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Abstract: The underwater acoustic sensor network (UWASN) is a system that exchanges data
between numerous sensor nodes deployed in the sea. The UWASN uses an underwater acoustic
communication technique to exchange data. Therefore, it is important to design a robust system
that will function even in severely fluctuating underwater communication conditions, along with
variations in the ocean environment. In this paper, a new algorithm to find the optimal deployment
positions of underwater sensor nodes is proposed. The algorithm uses the communication
performance surface, which is a map showing the underwater acoustic communication performance
of a targeted area. A virtual force-particle swarm optimization algorithm is then used as an
optimization technique to find the optimal deployment positions of the sensor nodes, using the
performance surface information to estimate the communication radii of the sensor nodes in each
generation. The algorithm is evaluated by comparing simulation results between two different
seasons (summer and winter) for an area located off the eastern coast of Korea as the selected
targeted area.

Keywords: underwater acoustic sensor network; performance surface; virtual force-particle swarm
optimization; optimal deployment

1. Introduction

The underwater acoustic sensor network (UWASN) has recently attracted considerable
attention because of its potential for use in a variety of military and civilian applications, such
as ocean environmental monitoring, ocean exploration, target detection, surveillance systems,
and communication among underwater sensor nodes [1–4].

In the UWASN, a number of sensor nodes are deployed in the ocean to collect data, which
must be successfully exchanged among adjacent sensor nodes. For this reason, each sensor node
must be positioned to be able to perform collaborative communication tasks over a targeted area.
The deployment efficiency of sensor nodes in the UWASN is evaluated in terms of their connectivity
and the area covered by the limited number of sensor nodes in the targeted area, because underwater
sensor devices are more expensive and more difficult to deploy at precise positions compared to sensor
nodes on land [5].

Most attempts to find an optimal deployment scheme for sensor nodes have assumed that
every sensor node has the same sensing range [6–9], which is reasonable in the case of terrestrial
wireless communication systems. However, underwater communication performance is significantly
influenced by temporal and spatial variations in the ocean environment [10,11]. Underwater acoustic
communication presents a challenging problem in that the underwater acoustic communication
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channel is a time-varying multipath channel formed by multiple interactions of sound with the sea
surface and bottom of the ocean, particularly in shallow water.

This multipath channel causes significant delay in spreading, often covering hundreds of
symbols, thereby causing inter-symbol interference (ISI). This happens because the underwater sound
propagates with relatively low sound speed (mean sound speed in water is around 1500 m/s, which is
approximately 200,000 times lower than that of an electromagnetic wave) [12]. The ISI results in a
significant degradation in communication performance [13]. In addition, a time-varying channel
produces a short coherence time or a large Doppler spread resulting from the temporal and spatial
variations in the sea surface [14]. Therefore, if all sensor nodes are deployed at equal distances
from each other in the targeted area under the assumption that each sensor node has the same
communication radius, performance degradation of the UWASN may occur.

It is necessary to develop an optimal deployment algorithm for underwater sensor nodes,
which must be able to reflect performance variations in the sensor network due to environmental
fluctuations. One of the methods to improve the performance of the UWASN is to use array processing.
Array processing techniques using an array of spatially separated receivers have been reported to
decrease communication error rates by eliminating the ISI caused by multipath channels in the ocean
and to have better communication performance than single receivers that only use the equalizer
technique [15–17]. In this paper, a multi-channel combining technique using a vertical line array is
applied to the UWASN. The performance of the communication system is then estimated over the
targeted area, which is converted to the communication performance surface (PS). The PS is a projection
of the geospatial information of the performance of a system. In general, the PS in a sonar system is used
to provide insight into the relative performance for the detection range of the system, demonstrating the
impact of the ocean environment on the system capability [18]. Here, a communication PS is predicted
based on the communication radius estimated on each grid within the targeted area. On the basis of
the estimated communication PS, the optimal deployment of sensor nodes is obtained using a hybrid
optimization method combining the advantages of a virtual force algorithm [19,20] and a particle
swarm optimization [21,22], called virtual force-particle swarm optimization (VFPSO) [23]. The goal
of this paper is to achieve the maximum communication coverage maintaining their connectivity with
the limited number of underwater sensor nodes, especially in shallow water areas.

