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Abstract: Pollution on water resources is usually analyzed with monitoring campaigns, which consist
of programmed sampling, measurement, and recording of the most representative water quality
parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data
structure to characterize complex dynamics phenomena. In this work, we propose an enhanced
statistical interpolation method to provide water quality managers with statistically interpolated
representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of
the a priori available information of the quality parameter measurements through Support Vector
Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously
proposed methods in three segments of the Machángara River and one segment of the San Pedro River
in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal
maps. The best interpolation performance in terms of mean absolute error was the SVR with
Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the
bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with
significant improvement of the estimation quality, consistently for all the six water quality variables,
which points out the relevance of including a priori knowledge of the problem.

Keywords: water quality; pollution measurements; spatio-temporal interpolation; support vector
regression; Mahalanobis kernel; autocorrelation kernel

1. Introduction

Environmental pollution is related to the voluntary or involuntary inclusion of natural or artificial
materials and substances that damage the ecosystem. Pollution of water resources is mainly due to the
increment in population and industrial density [1]. Growing population waste poses a threat to public
health and put in danger the continuous use of water reserves [2]. Typically, urban wastewater is a
complex mixture containing water (usually over 99%) mixed with organic and inorganic compounds,
both in suspension and dissolved with small concentrations [3]. In order to prevent public health
problems and manage water resources, it is highly relevant to know the physical and chemical
characteristics of such water resources.
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Monitoring water quality of hydraulic resources through monitoring campaigns is one of the most
important tasks in order to responsibly manage the use of water. Water quality monitoring focuses
on programmed sampling, measurement, and recording of the most representative water quality
parameters. Measurements are not usually taken uniformly at determined locations and times during
the monitoring campaigns, and usually the pollutant concentrations in river waters do not follow
linear variations [4]. It has been pointed out in previous works [5] that the representation of sensed
data in different locations and different campaigns can provide useful information. In our previous
work [6], we showed that it was possible to extract such information using conventional interpolation
methods. However, those reconstruction methods based just on measures are extremely general and
they do not consider the higher order statistical information of the available data in order to construct
these representations.

In this work, we propose to use machine learning techniques based on advanced kernel methods
to maximize the extracted information from the expensive and costly water quality measurement
campaigns. The proposed methods allow to include statistical information of higher order in
the models, especially the spatio-temporal covariance, through the Mahalanobis distance, and the
spatio-temporal correlation, through the autocorrelation function of different consecutive sensors and
over time. Both metrics are naturally included for their use as Mercer’s kernel for Support Vector
methods, and they have been proposed and successfully used in other areas [7,8].

The rest of this paper is organized as follows. In Section 2, the materials and methods are
explained, including a short mathematical description of the spatio-temporal interpolation algorithms
and details of the database used for this analysis. In Section 3, results are presented for a number
of measured variables, the algorithmic performance is benchmarked, and the analysis in several
environmental variables and their spatio-temporal dynamics are visualized. The result discussion and
the main conclusions are presented in Section 4.

2. Materials and Methods

2.1. Experimental Data

The dataset used in this work was provided by EPMAPS (Metropolitan Water Company of Quito,
capital of Ecuador) and includes 15 water quality parameters of Machángara and San Pedro Rivers that
were measured between 2002 and 2007 through 64 monitoring campaigns [9]. Located at about 2815 m
above sea level, Machángara River is the main collector of wastewater of Quito, as far as it receives
about 75% of the industrial and human waste [9,10]. Machángara River crosses the southern area of
Quito with an approximate length of 22 km, where 25 water quality monitoring stations are located
(see Figure 1). On the other hand, San Pedro River crosses the East of Quito through a population zone
at about 2000 m above sea label, being the principal waste collector of that zone.

In this work, we have chosen three sections of the Machángara River which pass through
three different population areas. The first and second areas are to the south of Quito and they
are characterized by having a high population density and sharing their space with the industrial
sector, whereas the third one is at the center of Quito, and it exclusively represents a commercial and
touristic area. The fourth stretch corresponds to a section of the San Pedro River that crosses the East
of Quito, which is mostly a housing and commercial area.

The monitoring stations used in this work are shown in Figure 1 and the description of the stations
is presented in Table 1.
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Figure 1. Location of monitoring stations at Machángara (Stretches 1, 2, and 3) and San Pedro (Stretch 4)
Rivers. The station names and numeric codes were provided by the Metropolitan Water Company.

