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Abstract: In this paper, an approach that can fast classify the data from the electronic nose is
presented. In this approach the gradient tree boosting algorithm is used to classify the gas data
and the experiment results show that the proposed gradient tree boosting algorithm achieved
high performance on this classification problem, outperforming other algorithms as comparison.
In addition, electronic nose we used only requires a few seconds of data after the gas reaction begins.
Therefore, the proposed approach can realize a fast recognition of gas, as it does not need to wait for
the gas reaction to reach steady state.
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1. Introduction

An electronic nose, which imitates the perceptional mechanisms of biological olfactory organ,
has been widely used in many applications such as the medical and diagnostic [1,2], food [3–5] and
environment [6–11] monitor.

One important part of an electronic nose system is a pattern recognition system that would
recognize the olfactory of the tested gas. Therefore, in the past decades, many pattern recognition
algorithms have been introduced for the gas classification. In [12–14], a simple but quite effective
method, the K-nearest neighbor (KNN) was first introduced in electronic nose applications for gas
classification. The Gaussian mixture model (GMM) method [15,16] is also explored for the gas
classification. Though Both KNN and GMM methods are simple, they suffer a limitation that their
accuracy is limited when the size of train data is small. A binary decision tree (BDT) is first proposed
in [17]. The BDT is easy understand and friendly to hardware implementation, but it is unstable and its
accuracy is not high. In order to cope with nonlinearity of gas classification problem and to improve the
classification accuracy, the advanced methods such as artificial neural networks (ANN) like multiple
layer perception (MLP) [18–20], restricted boltzmann machines (RBM) [21,22], support vector machine
(SVM) [23–25] and relevance vector machine(RVM) [26,27] are also presented. Despite the fact that
these advanced methods [18–27] could provide the a high accuracy classification, a significant and
practical disadvantage of these methods is that they can not directly handle the raw, time-sampled
sensor response data due to the high dimensional patterns. In other words, a preprocessing block that
extract the features from the raw data is necessary for the above mentioned advanced methods. Since
featuring extracting is not straightforward and generally needs very complexity processing techniques,
which will lead to the significantly increase of the power consumption and system complexity.

In order to overcome the limitations either on low accuracy or needing to extract features
from raw data, in this paper, gradient tree boosting algorithm which could direct handle the raw,
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time-sampled sensor data is first introduced to the gas classification. Compared with conventional
methods, the proposed methods have the following advantages [28]: (1) It can handle high-dimensional
features without additional feature engineering; (2) Robust to overfitting; (3) Can naturally deal with
the nonlinearity in the classification; (4) can provide high classification accuracy even with small size
of train data.

Besides that, the proposed algorithm can realize the fast classification with high accuracy. Though
there many techniques have been proposed to extract transient features [29–32] by performing certain
operation on raw sampled data such as doing the exponential moving average or derivative to realize
fast classification, no one have proposed to use the raw sampled data as transient features.

The rest of this article is organized as follows. In the next section, the proposed gradient tree
boosting algorithm is presented. Section 3 discusses the experimental results that compare the
performance of the classification accuracy of different classifier methods. Some concluding remarks
are given in Section 4.

2. Gradient Tree Boosting Algorithm

Machine-learning techniques have been becoming more and more prevalent in many areas.
Among the machine-learning algorithms, gradient tree boosting has shown huge success in many
applications. On classification benchmarks gradient tree boosting achieved the leading results [33],
ranging from ranking problems to rate prediction problem [34]. Since its invention [35], the recent
development further advanced the advantage of the tree boosting algorithm. The Extreme Gradient
Boosting, or called XGBoost [36], is a scalable tree boosting system. Due to several important
optimizations in split finding and system design, XGBoost has achieved great success and been
prevalently used in the winning teams in major data competitions like Kaggle and Knowledge
Discovery and Data Mining cup (KDDCup) [36]. In the following of this chapter, the gradient tree
boosting algorithm tailored for the gas classification is discussed.