The paper is organized as follows. Section 2 provides the descriptions of four sub-algorithms for
optimal deployment of the sensor nodes: modeling of underwater acoustic channel impulse response;
estimation of the communication performance; construction of the communication PS, and; optimal
deployment of the sensor nodes. Section 3 presents the results of the optimal deployment positions for
sensor nodes simulated for winter and summer seasons at a targeted area located off the east coast of
Korea. Finally, Section 4 provides a summary and conclusion.

2. Algorithm for Optimal Deployment

The algorithm to obtain the optimal deployment scheme is composed of four sub-categories.
First, underwater acoustic channel modeling is carried out using a ray-based acoustic model for the
targeted area using the ocean environment database including bathymetry, sound speed profiles, and
sediment types. Second, the communication performance is estimated using the array processing
technique of a single-input multiple-output (SIMO) system. The signal received at each array channel
is simulated via a convolution of the communication source signal with the simulated channel
impulse response. Third, the PS for the targeted area is derived using the estimated communication
performance. Lastly, the optimal deployment scheme for the sensor nodes is determined using the
VFPSO method based on the estimated PS.

2.1. Modeling of the Underwater Acoustic Channel Impulse Response

The underwater communication channel is characterized by multipaths caused by the acoustic
interactions with the sea surface and bottom interfaces, as well as the water medium itself, which causes
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the ISI, and resulting in serious distortion of communication signals. The ISI makes demodulation of
the communication signal complex and difficult. Therefore, it is necessary to determine the optimal
deployment scheme based on the communication PS estimated via communication channel modeling.
The model input parameters associated with the ocean environmental information, including sound
speed profiles, bathymetry, and sediment properties, are needed for accurate underwater acoustic
channel modeling. Here, the bathymetry in the targeted area is extracted from ETOPO1, which is a
global relief model of Earth’s surface integrating land topography and ocean bathymetry supplied
by NOAA (National Oceanic and Atmospheric Administration) [24,25], with a spatial resolution of
~100 m. The sound speed profiles are extracted from the GDEM (Generalized Digital Environment
Model) with a 1/4◦ horizontal grid resolution and a monthly time resolution [26]. The values of
sediment mean grain size are obtained by interpolating the mean grain sizes measured from surficial
sediment samples taken directly from 14 positions within the targeted area. The mean grain size
values of the surficial sediment were converted to the sediment sound speed, density, and attenuation
coefficient using the empirical formula developed by Jackson and Richardson [27].

Figure 1a shows the targeted area selected in this paper. The size is 22 km× 22 km and its western
boundary is ~10 km away from the eastern coast of Korea. The targeted area was divided into 100 grid
points, for which environmental data were extracted from the database for eight azimuthal angles
(Figure 1b). Figure 2a,b shows the interpolation maps of bathymetry and mean grain size (expressed by
φ, where φ= − log2(d /d0), d is the grain diameter in millimeters, and d0 is the reference length, equal
to 1 mm) for the targeted area. Figure 2c shows examples of sound speed profiles and bathymetries
for eight azimuthal angles of a grid point located at 36◦ 79′ N and 129◦ 68′ E. The deterministic
channel impulse responses for the eight azimuthal directions are predicted using BELLHOP, which is
a ray-based acoustic propagation model [28]. The BELLHOP model is a highly efficient and rapid
acoustic ray tracing model suitable for higher frequency and range-dependent ocean environments.
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Figure 2. (a) Bathymetry map and (b) mean grain size distribution of surficial sediment of the targeted
area. (c) Sound speed profiles and bathymetries for eight azimuthal angles of a grid point located at
36◦ 79′ N and 129◦ 68′ E, which is marked with a green circle in (a).