Table 1. Monitoring stations used in this work. Stretch 1 is Shanshayacu Ravine, Stretch 2 is Machángara
River, Stretch 3 is El Trébol, and Stretch 4 is San Pedro River. Parameter d corresponds to the distance
from each other station with respect to the first one in every studied stretch.

Studied Stretch Station Number Station Name Code d (km)

Stretch 1

ST1 Q. Shanshayacu 1.02 0.00
ST2 Q. Ortega 1.04 1.30
ST3 R. Mch. Quimiag 1.07 4.27
ST4 R. Mch. Quito Sur 2.05 5.54

Stretch 2

ST5 R. Mch. Caupichu 2.01 0.00
ST6 R. Mch. Oleoducto 2.02 1.89
ST7 R. Mch. La Lucha 2.03 3.15
ST8 R. Mch. Fosforera 2.04 4.27
ST9 R. Mch. Quito Sur 2.05 5.25

Stretch 3

ST10 R. Mch. El Recreo 2.07 0.00
ST11 R. Mch. Villaflora 2.08 1.75
ST12 R. Mch. El Sena 2.09 2.75
ST13 R. Mch. El Trébol 2.10 4.91
ST14 R. Mch. Las Orquídeas 2.11 6.31
ST15 Q. El Batán 1.09 9.49

Stretch 4

ST16 R. SP. Trópico 4.02 0.00
ST17 R. SP Amaguaña 4.03 2.98
ST18 R. SP Capelo 4.04 11.12
ST19 R. SP Triángulo 4.06 12.55
ST20 R. SP Guangopolo 4.07 16.09
ST21 R. SP Guangopolo canal 4.09 17.23
ST22 R. SP Cumbaya Cerv. 4.10 24.34
ST23 R. SP AJ Machángara 4.13 28.42

2.2. Sensors Description and Measurement Process

The procedures for water quality measurement used by the Metropolitan Water Company are
intended for domestic, industrial and farming wastewater. Therefore, these procedures can be diverse
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when considering different sources of water pollution, and different water quality variables to be
evaluated. Technicians of EPMAPS used measurement methods that can generally be applied to the
three types of sources of pollution described above. The procedures used are given in the American
Public Health Association Standard Methods [11], for temperature (2550 method), for dissolved oxygen
(4500-O method), for chemical oxygen demand (5220-A method), and for biochemical oxygen demand
(5210 method). The equipments used for measurements were: for flow rate (Q), a portable sampler
ISCO 6712 which uses ultrasonic sensors; for DO, a portable YSI 58 Dissolved Oxygen Instrument
with 5740 cable and 5739 probe; and for COD, a Hanna HI839800 COD Test Tube Heater. For water
sampling, a YSI WS705 single-bottle composite/discrete water sampler was used. It was released into
the river and recovered it every 24 h [12] and a 3.7 L plastic container for Biochemical Oxygen Demand
and Chemical Oxygen Demand was taken. Water samples were preserved on ice and transported in a
cooled box to the EPMAPS quality control laboratory.

The six water quality parameters selected as more relevant to be analyzed in this work are
described and summarized in Table 2. The measurements of these parameters were obtained in
campaigns separated by different time periods, and in not-equally-separated places along the river.
Therefore, the measurements corresponded to a non-uniform spatio-temporal sampling grid that
requires subsequent and careful digital processing.

Table 2. Studied water quality parameters for Stretches 1, 2, 3, and 4, in the case studies of Machángara
and San Pedro Rivers.

Parameter Acronym Units

Flow rate Q m3/s
Temperature T ◦C

Dissolved Oxygen DO mg/L
Chemical Oxygen Demand COD mg/L

Biochemical Oxygen Demand BOD mg/L
COD/BOD ratio COD/BOD –

2.3. Conventional Algorithms and Spatio-Temporal Interpolation

The EPMAPS database can entail some measurement errors caused by the inherent processes
of capturing river water samples, transportation from field to laboratory, conservation of
samples, response time for used chemical reagents, procedural and human errors, among others.
These measurement errors of water quality parameters can be evidenced as non-intuitive
spatio-temporal variations or as inherent noise of the measurement process. Even altered by noise,
data convey valuable information that can be extracted with mathematical procedures of digital
smoothing over the obtained spatio-temporal series. Two different kinds of interpolation algorithms
had been previously proposed for this type of problems [6], namely, parametric algorithms (Delaunay
linear and nearest), which do not require tuning parameters, and non-parametric algorithms (such as
k Nearest Neighbors or k-NN), which require tuning some few free parameters. Algorithm k-NN had
allowed to obtain the lowest absolute interpolation error (MAE) in comparison with other methods like Delaunay
linear and nearest [6]. Therefore, we use k-NN again in this work as our reference algorithm.