2.1. Tree Ensemble and Learning Objective

Considering the given data set as D = {(xi, yi)}, with xi representing the feature for data instance i
(assuming xi ∈ R) and yi its target. Assume the number of data instances is n and the dimension of feature
vector is m. For a tree ensemble model, the output ŷi is predicted by summing K additive functions:

ŷi = φ(xi) =
K

∑
k=1

fk(xi), (1)

where fk(xi) is the prediction given by the k-th classification and regression tree (CART) [37]. Figure 1
depicts the ensemble tree model.

Denote the number of leaves in a single CART as T, and define the structure of the tree that
maps the data instance x to the corresponding leaf index as q(x) : Rm → T. Then in Equation (1),
the prediction fk(xi) of k-th CART for i-th data instance xi can be written as

f (xi) = wq(xi)
(2)

where w denote the leaf weights of the CART and q(xi) represents the mapping function defined by
the tree structure.

Then, the learning objective of the tree ensemble model can be set to minimize the following
loss function:

L(φ) =
n

∑
i=1

l(ŷi, yi) +
K

∑
k=1

Ω( fk), (3)

where the differentiable convex loss function l(ŷi, yi) measures the difference the target yi and the
prediction ŷi in Equation (1), and in the summation, n represents the number of data instances, K is the
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number of CARTs used in the algorithm. Here Ω( f ) are the regularization terms for penalizing the
model’s complexity and avoiding overfitting, defined by the number of leaves T and the square of leaf
weights w:

Ω( f ) = γT +
1
2

λ||w||2, (4)

where γ and λ are regularization parameters.

Figure 1. Tree Ensemble Model. The final prediction ŷ for an instance xi is the sum of predictions from
each tree.

2.2. Gradient Boosting Algorithm

Here the goal of training the model is to minimize the overall loss function L(φ). However,
traditional optimization methods cannot apply to minimize it in Euclidean space, since the loss function
of the tree ensemble model in Equation (3) depends on each tree’s structure as well as parameters.
To solve this problem and efficiently achieve this goal, the gradient tree boosting algorithm is proposed
and developed [35,36,38]. In the following let us review the algorithm.

In training the model, at the (t− 1)-th iteration, define the loss function as

L(t−1) =
n

∑
i=1

l(yi, ŷ(t−1)
i ) +

t−1

∑
k=1

Ω( fk) (5)

where ŷ(t−1)
i represents the prediction of the ith instance at the (t− 1)th iteration. Then, to minimize it

we additively add ft at t-th iteration, and the loss function becomes

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) +

t−1

∑
k=1

Ω( fk) + Ω( ft). (6)

In other words, we greedily add the tree which can most improves the model according to
Equation (3). Therefore, at iteration t where we add the t-th CART, the objective is to find the tree
structure of t-th CART that defines ft and Ω( ft), to minimize L(t).

Firstly, note that by Taylor expansion, we can write the loss function as

L(t) = ∑n
i=1[l(yi, ŷ(t−1)) + gi ft(xi) +

1
2 hi f 2

t (xi)]

+∑t−1
k=1 Ω( fk) + Ω( ft),

(7)
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with
gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and
hi = ∂2

ŷ(t−1) l(yi, ŷ(t−1))
(8)

representing the first and second order gradient statistics on l(yi, ŷ(t−1)) respectively. At step t,
the previous tree structures at t− 1 are fixed and their loss function ∑n

i=1 l(yi, ŷ(t−1)) + ∑t−1
k=1 Ω( fk)

can be seen as constant, thus we can remove it and obtain the simplified learning objective at step t

L̃(t) =
n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft). (9)

Then, using Equations (2) and (4), this equation leads to

L̃(t) =
T

∑
p=1

[(∑
i∈Ip

gi)wp +
1
2
(∑

i∈Ip

hi + λ)w2
p] + γT. (10)

Here Ip = {i|q(xi) = p} represents the data instance set of leaf p, i.e., all the instances that are
mapped to leaf leaf p.

