lightning density areas are located
in the higher risk regions (code numbers 17–20, Figure 13 (Left)). In conclusion, we can verify by
quantitative measurement from Table 9 and visual interpretation from Figure 14, that the higher risk
areas on the hazard map have the more numerous and more densely occurring CG lightning flashes.
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7. Applications (Analysis of Wildfire Hazardous Regions Based on the CG Lightning Hazard Map)

This section seeks to find the relationship between wild fires and CG lightning strike patterns
derived from data mining processes (and CG lightning strike data). We extracted the wild fire data
described in Section 3.5 to isolate only the fires in Alberta, and to count how many wild fires occurred
in conjunction with particular land uses (Table 10).
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Table 10. Wildfires caused by CG lightning on land use types in Alberta (2010–2014).

Land Uses Count of Wildfire Caused by Lightning Percentage of the Wildfire Count of Total

Unclassified 0 0%
Settlement 7 0.002%

Roads 10 0.41%
Water 32 1.33%
Forest 1383 57.86%

Forest Wetland 566 23.68%
Trees 6 0.25%

Treed Wetland 28 1.17%
Cropland 14 0.58%

Grassland Managed 2 0.08%
Grassland Unmanaged 2 0.08%

Wetland 6 0.25%
Wetland Shrub 283 11.84%
Wetland Herb 46 1.92%

Other Land 5 0.2%

Sum 2390 100%

In Alberta, from 2010 to 2014, approximately 93% of total wild fires were caused by lightning
on Forest, Forest Wetland, and Wetland Shrub land types (shaded boxes in Table 10). To better see
how the wild fire points are geographically distributed, we scattered the wild fire data points on the
hazard map.

A higher risk of CG lightning does not always imply a higher risk of wildfires caused by
CG lighting. There may be areas with more frequent CG lightning but lower frequent wildfires
because of some other conditions, including weather and the strength of CG lightning strikes.
Therefore, we limited the CG lightning hazard map to three dominant Land Uses classes, to reflect the
finding that 93% of total wild fires caused by lightning occurred on Forest, Forest Wetland, and Wetland
Shrub (Table 10). Figure 15 contains the hazard map overlaid with wildfire data.
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We divided the CG lightning hazard map (Figure 15) into 20 classes, based on the same criteria
used in Table 9, then counted the wildfire frequency for each class. The code numbers in Table 11
are labels that represent each class, where higher code numbers correspond to higher CG lightning
risk areas. We also divided the wildfire counts according to the size of the code number so that we
could normalize the counts. This normalized wildfire count is designed to compensate for the problem
of different code number sizes. Figure 16 is a normalized wildfire frequency graph that shows the
trends visually.

Table 11. CG lightning hazard map classes and wildfire frequency within a class.

Ranges Code
Number Code Size

Percentage
of Total for
Each Code

Wildfire
Counts

(2010–2014)

Normalized
Wildfire Counts

(2010–2014)

15–769.41 (1.77%) 1 1808 5% 92 0.05
769.41–1229.74 (2.83%) 2 1643 4% 52 0.031

1229.74–1623.63 (3.74%) 3 1544 4% 58 0.037
1623.63–2046.80 (4.72%) 4 1794 5% 87 0.048
2046.80–2650.59 (6.11%) 5 1745 5% 132 0.075
2650.59–3255.78 (7.51%) 6 1990 5% 155 0.077
3255.78–3961.87 (9.14%) 7 2048 5% 128 0.062
3961.87–4794.87 (11.06%) 8 1835 5% 91 0.049
4794.87–5898.45 (13.61%) 9 2195 6% 121 0.055
5898.45–7202.03 (16.62%) 10 1978 5% 106 0.053
7202.03–8243.86 (19.03%) 11 1668 4% 84 0.050
8243.86–9339.75 (21.56%) 12 2327 6% 114 0.048

9339.75–10,097.06 (23.31%) 13 2335 6% 101 0.043
10,097.06–11,423.83 (26.37%) 14 2233 6% 123 0.055
11,423.83–13,946.35 (32.19%) 15 1758 5% 122 0.069
13,946.35–16,222.81 (37.45%) 16 1645 4% 122 0.074
16,222.81–18,223.84 (42.07%) 17 1535 4% 134 0.087
18,223.84–23,756.30 (54.84%) 18 2482 7% 205 0.082
23,756.30–36,759.70 (84.86%) 19 2092 6% 155 0.074

36,759.70–43,315 (100%) 20 711 2% 49 0.068
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Figure 16. Normalized wildfire frequency (2010–2014) for each code number.