The k-NN algorithm is a powerful statistical learning tool, widely and commonly used in
data classification and regression. In addition, it is easy to implement in software, providing with
robustness in the estimation, specially when used it in conjunction with cross-validation techniques [13].
The estimation process is accomplished by using only those few data closer to the target variable or test
point xe. For this purpose, a weighted function is used for each close neighbor xi and their respective
distances to xe. The most widely used distances in this setting are the Euclidean, the Manhattan,



Sensors 2017, 17, 2357 5 of 18

the Minkowski, the weighted Euclidean, the Mahalanobis, and the Cosine distances. The Mahalanobis
distance between two points x1 and x2 is defined as

distM(x1, x2) =
√
(x1 − x2)T Σ−1

x (x1 − x2) (1)

where Σx is the estimated covariance matrix of the available dataset. The Mahalanobis distance has
advantageous properties when compared to the Euclidean distance, namely, it is invariant to changes
in scale, it does not require previous normalization, and it does not depend on the measurements units.
By using the matrix Σ−1

x , we consider the covariance between variables and possibly the redundancy
effect. The estimation function of xe is represented by f̂ (xe), and it is estimated according to the
Distance Weighted Nearest Neighbor algorithm [14] as follows:

f̂ (xe) =
∑k

i=1 wi f (xi)

∑k
i=1 wi

(2)

where f (xi) represents the value of f at that sample near to xe, and wi are the weights that are defined
in terms of the Mahalanobis distance as

wi =
1

distM(xe, xi)2 (3)

Therefore, the interpolation algorithm is refined by weighing the contribution of each of the
k neighbors according to their distance to point xe, giving larger weights to the nearest neighbors.
Whenever xe exactly matches one of xi, the denominator becomes zero, and in that case we assign f̂ (xe)

to be just f (xi).

2.4. Support Vector Regression and Autocorrelation Kernel

One of the main contributions of the present work is the usage of kernel methods for interpolating,
building, and visualizing the spatial-temporal dynamics of the measured variables. In this setting,
kernel methods can be advantageous applied by taking into account the statistical structure of the
variables [15,16].

Probably the most known Support Vector Machine (SVM) algorithm is the classification algorithm.
However, increasing advantages have been obtained from the SVM algorithm for the nonlinear
regression paradigm. The main differences between SVM classification and support vector regression
(SVR) are the noise models and the loss functions. Vapnik proposed to use the ε-insensitive loss
function for yielding sparse solutions in the SVR algorithm [8,17]. Let ε > 0, we can define

`(u) = |u|ε =

{
0, |u| < ε

|u| − ε, otherwise
(4)

This loss function assigns zero loss to any error smaller than ε, and it also provides some
robustness against outliers. The regression function estimates the true function by constructing
a tube around it, which defines a margin outside that function, treating the deviation as noise.
Accordingly, the SVR model used here for spatial-temporal water quality maps uses the following
nonlinear regression model:

ŷ = f (x) = 〈w, ϕ(x)〉+ b (5)

where ϕ(x) denotes a nonlinear transformation to a usually higher dimensional feature space, and b
is the bias term. Now we consider a dataset D={x1, y1}, . . . , {xN, yN}, with x ∈ Rd, y ∈ R, where d
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is the dimension of the input data, and N is the number of observed samples or measurements.
Then, the ν-SVR algorithm states that the function to be minimized [18] is

1
2
‖w‖2 + C

(
νε +

1
N

N

∑
i=1

(ξi + ξ∗i )

)
(6)

where the first term is a L2 regularization and the second term is the ε-insensitive loss function.
Note that again ε is the insensitiveness parameter, C is another previously established parameter that
allows us to adjust the trade-off between the error tolerance and the softness of the regression, ξi and
ξ∗i are the slack variables representing the excess of error for each sample (xi, yi), and ν is an operative
parameter used to control the parameter ε in terms of the maximum deviation from the real value
allowed at each measurement. Taking into account the following constraints,

ξi, ξ∗i ≥ 0, ∀i = 1, ..., N (7)

yi − (〈w, ϕ(x)〉+ b) ≤ ξi + ε (8)

(〈w, ϕ(x)〉+ b)− yi ≤ ξ∗i + ε (9)

and using the Lagrangian function, the solution to the nonlinear SVR is

w =
N

∑
i=1

ηi ϕ(xi) (10)

where ηi, i = 1, 2, 3, ..., N are scalars, and samples xi for which ηi 6= 0 are the support vectors. Thus,

ŷ = f (x) = 〈w, ϕ(x)〉+ b =
N

∑
i=1

ηi〈ϕ(xi, ϕ(x))〉+ b (11)

which is the same as:

ŷ = f (x) =
N

∑
i=1

ηiK(xi, x) + b (12)

where K(·, ·) denotes a Mercer’s kernel, and it stands for the dot product in a high-dimensional space,
without needing to explicitly know either the nonlinear transformation or the space.