Then, for a fixed tree structure q(x), the optimal weight wopt
p of leaf p is defined by the

minimization equation
∂wL̃(t) = 0. (11)

with L̃(t) defined by Equation (10), this function gives solution

wopt
p = −

∑i∈Ip gi

∑i∈Ip hi + λ
. (12)

Taking this optimal weight wopt
p , the corresponding optimal loss function of Equation (10) becomes

L̃(t)opt = −
1
2

T

∑
p=1

(∑i∈Ip gi)
2

∑i∈Ip hi + λ
+ γT. (13)

Therefore, for each iteration t of constructing the t-th CART, our goal becomes finding its best tree
structure q that gives the minimum L̃(t)opt.

However, in finding the best q, enumerating all possible tree structures is not practical. Instead,
the greedy algorithm is used. Starting from a single leaf, we can iteratively split the tree nodes and add
branches to the tree. For each iteration, denote the data instance set as I before splitting, and denote IL
and IR respectively to be the instance sets of the left and right nodes after splitting. Because I = IL ∪ IR,
using Equation (13), the loss function reduction after this splitting is given by

LRsplit =
1
2
[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ
]− γ. (14)

Therefore, to find the best tree structure, the algorithm iteratively adds the branches by choosing
the splitting that maximizes LRsplit.

3. Experimental Setup and Performance Evaluation

3.1. Experimental Setup and the Measurement Procedure

A block diagram of the automated gas delivery setup used to acquire the signatures of the target
gases with the sensor array is shown in Figure 2. Eight commercial Figaro metal oxide semiconductor
(MOS) sensors with diverse sensing performance are used to build the gas sensor array and their
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corresponding part numbers are listed in Table 1. As the working temperature of the sensor, which
is controlled with a built-in heater and thus the voltage in sensor heater is also listed in Table 1.
The electronic signal of these sensors are simultaneously acquired through chemical gas senor CGS-8
system in 10Hz sampling rate. Computer controlled mass flow controllers (MFCs) are used to control
the flow rate of the target gas. Through changing the ratio of the flow rate between target gas and
background gas, we can get a range of concentrations of target gas. For example, in the case that the
background gas is air and the target gas is Methane (CH4). If we would like to set the target methane
gas at concentration 100 ppm, we can first buy a bottle of methane with original concentration 500 ppm
and then set the ratio of flow rate between air and methane to 4:1. Therefore, if we have a bottle
of methane with concentration 500 ppm, any concentration between 0 to 500 ppm can be achieved
by properly controlling the flow rate between air and methane through the MFCs. Before the gas
reaction, the air is injected to the chamber for 500 s to clean the surface of gas sensors and get a stable
baseline resistance. Then, thesensor array is exposed to the reaction gas for 160 s to ensure sensors
reach the saturation status. In our case, six type gases, i.e., Carbon Monoxide (CO), methoxymethane
(C2H6O), Ethylene (C2H4), Methane (CH4), Ethane (C2H6) and Hydrogen (H2) are used for the
reaction. The concentration ranges for each target gas is from 20 ppm to 200 ppm with a stepsize
20 ppm. The reason why we chose these 6 gases is that they are the most common inflammable and
explosive gases which may result in great damage when they leaked. The low and upper explosive
levels for these gases are 12–74.2% VOL, 3.3–19% VOL, 2.7–36% VOL, 5–15% VOL, 3–12.4% VOL and
4.1–74.2% VOL, where 1% V is 10,000 ppm. And we think that realization the fast recognition of these
6 gases may help to prevent a conflagration in Petrochemical industry or in daily life.

MFC

MFC

MFC

MFC

Air

Gas 1

Gas 2

Gas n

DAQ

PC

Gas Chamber

Sensor

Array

Figure 2. Experimental setup to acquire signatures of the target gases with the sensor array.
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Table 1. Types of metal oxide semiconductor (MOS) sensors (provided by Figaro Inc.)