The trend of the normalized wildfire counts in Table 11 and Figure 16 contains two peaks as
the code numbers (risk labels of the hazard map) change. We divided the graph into two groups.
First, the counts are increasing from code number 2. Then there is a peak at code number 6 and the
counts start decreasing from this peak to code number 8. Second, the counts are increasing again from
code number 13. Then there is a peak at code number 17 and they start decreasing again from the peak
to code number 20. Given these ups and downs, it is hard to say that the risk of CG lightning must
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increase with the occurrence of wildfires. We can identify four possible cases to describe and account
for this shifting relationship between CG lightning and wildfire:

(1) The regions have a relatively high incidence of CG lightning strikes, but wildfires caused by
lightning rarely occurred.

(2) The regions have a relatively high incidence of lightning strikes and wildfires, and fires caused
by lightning occurred frequently.

(3) The regions have a relatively low frequency of CG lightning, but wildfires caused by lightning
nevertheless occurred frequently.

(4) The regions have a relatively low frequency of CG lightning, and wildfires caused by lightning
rarely occurred.

The data (and two of the cases bolded above) suggest that there might be other triggers for wild
fire by lightning, such as weather conditions and the particular characteristics of the lightning even
when there are few lightning strikes. If the objective of this study is to research wildfire hazard, then it
is the second and third cases that attract our interest. Therefore, we need to distinguish between those
two areas having a relatively large incidence of wildfires and other study regions. To do so, let us
start by demonstrating the notion of relative to know which areas have relatively more incidences
of wildfires than others. The notion of relative in here can be calculated by Preference Index (PI)
as follows:

PI =
WFn/An

WFt/At
(12)

where WFn is wildfire counts for a code number “n”, WFt is the value of total number of wildfire
counts for study area, An is the area size for a code number “n”, and At is the total size of whole study
area. WF and A are the number of wildfires and the area size, respectively; the subscript n indicates
the given category (code number) in the CG lightning hazard map; and the subscript t represents total
area. The PI~1 would mean that the percentage of wildfires over each category of the CG lightning
hazard map is equal to the percentage of wildfires over the entire study area. Therefore, if the PI is
higher than 1, we can consider the wildfires relatively frequent compared to other categories in the CG
lightning hazard map. In Table 12, we record PI for each code number from 1 to 20.

Table 12. Preference Index (PI) for each code.

Code Number PI Code Number PI

1 0.852 11 0.843
2 0.53 12 0.82
3 0.629 13 0.724
4 0.812 14 0.922
5 1.266 15 1.162
6 1.304 16 1.242
7 1.046 17 1.462
8 0.83 18 1.383
9 0.923 19 1.24
10 0.897 20 1.154

Using Table 12, we can find PI higher than 1 in 9 code numbers (5, 6, 7, 15, 16, 17, 18, 19 and 20)
out of 20 classes. As mentioned above, we can classify these into two groups. The first includes those
regions with a relatively low frequency of CG lightning, yet a relatively high frequency of wildfires,
and the second includes those regions with a relatively high incidence of both lightning strikes and
wildfires caused by lightning. We determined that code numbers 5, 6 and 7 define the first group and
that code numbers 15–20 define the second. We present these two groups (Red and Blue) in Figure 17
to illustrate two relatively higher risk wildfire regions in the PI graph. The combined Red and Blue
regions are the final wildfire hazardous regions (Figure 18).
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Using association rule mining techniques, we analyzed CG lightning frequent patterns and
their related land properties and generated a hazard map based on the patterns. We tried to find
a relationship between CG lightning frequent patterns and wildfires caused by CG lightning. We found
that some regions have a high incidence of both CG lightning and wildfires (Blue color regions),
but others combine a lower incidence of CG lightning with a relatively high incidence of wildfires
(Red color regions). These results can be utilized to locate regions of high wildfire risk and to identify
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their related land properties, using association rule mining results to be managed and prepared for the
wildfire hazard in Alberta.