Figure 3a,b shows the eigenray tracing results for the azimuthal angles of 90◦ and 270◦,
respectively, at a grid point located at 36◦ 79′ N and 129◦ 68′ E. The eigenray tracing results for
the source-receiver ranges of 100 m, 1 km, and 2 km are shown in the top, middle, and bottom plots,
respectively. The source and receiver are assumed to be positioned 2 m above the bottom for both
azimuthal angles. The main difference between the two different azimuthal angles is that the sound
propagates into the up-slope direction for the azimuthal angle of 90◦ and the down-slope direction for
the azimuthal angle of 270◦. Figure 3c,d shows the channel impulse responses as a function of arrival
time for the source-receiver ranges between 100 m and 2.5 km for the azimuthal angles of 90◦ and 270◦,
respectively. The first arrival includes direct (D) and bottom (B) paths. The second arrival includes
the paths associated with single sea-surface bounce path, such as sea surface (S), bottom-surface (B-S),
and surface-bottom (S-B) paths. The third and fourth arrivals correspond to the paths interacting with
the sea surface twice and thrice, respectively. It is interesting to note that the delay spreads of the
channel impulse responses for the down-slope direction are larger than those for the up-slope direction.
This difference may eventually produce the different communication performance. The channel
impulse responses simulated as a function of the source-receiver range for the eight azimuthal angles
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are convolved with an original communication sequence to obtain the received communication signals.
This process is repeated for 100 grid points in the targeted area shown in Figure 1b.

Sensors 2017, 17, 2389 5 of 14 

 

the eight azimuthal angles are convolved with an original communication sequence to obtain the 
received communication signals. This process is repeated for 100 grid points in the targeted area 
shown in Figure 1b.  

 

 

Figure 3. Eigenray tracing results for the azimuthal angles of (a) 90° and (b) 270°. Channel impulse 

responses as a function of arrival time for the azimuthal angles of (c) 90° and (d) 270°. 

2.2. Estimate of the Communication Performance 

Real-time communication with a high data transfer rate and low bit error rate (BER) is required 
for a robust UWASN system. There is a limit to using a single sensor node in the UWASN because 
underwater communication is severely affected by the time-varying multipaths in the ocean 
environment. Recently, in a number of studies on underwater acoustic communication, sensor array 
systems have been used to achieve the high data rate with low BER [15–17]. In general, as the element 
spacing and the number of sensors increase, communication performance becomes enhanced. 
However, the spatial diversity aggravates the spatial efficiency of the UWASN system. Here, it is 
assumed that each sensor node in the UWASN is a vertical line array composed of three hydrophone 
receivers with an element spacing of 1.5 m, which corresponds to 10 λ (where λ is the acoustic 
wavelength) based on a frequency of 10 kHz. 

The communication sequence used for the communication performance simulation is a binary 
phase-shift keying (BPSK) sequence with a center frequency of 10 kHz and a bit rate of 1 kbps. To 
simulate the communication signals received after propagating through the multipath ocean channel, 
the BPSK communication sequence is convolved with the channel impulse responses simulated using 
the method described in Section 2.2, and then isotropic white Gaussian noise was added.  

Figure 3. Eigenray tracing results for the azimuthal angles of (a) 90◦ and (b) 270◦. Channel impulse
responses as a function of arrival time for the azimuthal angles of (c) 90◦ and (d) 270◦.

2.2. Estimate of the Communication Performance

Real-time communication with a high data transfer rate and low bit error rate (BER) is required
for a robust UWASN system. There is a limit to using a single sensor node in the UWASN
because underwater communication is severely affected by the time-varying multipaths in the ocean
environment. Recently, in a number of studies on underwater acoustic communication, sensor array
systems have been used to achieve the high data rate with low BER [15–17]. In general, as the element
spacing and the number of sensors increase, communication performance becomes enhanced. However,
the spatial diversity aggravates the spatial efficiency of the UWASN system. Here, it is assumed that
each sensor node in the UWASN is a vertical line array composed of three hydrophone receivers with
an element spacing of 1.5 m, which corresponds to 10 λ (where λ is the acoustic wavelength) based on
a frequency of 10 kHz.