Channel Sensor Part Number Voltage in Sensor Heater

0 TGS821 5 V
1 TGS812 5 V
2 TGS2610 5 V
3 TGS2612 5 V
4 TGS3870 5 V
5 TGS2611 5 V
6 TGS816 5 V
7 TGS2602 5 V

3.2. Data Set and features

As there are 10 concentrations for each gas, for each type gas at each concentration, we make
25 repeated measurements and thus there are 250 measurements for each type gas. As there are 6 types
in our case, totally we have 250× 6 = 1500 samples in our data sets. It should be noted that the
proposed algorithm can be directly applied to the raw data set and thus there is no need to do the
preprocessing of the sampled raw data for the feature extraction. And, it is one advantage of the
proposed algorithm, which can directly handle high-dimensional data without any feature extraction
engineering. Besides that, we found that it only a small part of the time-sampled raw data is sufficient
for the high-accuracy classification. In our case, we only use the first 6 s raw data since the reaction
of the sensor started as shown in Figure 3. From the Figure 3 , at 200 ppm for gas CO, the gas sensor
TGS2602 takes about 75 s to reach the steady state. Therefore, compared with existing method which
use the sensor resistance at steady state as important features for the recognition, the proposed method
can realize the recognition 12 time faster.

60 80 100 120 140 160

time(s)

4.5

5

5.5

6

6.5

7

7.5

8

R
e
s
is

ta
n
c
e
 (

K
)

CO at 200 ppm

Steady state

Data used for classification

starting reaction(the resistance value is r
b
)

6s

Figure 3. The response of a metal-oxide based chemical sensor to 200 ppm of CO.

The first 6 s raw data (resistance value) of each sensor is directly used as features. As the sample
rate of data acquisition device (DAQ) is 10 Hz, i.e., there are 6× 10 = 60 features of for i-th sensor at
j-th measurement, which can be denoted as Ri

j = [ri
j1, ri

j2, ri
j3, ..., ri

j60], where r represents the resistance
value at certain time. In our E-nose, there are 8 gas sensors and thus there are 8× 10× 6 = 480 features
in total for j-th measurement, which can be denoted as Fj = [R1

j , R2
j , R3

j , ..., Rj8]. In order to reduce
impact of the baseline drift, the final features vector the baseline resistance, denoted as rb, which is the
resistance of gas sensor before starting reaction is subtracted from feature vector, i.e., the final feature
vector can be expressed as Fj − rb.
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3.3. Results

For each type gas, the dataset consisted of 250 samples is randomly split into 70% training and 30%
test sets. We used the same training gas sets to train the different classification algorithms, including the
proposed one. And the test set is also the same between the proposed algorithm and the comparison
algorithms. In other words, all the algorithms are learned from same data and test their classification
accuracy on the same data. Therefore, under this circumstance, the algorithm with highest classification
accuracy should be best one. Classification accuracy is one of the most important evaluation metrics for
supervised learning algorithms and it can be obtained by the number of correctly recognized examples
is divided by the total number of testing examples. Moreover, in order to do a fair comparison with the
GMM, KNN, MLP, and SVM methods, the same condition (the same raw sampled data) is also applied
to these methods, though generally some preprocessing techniques such as Principal Component
Analysis (PCA), fast fourier transform (FFT) and discrete wavelet transform (DWT) should be applied
to raw data to extract features when the GMM, KNN, MLP, and SVM methods are used. In addition,
as the training set and test set are randomly selected from the whole dataset, to eliminate the bias of
the test result, we repeated this train-test procedure 100 times with different random splits. Then we
average the accuracy of each test to get the accuracy for each classifier.

Table 2 shows the classification performance for various algorithms. It can be seen from Table 2,
the GMM reach the lowest accuracy. In the GMM model, it assumes that the probability distribution of
observations in the overall population can be represented by mixture Gaussian distribution, but this
assumption is not always satisfied. Moreover, estimating the covariance matrices for the Gaussian
components becomes difficult when the feature space gets large and is comparable to the number
of the data points. Therefore, in our case where the dimension of feature space can get as large
as 480, the classification performance of GMM is significantly poor. Table 2 also shows that the
proposed gradient tree boosting achieves the highest classification accuracy. It verifies the claim that
the proposed gradient tree boost algorithm can handle high-dimensional features without additional
feature engineering and still achieve high accuracy while the existing methods such as GMM, KNN
and SVM can not. Without any additional feature engineering, the raw sampled data can be directed
taken as the input of the proposed gradient tree boost method, which could lead to the fast recognition
of the gas.