In this work, we use the ν-SVR to provide the estimation of the support vectors and their number
(nSV) to be maintained in the solution with respect to the total number of samples in the dataset.
Then, the solution can be linearly expressed in terms of the kernel function and the available samples.
Among the most usual Mercer’s kernels, we find the linear and the Gaussian ones. Here, we follow
an approach of increasing statistical knowledge about the data structure to be incorporated to the
algorithm in order to provide with improved performance, as follows.

First, we use a SVR with the conventional Gaussian radial basis function kernel (RBF-SVR). In this
case, the kernel is a bivariate function given by

K(xi, xj) = exp
(
− 1

2σ2 ‖xi − xj‖2
)

(13)

where σ allows to control the neighborhood of samples on which each sample influences and
contributes to create the solution. These models can approximate the underlying function of a wide
variety of data as long as σ is tuned, usually by cross-validation. Note that in this case, we have radial
symmetry and we assume that changes in both dimensions of our data (time and space) follow similar
dynamics. However, temporal and spatial variations will probably be different, both physically and
in terms of their units. Whereas normalization of input variables can alleviate this problem to some
extent, other advanced kernels can be used instead, which do not need normalization.
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Second, we propose to use a non-radially symmetric kernel, by using for this purpose the
covariance matrix of the data, given by Σx. Hence, a SVR with a Mahalanobis distance kernel (Ma-SVR)
is built, and in this case, the kernel equation is given by

K(xi, xj) = exp
(
−1

2
xi

T Σ−1
x xj

)
(14)

where the exponent considers the covariance-weighted distance between samples xi and xj. Note that
different spatial and temporal scales do not distort these distances, and neither does the use of different
measurement units.

Third, we use a SVR with an Autocorrelation kernel (Au-SVR), as follows,

K(xi, xj) = R̂(xi − xj) (15)

This is a recently proposed new type of admissible SVR kernel, which uses the advantages of
estimating the autocorrelation among samples. The autocorrelation function is highly relevant in
signal processing, and it is a basic feature of random processes. One of the characteristics of the
autocorrelation function is its symmetry in terms of the elements of the kernel matrix elements,
K(xi, xj) = R(−(xi − xj)) = R(xi − xj). Recall that the autocorrelation is a solid measurement of the
dependence of successive samples on previous ones [19], and for stationary processes, it depends only
on the relative argument difference, and not on the absolute value of the argument.

We look for the optimum relationship between the amount of data, the approximation quality
of the data by the chosen function of a set of functions, and the parameters that characterize that
function set [20]. We use the SRM (Structural Risk Minimization) induction principle, which controls
the approximation capabilities of a set of hypothesis functions in many different ways. The simplest
interpretation of this approach is that: (1) it has the smallest number of features (free parameters);
(2) it has the smallest algorithmic complexity; and (3) it has the largest margin. The problem is to
find the best SVR structure that allows us to obtain algorithms which can generalize the data and
measurements structure in the presence of noise for our data.

The interpolation methods were evaluated using cross-validation trough LOO (Leave One Out)
to obtain the MAE. Figure 2 shows a summary scheme of smoothing and interpolation processes used
in this work.

KNN with

Mahalanobis

distance; select the

neighbors with LOO

nu-SVM with RBF

kernel; select C, nu,

epsilon, gamma

parameters with LOO

nu-SVM with

Mahalanobis kernel;

select C, nu, epsilon,

gamma parameters

with LOO

nu-SVM with

Autocorrelation

kernel; select C, nu,

epsilon, gamma

parameters with LOO

River Water Quality

database from

2002-2007 with

nonuniform sampling

Select the

algorithm

with smallest MAE

River Water Quality

Smoothed and

interpolated database

between 2002-2007

Figure 2. Flowchart of smoothing/interpolation for river water quality parameters.
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3. Results

The next subsection summarizes results mostly on the performance of each benchmarked
algorithm, which allows us to identify the best algorithms to be subsequently used. After this, a detailed
analysis is made on the dynamics of the selected water quality variables according to the two best
algorithms, in order to trust not only a single algorithm when drawing conclusions on the dynamics,
and to check that we are analyzing actual spatio-temporal dynamics, rather than possibly-occurring
interpolation artifacts due to the algorithm at hand. We used MatlabTM to implement our own software
for most of the methods, which provides us with better control on the free parameter tuning and many
other technical details.