8. Discussion and Conclusions

We investigated the characteristics of CG lightning over Alberta, Canada, by lightning date
between 2010 and 2016. We implemented a hotspot analysis to find the regions with high frequency
CG lightning strikes clustered together. Generally, hotspot regions are located in central, central east
and south central regions of the study area. A total of 93.8% of annual lightning occurs in warm
months (June to August) and the daily lightning frequency is influenced by the diurnal heating cycle.
We used the association rule mining technique (CFP-Growth++ algorithm) to investigate frequent CG
lightning patterns. The frequent CG lightning patterns were verified by a similarity measurement to
check the patterns’ consistency. We verified the CG lightning hazard map for 2010–2014 by comparing
it to unprocessed independent raw CG lightning data from 2015 to 2016. The resulting similarity
coefficient values showed a high correlation throughout the study period. The actual CG lightning
generally flashed more in higher risk regions in the lightning hazard map. Most wildfires in Alberta
(approximately 93%) occur in Forests, Wetland Forests, and Wetland Shrub areas. We found two
distinct areas of interest: frequent wildfire regions with a high frequency of lightning, and frequent
wildfire regions with a low frequency of lightning. Further, the preference index (PI) revealed locations
where wildfires occurred more frequently than in other class regions. One potential application of
this research is to estimate wildfire hazard areas against CG lightning hazard maps and frequency
data for specific land use types. There are limitations in this study. First, we analyzed only seven
years of CG lightning data. Analyzing additional years of CG lightning data would provide more
accurate results. This study considered a limited number of land properties (i.e., Elevation, Slope, Land
Uses, and Soil Types). Including more land properties in the study would enhance the accuracy of our
results. In addition, there may be other factors that we did not consider, such as Convective Available
Potential Energy (CAPE), moisture content, surface temperature, etc. Accuracy and reliability of the
results could be improved by adapting other data mining techniques as well.
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Appendix A

The information of code label number for the classified land properties.

Table A1. Information of code label number of elevation.

Item 1 (Global Digital Elevation Model)

Code Label (Meter)

1 168–408
2 408–588
3 588–722
4 722–867
5 867–1054
6 1054–1289
7 1289–1587
8 1587–1943
9 1943–2344

10 2344–3709
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Table A2. Information of code label number of slope.

Item 2 (Slope)

Code Label (Degree)

11 0–1.704632
12 1.704632–3.634515
13 3.634515–6.265699
14 6.265699–10.070405
15 10.070405–15.106709
16 15.106709–21.327051
17 21.327051–28.527229
18 28.527229–36.822903
19 36.822903–49.206623
20 49.206623–85.246559

Table A3. Information of code label number of land uses.

Item 3 (Land Uses)

Code Label Definition

21 Unclassified Areas not classified due to clouds
22 Settlement Built-up and urban
23 Roads Primary, secondary and tertiary
24 Water Natural and human-made
25 Forest Treed areas >1 ha in size
26 Forest Wetland Wetland with forest cover
27 Trees Treed areas <1 ha in size
28 Treed Wetland Wetland with tree cover
29 Cropland Annual and perennial
30 Grassland Managed Natural grass and shrubs used for cattle grazing

31 Grassland Unmanaged Natural grass and shrubs with no apparent use
(forest openings, alpine meadows, tundra, etc.)

32 Wetland Undifferentiated wetland
33 Wetland Shrub Wetland with shrub cover
34 Wetland Herb Wetland with grass cover
35 Other Land Rock, beaches, ice, barren land

Table A4. Information of code label number of soil types.

Item 4 (Soil Types)

Code Label

36 Cryosolic
37 Brunisolic
38 Organic
39 Luvisolic
40 Gleysolic
41 Misc. Bedrocks or Water
42 Regosolic
43 Solonetzic
44 Chernozemic
45 Vertisolic

Reference: http://sis.agr.gc.ca/cansis/soils/provinces.html
Soil Subgroup: Identifies the soil subgroup according to the Canadian System of

Soil Classification (http://www.soilsofcanada.ca/orders/index.php) [38].

http://sis.agr.gc.ca/cansis/soils/provinces.html
http://www.soilsofcanada.ca/orders/index.php
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