Table 2. Classification Performance of Algorithms.

Classifier Accuracy(%)

GMM [15] 25.7
KNN [12] 84.6
MLP [20] 86.9
SVM [24] 86.2

The Proposed Gradient Tree Boosting Algorithm 96.9

Here to make the analysis more complete, we also tested the following approach. We first use
the PCA to reduce the dimension of feature space from 360 to 10, with the total explain variance
ratio >0.995. Then test each algorithm with the PCA features. The performances are listed in Table 3.
We found that for each algorithm, PCA processing does not improve the accuracy (We also tested
other different numbers of PCA components, the results are similar.). The Figure 4 shows the first 2
most dominant components (with explain variance ratio of 0.727 and 0.135 respectively) for 4 gases.
The reason why PCA cannot significantly improve the accuracy can be seen from Figure 4 . We can
see that different gases have different properties, but the boundary of each gas is not clear define.
In other words, for the existing algorithm such as KNN, GMM, MLP and SVM, more sophisticated
feature extracting engineering is required to further improve the accuracy. Moreover, though the PCA
processing reduces the feature dimension, it eliminates certain useful information when removing
the noise.
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Table 3. Classification Performance of Algorithms after PCA Preprcessing.

Classifier Accuracy (%)

GMM [15] 25.9
KNN [12] 84.5
MLP [20] 86.7
SVM [24] 86.3

The Proposed Gradient Tree Boosting Algorithm 96.7

Figure 4. 2-dimensional PCA plot of 4 gases.

3.4. An Example of Application Based on Raw Data to Realize Fast Recognition

Although natural gas (mainly consist of Methane CH4) is environmental friendly, it can lead to
a serious damage if they leak. It is stored in pressurized steel cylinders in liquid form and vaporize
at normal temperatures. When it leaks and reach certain concentration, ignition may happen and
cause an explosion. Therefore, the detection of Methane leakage as early as possible is quite desirable.
In order to test whether the proposed algorithm based on raw sampled data can realize the fast
detection the Methane leakage on real application in a open environment, we lift the glass cover of
the gas chamber so the sensor array can exposed to real environment. Then, we turn on the valve of
methane bottle and let methane gas leak through a rubber pipe which is placed near the sensor array.
The leakage only last for 6 s and the 6 s raw sampled data collected by the sensor system is direct fed
into the proposed gradient tree boost classifier which will recognize whether the methane is existed
or not. Such measurements are repeated for 40 times, and the proposed gradient tree boost classifier
recognizes the sample correctly as methane 39 times, while GMM, KNN, MLP and SVM classifiers
only reach 13, 31, 28, 34 times. In other words, even in an open environment, the proposed gradient
tree boost classifier can realize fast detection of methane leakage with high accuracy, which may help
to prevent a fire cased by natural gas leakage.

4. Conclusions

In this paper, we applied Gradient tree boosting algorithm to solve the multi-classification
problems for 6 different gases. We showed that this algorithm achieved higher performance than
that of conventional algorithms. Besides, since the approach we used only need to take the first few
seconds data of the electronic nose after gas reaction, without any additional feature engineering, it is
able to detect certain gas quickly and efficiently. Therefore, our approach could have great potential in
practical application.



Sensors 2017, 17, 2376 9 of 10

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant
NO. 61601301, 61504086), the Fundamental Research Foundation of Shenzhen (Grant NO. JCYJ20160308094919279,
JCYJ20170302151123005, JCYJ20150626090521275), the key Project department of Education of Guangdong
Province (No. 2015KQNCX142) and the Natural Science Foundation of SZU (Grant NO. 2016020).