The communication sequence used for the communication performance simulation is a binary
phase-shift keying (BPSK) sequence with a center frequency of 10 kHz and a bit rate of 1 kbps.
To simulate the communication signals received after propagating through the multipath ocean channel,
the BPSK communication sequence is convolved with the channel impulse responses simulated using
the method described in Section 2.2, and then isotropic white Gaussian noise was added.
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Figure 4 shows a signal processing block diagram of the SIMO system used to decode the
communication data. The communication data received by each sensor component are multiplied
by e−iωt to recover the baseband waveform, where ω is the angular frequency. After that, the data
were low-pass filtered and passed through an adaptive Decision feedback equalizer (DFE) [29] to
compensate for the channel distortion by ISI. Recursive Least-Squares (RLS) algorithm was used to
adaptively update the filter weights of the equalizer, and a forgetting factor was 0.995. The number
of feedforward and feedback filter taps in the DFE is related to the delay time spread due to the
multipaths in the underwater communication channel [10,17]. In this paper, the tap numbers covering
the delay time spread sufficiently were used in the equalizer process. Then, they are summed to
eliminate residual ISI and increase SNR (Signal-to-Noise Ratio) [30,31]. Finally, the communication
performance is evaluated with a BER estimate.
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2.3. Communication Performance Surface Algorithm

As described in the previous section, the process to estimate the communication performance is
complex and time-consuming. If the process is repeated on candidate positions in the targeted area in
the computation loop in order to search for optimal sensor positions, it will take too long to find the
optimal solution. Here, the communication PS for the targeted area is constructed based on the BER
performance estimated in Section 2.2, and then it is used for rapid computation of the search process
to find the optimal positions. The communication PS represents the spatial distribution of the relative
performance of the underwater communication system, which varies temporally and spatially in the
ocean [18].

The BER estimates as a function of the source-receiver range for the eight azimuthal angles of
each grid point were made to obtain the communication PS of the targeted area. Figure 5a,b show
the interpolation of the BER performances for the eight azimuthal angles of each grid point predicted
using the mean sound speed profiles in February and August, respectively. The difference between the
sound speed profiles in the two seasons produces the difference of channel impulse response, which
ultimately produces the difference in BER performance. Note that the BER may vary with the types of
equalizer and receiver used in the UWASN. Here, a BER of 2% is chosen as a criterion of tolerance for
communication, and the range corresponding to this criterion is defined as a communication range.
Figure 6 shows an example of the BER performance estimated as a function of range. In this case,
the communication range is determined to be 1.8 km.

Now, the communication ranges for the eight azimuthal angles are averaged to represent the
communication radius at the grid point. The minimum or maximum communication range can also
be chosen optionally by a user as a representation of the communication radius at the grid point.
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The communication radii estimated for every grid point are interpolated to create the communication
PS of the targeted area. Figure 7 shows an example of the communication PS simulated using
a three-channel vertical array for the two different seasons ((a) in February and (b) in August).
In our simulation case, the overall communication radii in February are longer than those in August,
which means that the communication environment in February is better than that in August.Sensors 2017, 17, 2389 7 of 14 
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2.4. Optimal Deployment Algorithm for the Sensor Nodes

In general, the performance of the algorithm for optimal deployment of the sensor nodes is
evaluated in terms of maximizing the communication coverage rate and maintaining connectivity
among the sensor nodes with a given number of nodes in the targeted area. Here, a hybrid method
combining the advantages of the virtual force algorithm (VFA) [19,20] and the particle swarm
optimization (PSO) [21,22] is used as a search algorithm, which is referred to as the VFPSO [23].

The VFA is a self-organizing search algorithm to determine the optimal distances among sensor
nodes, which attempts to maximize the communication coverage using a combination of attractive and
repulsive forces. As an initial step, the sensors are randomly placed in the targeted area. The distances
between one sensor node and its neighboring nodes are compared to a communication threshold.
In this work, the communication threshold was defined to be the smaller of the communication radii
at two sensor node positions for two-way communication. The communication radius at a certain
node position can be extracted from the communication PS map. If the distance is smaller than the
threshold, a repulsive force arises between the two sensor nodes. In contrast, if the distance is too far
apart, an attractive force arises. This process is performed for all neighboring nodes based on one
sensor node, and a weighted sum is calculated to obtain the total force exerted on the node. This is
repeated for each node. As the iteration of the algorithm continues, all sensors nodes are positioned,
maintaining optimal distances between the sensor nodes.

The PSO is a stochastic search algorithm that mimics social behavior of animals moving in flocks
in order to find optimal positions. It has been widely used because it is an efficient optimization
algorithm for solving dynamic optimization problems having fast convergence and robustness [21,22].
The PSO uses particles, which correspond to the individual sensor nodes in this study, and the set
of all sensor nodes is referred to as the swarm in the PSO algorithm. After being initialized with
random positions and velocities, the particles estimate their communication radii at their positions and
memorize this information. At each generation, particles evaluate the best positions by comparison
with the positions achieved at previous generations. The velocity of each particle is adjusted based on
the experiences of the particle and its companions. The position in the next generation is then updated
by the sum of the present position and the adjusted velocity [23].

The VFA has outstanding performance in adjusting the distance among the sensor nodes.
However, there may be a limit because the strong attractive and repulsive forces among the sensor
nodes may hinder the nodes from settling at optimal positions. In contrast, the PSO has the ability to
find a global optimal solution. However, it does not have the ability to adjust the distances among the
sensor nodes, which hinders the maximization of the communication coverage rate. Here, the VFPSO
algorithm is applied to find the optimal positions of the sensor nodes in the UWASN, which is
expressed by [23].

→
Fi =

k

∑
j = 1, j 6= i

→
Fi, j (1)

→
Fi, j =


[
wA
(
di, j − dth

)
, αi, j

]
i f di, j > dth

0 i f di, j = dth[
wR

(
1

di, j
− 1

dth

)
, αi, j + π

]
i f di, j < dth

 (2)

vi, d(n + 1) = vi, d(n) + c1r1[pi, d(n)− xi, d(n)]+c2r2

[
pg, d(n)− xi, d(n)

]
+
→
Fi (3)

xi, d(n + 1) = xi, d(n) + vi, d(n + 1), (4)

where
→

Fi, j is the resultant force of the attractive force and repulsive force between the i-th and j-th

sensor nodes.
→
Fi is the total sum of the forces between the i-th sensor node and others. di, j is the

Euclidean distance between the i-th and j-th sensor nodes, and dth is the communication threshold,
which was defined as the smaller value of the communication radii for the i-th and j-th sensor nodes
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as mentioned earlier. αi, j indicates the direction from the i-th to j-th sensor nodes. wA and wR are the
weighting values for the attractive and repulsive forces, respectively. xi, d(n) and vi, d(n) represent
the position and velocity of the i-th sensor node in the d-th dimension at iteration n, respectively.
pi,d(n) is the optimal position of the i-th sensor node until iteration n, and pg, d(n) is the optimal
position obtained from the experiences of all sensor nodes until iteration n, which is called the global
optimal position. The constants c1 and c2 are acceleration weight constants, and r1 and r2 are random
numbers between 0 and 1. In this study, the effective communication coverage area was used as
an objection function. The pseudocode for the VFPSO used to find the optimal positions for the
sensor nodes is illustrated in Figure 8 and its flow chart is shown in Figure 9. The loop finishes
when the communication coverage rate sufficiently converges and its standard deviation (s.d.) over
10 consecutive iterations becomes less than 0.5%. Figure 10 illustrates an example showing the
convergence progress of the sensor nodes. Through iteration of the VFPSO simulation, the sensor
nodes randomly distributed in the targeted area at the initial stage moved toward the optimal positions
where network connectivity was well maintained.
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3. Simulation Results

The optimal deployment performance of the sensor nodes based on the communication PS
was simulated for two different seasons, winter (February) and summer (August), in the targeted
area located off the eastern coast of Korea. Optimal deployment in our simulation means the sensor
deployment having a maximized communication coverage while maintaining connectivity of the sensor
nodes. Here, the communication coverage rate is defined as the ratio of the area of communication
coverage by the sensor nodes to that of the targeted area.

Figure 11 shows examples of the simulation results of optimal deployment for the two different
seasons. The parameters used in the simulation are given in Table 1. The parameters belong in
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four sub-categories: environmental parameters; channel modelling parameters; communication
parameters, and; optimal deployment parameters. For the simulation, 100 sensor nodes were used.
As an initial step, 100 sensor nodes were randomly distributed in the targeted area, as shown in
Figure 11a. The VFPSO search algorithm was then applied. The deployment results for February and
August are displayed on their communication PS, which are illustrated in Figure 11b,c, respectively.
The communication coverage rate for February was estimated to be 85.2%, which is higher than that for
August (estimated to be 80.6%). This result is reasonable because the ocean condition of the targeted
area in February provides a better underwater communication environment than that in August,
as mentioned in Section 2.3.
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Table 1. The parameters used in the optimal deployment simulation.