Author Contributions: The work presented in this paper is a collaborative development by all of the authors.
Wenbin Ye and Yuan Luo contributed to the idea of the incentive mechanism and designed the algorithms.
Xiaojin Zhao, Xiaofang Pan and Yuan Cao were responsible for some parts of the theoretical analysis and the
paper check. All of the authors were involved in writing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. D’Amico, A.; Di Natale, C.; Paolesse, R.; Macagnano, A.; Martinelli, E.; Pennazza, G.; Santonico, M.;
Bernabei, M.; Roscioni, C. Olfactory systems for medical applications. Sens. Actuators B Chem. 2008, 1,
458–465.

2. Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality
of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 3, 1–9.

3. Peris, M.; Escuder-Gilabert, L. The electronic nose applied to dairy products: A review. Sens. Actuators
B Chem. 2009, 638, 1–15.

4. Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality:
A review. J. Food Eng. 2015, 144, 103–111.

5. Baietto, M.; Wilson, A.D. Electronic-nose applications for fruit identification, ripeness and quality grading.
Sensors 2015, 15, 899–931.

6. RajamÄki, T.; Arnold, M.; Venelampi, O.; Vikman, M.; RÄsÄnen, J.; ItÄvaara, M. An electronic nose and
indicator volatiles for monitoring of the composting process. Water Air Soil Pollut. 2005, 162, 71–87.

7. Romain, A.C.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental
applications: An overview. Sens. Actuators B Chem. 2010, 146, 502–506.

8. Brudzewski, K.; Osowski, S.; Pawlowski, W. Metal oxide sensor arrays for detection of explosives at
sub-parts-per million concentration levels by the differential electronic nose. Sens. Actuators B Chem. 2012,
161, 528–533.

9. Capelli, L.; Dentoni, L.; Sironi, S.; Del Rosso, R. The need for electronic noses for environmental odour
exposure assessment. Water Sci. Technol. 2014, 69, 135–141.

10. Capelli, L.; Sironi, S.; Del Rosso, R. Electronic noses for environmental monitoring applications. Sensors
2014, 14, 19979–20007.

11. Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.A.; Jana, A. Application of electronic nose
for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144,
329–340.

12. Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N. Transient response analysis for temperature-modulated
chemoresistors. Sens. Actuators B Chem. 2003, 93, 57–66.

13. Gebicki, J.; Szulczynski, B.; Kaminski, M. Determination of authenticity of brand perfume using electronic
nose prototypes. Meas. Sci. Technol. 2015, 26, 125103.

14. Yang, J.; Sun, Z.; Chen, Y. Fault detection using the clustering-kNN rule for gas sensor arrays. Sensors 2016,
16, 2069.

15. Belhouari, S.B.; Bermak, A.; Shi, M.; Chan, P.C. Fast and robust gas identification system using an integrated
gas sensor technology and Gaussian mixture models. IEEE Sens. J. 2005, 5, 1433–1444.

16. Leidinger, M.; Reimringer, W.; Alepee, C.; Rieger, M.; Sauerwald, T.; Conrad, T.; Schuetze, A.
Gas measurement system for indoor air quality monitoring using an integrated pre-concentrator gas
sensor system. In Proceedings of the Micro-Nano-Integration, GMM-Workshop, Duisburg, Germany,
5–6 October 2016; pp. 1–6.

17. Hassan, M.; Bermak, A. Gas classification using binary decision tree classifier. In Proceedings of the 2014
IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, VIC, Australia, 1–5 June 2014;
pp. 2579–2582.

18. Brezmes, J.; Ferreras, B.; Llobet, E.; Vilanova, X.; Correig, X. Neural network based electronic nose for the
classification of aromatic species. Anal. Chim. Acta 1997, 348, 503–509.



Sensors 2017, 17, 2376 10 of 10

19. Zhai, X.; Ali, A.A.S.; Amira, A.; Bensaali, F. MLP neural network based gas classification system on Zynq
SoC. IEEE Access 2016, 4, 8138–8146.