Environmental Parameters Value Channel Modeling Parameters Value

Month 2, 8 Frequency 10 kHz
Longitude direction distance 22 km Source level 140 dB
Latitude direction distance 22 km Source depth 2 m above the bottom
Wind speed 10 m/s Receiver depth

(Three vertical receiver array) 0.5~3.5 m above the bottomAzimuth angle interval 45◦

Grid points 100 Element spacing 1.5 m (10 λ)

Communication Parameters Value Optimal Deployment
Parameters Value

Symbol number 3500 Loop number 50
Symbol rate 1000 sps Sensor node number 100
Pulse shaping Root Raised Cosine filter Weight value of attractive force 0.01
Equalizer Adaptive DFE(RLS) Weight value of repulsive force 0.5
BER criterion 2% Acceleration weight 1

Another important point to be examined is the connectivity among the sensor nodes, which
is crucial for effective data communication of the UWASN system. The connectivity among the
sensor nodes was estimated for the final deployment scheme to verify the performance of the VFPSO
algorithm. The distance between each sensor node and its neighboring sensor nodes was compared to
the communication threshold defined in Section 2.4, and the results for the two seasons are shown
in Figure 12. The solid lines between sensor nodes indicate that effective two-way communication
is possible. For both cases, 100% connectivity was achieved. Consequentially, the sensor nodes were
positioned within the high communication performance area to achieve the maximal communication
coverage rate, with intervals varying between 1.5 and 2.0 km for both seasons.
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4. Summary and Conclusions

A new method for the optimal deployment of underwater sensor nodes, which can be applied
to the UWASN, has been proposed in this paper. The algorithm includes four sub-algorithms,
which are a routine for underwater acoustic channel modeling in temporally and spatially varying
ocean environments, a routine for estimating the communication performance using the simulated
underwater acoustic channels, a routine for constructing the communication PS, and a routine for
searching for the optimal deployment of the sensor nodes on the PS. Most previous studies for the
optimal deployment of sensor nodes have been performed under the assumption that the sensing
range of every sensor node is the same without consideration of the spatial and temporal variations of
the ocean environment. In contrast, the proposed method is an algorithm finding the optimal positions
of sensor nodes using the communication radii extracted from the communication PS, which is the
main difference from the previous algorithms. Moreover, it uses the VFPSO algorithm, which is a
hybrid optimization method combining the advantages of the VFA and the PSO. Therefore, the sensor
nodes are not placed in equidistant intervals. The optimal deployment based on the PS has been
simulated for two different seasons for an area located off the eastern coast of Korea as the selected
targeted area. As a result, the communication coverage rate in winter (February) was somewhat better
than that in summer (August), implying that the optimal deployment scheme may vary with variations
of the ocean environment. The algorithm does not propose the optimal number of sensor node, but it
finds the optimal positions of sensor nodes for a given number of sensor nodes.

In this paper, it was assumed that the communication channel was time invariant. If the system
is used for a short time period using portable sensors such as sonobuoy-type devices, the ocean
parameters corresponding to that time should be used as input parameters. However, if it is for the
long-term ocean surveillance monitoring for a certain area, it is highly recommended to use the ocean
environmental parameters producing the worst communication radii to obtain the robust deployment
scheme and, in this case, the sensor nodes would be closer to each other. Also, it was assumed that
the BPSK signal with a center frequency of 10 kHz was transmitted as a communication sequence
and each sensor node was composed of a three-receiver array with an element spacing of 1.5 m.
Other communication sequences [such as OFDM (Orthogonal Frequency Division Multiplexing)] or a
different type of receiver system, which might be more robust to (frequency/time-selective)] fading
channels, could provide better communication performance and produce a different deployment
scheme; however, these are beyond the scope of this paper. Nevertheless, our algorithm can be applied
to other types of communication sequences and receivers.
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In this paper, it was assumed that all sensor nodes were positioned near the seafloor. The depth
change of the sensor nodes may yield a better communication performance, and in addition the
combinations of different types of sensors, including AUV (Autonomous Underwater Vehicle),
may improve the performance. The algorithm suggested herein can be extended to these cases,
which will be our future work.
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