20. Omatul, S.; Yano, M. Mixed Odors Classification by Neural Networks. In Proceedings of the 2015 IEEE 8th
International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), Warsaw, Poland, 24–26 September 2015; pp. 171–176.

21. Langkvist, M.; Loutfi, A. Unsupervised feature learning for electronic nose data applied to Bacteria
Identification in Blood. In Proceedings of the NIPS 2011 Workshop on Deep Learning and Unsupervised
Feature Learning, Granada, Spain, 12–17 December 2011; pp. 1–7.

22. Liu, Q.; Hu, X.; Ye, M.; Cheng, X.; Li, F. Gas recognition under sensor drift by using deep learning. Int. J.
Intell. Syst. 2015, 30, 907–922.

23. Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators
B Chem. 2005, 107, 730–737.

24. Acevedo, F.; Maldonado, S.; Dominguez, E.; Narvaez, A.; Lopez, F. Probabilistic support vector machines for
multi-class alcohol identification. Sens. Actuators B Chem. 2007, 122, 227–235.

25. Lentka, Ł.; Smulko, J.M.; Ionescu, R.; Granqvist, C.G.; Kish, L.B. Determination of gas mixture components
using fluctuation enhanced sensing and the LS-SVM regression algorithm. Metrol. Meas. Syst. 2015,
3, 341–350.

26. Wang, X.; Ye, M.; Duanmua, C. Classification of data from electronic nose using relevance vector machines.
Sens. Actuators B Chem. 2009, 140, 143–148.

27. Wang, T.; Cai, L.; Fu, Y.; Zhu, T. A wavelet-based robust relevance vector machine based on sensor data
scheduling control for modeling mine gas gushing forecasting on virtual environment. Math. Probl. Eng.
2013, 2013, doi:10.1155/2013/579693.

28. Krauss, C.; Do, X.A.; Huck, N. Deep neural networks, gradient-boosted trees, random forests: Statistical
arbitrage on the S&P 500. Eur. J. Oper. Res. 2017, 2, 689–702.

29. Muezzinoglu, M.K.; Vergara, A.; Huerta, R.; Rulkov, N.; Rabinovich, M.; Selverston, A.; Abarbanel, H.
Acceleration of chemo-sensory information processing using transient features. Sens. Actuators B Chem. 2009,
137, 507–512.

30. Siadat, M.; Sambemana, H.; Lumbreras, M. New transient feature for metal oxide gas sensor response
processing. Procedia Eng. 2012, 47, 52–55.

31. Siadat, M.; Losson, E.; Ahmadou, D.; Lumbreras, M. Detection optimization using a transient feature from a
metal oxide gas sensor array. Sens. Transducers 2014, 27, 340–341.

32. Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods:
A Review. Sensors 2015, 15, 27804–27831.

33. Li, P. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. Available online: https://arxiv.org/
ftp/arxiv/papers/1203/1203.3491.pdf (accessed on 13 August 2017).

34. He, X.; Pan, J.; Jin, O.; Xu, T.; Liu, B.; Xu, T.; Shi, Y.; Atallah, A.; Herbrich, R.; Bowers, S.; et al. Practical
Lessons from Predicting Clicks on Ads at Facebook. In Proceedings of the Eighth International Workshop
on Data Mining for Online Advertising, New York, NY, USA, 24–27 August 2014; pp. 51–59.

35. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
36. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 785–794.

37. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton,
FL, USA, 1984.

38. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (with
discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 337–407.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/ftp/arxiv/papers/1203/1203.3491.pdf
https://arxiv.org/ftp/arxiv/papers/1203/1203.3491.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Gradient Tree Boosting Algorithm
	Tree Ensemble and Learning Objective
	Gradient Boosting Algorithm

	Experimental Setup and Performance Evaluation
	Experimental Setup and the Measurement Procedure
	Data Set and features
	Results
	An Example of Application Based on Raw Data to Realize Fast Recognition

	Conclusions