3.1. Spatio-Temporal Interpolation Performance

According to Table 1, Stretch 1 contains the lowest number of observations during the 2002 to
2007 sampling period. This is due to its smaller number of monitoring stations when compared to
the other analyzed areas; in addition, the length between the first and last stations is the smallest one.
However, the number of stations does not necessarily increase with the travel distance of the stretch,
as it can seen between Stretches 3 and 4, because of the different priority of water quality monitoring
given by EPMAPS to different spatial locations. For instance, Stretch 3 contains the largest number
of monitoring stations, although its travel distance is not the longest one, because this river section
collects the last human and industrial waste from Quito before these waters take a different course
from the city and flow to less populated areas.

Figure 3 shows the dynamics of 6 water quality variables of Stretch 3 whose analysis will be
discussed in more detail in Section 3.2. Table 3 shows the MAE interpolation errors obtained when
k-NN, RBF-SVR, Ma-SVR, and Au-SVR algorithms are used on the dataset. The free parameters
of these algorithms were adjusted by using a leave-one-out cross-validation procedure. That table
shows that k-NN presents the largest MAE with an average of 32.1, followed by 28.0 for RBF-SVR
and Ma-SVR. The lowest value is obtained by the Au-SVR algorithm, with an average MAE of 25.6.
Note that RBF-SVR and Ma-SVR often exhibit similar MAE values in most of the variables, though the
computational cost for optimizing the free parameters of the RBF-SVR algorithm is much lower than
in the Ma-SVR algorithm. The lowest value of MAE in Q corresponds to the Stretch 1, this is possibly
due to the fact that at the sites of flow measurement there has been no transient storage of water and
the measurements lack considerable temporal variations of water flow. MAEs in T are similar (about
1.2) for all the analyzed stretches, and a similar behavior can also be observed with the MAE of the DO
(about 0.7).

In contrast, there are large differences in the MAE of BOD, which is minimum (7.63) for Stretch 4
and it reaches its maximum (105.36) for Stretch 1. Similar behavior can also be observed in the MAE of
COD, since it is minimum (24.3) for Stretch 4 and maximum (238.65) for Stretch 1. Since BOD and COD
are related through the biodegradability index (COD/BOD), its MAE is approximately constant (0.55)
for the the Machángara River stretches, but that is not true for the San Pedro River stretch, whose value
is practically doubled. It is reasonable to find this difference since they are two different rivers.

Whereas the performance of the spatio-temporal interpolation methods can be benchmarked in
terms of MAE, this represents a global performance measurements. However, it is highly desirable to
have more detailed performance measurements for each interpolated segment, in order to complement
the global ones. We further scrutinized the interpolated models in terms of Bland-Altman residual
plots [21]. In this representation, the residuals of a given model are represented as a function of the
measured magnitude, which provides us with a statistical representation of the residual distribution
and allows to identify variance distribution and presence of model bias. For these plots being
representative of the actual model quality, residuals were obtained on an out-of-sample approach,
this is, the model is built for every sample except one, and then, the prediction of the excluded sample
is obtained, and its residual is calculated. Repeating this process for all the samples gives a solid
estimation of the model residuals.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 3. Dynamics of water quality variables for Stretch 3. From left to right (columns), results with
k-NN, RBF-SVR, Ma-SVR, and Au-SVR algorithms, for the selected variables: (a–d) Q in m3/s;
(e–h) T in ◦C; (i–l) DO in mg/L; (m–p) BOD in mg/L; (q–t) COD in mg/L; and (u–x) COD/BOD
ratio (dimensionless).

On the other hand, given that the interpolation algorithms work on a spatio-temporal domain,
the distribution of the residuals in this domain is also relevant when benchmarking different methods,
as proposed in previous works [6]. Taking into account that the leave-one-out residual is obtained
for each method in each sample, spatio-temporal residual plots show the difference in terms of
Absolute Error (AE) between method A and method B, for two example variables. Blue markers
represent the difference of AE (∆AE = AEA − AEB) when method A obtains worst performances than
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method B (i.e., for the case AEA − AEB > 0), and red markers are shown otherwise (i.e., for the case
∆AE = AEA − AEB < 0).

Table 3. Number of measurements (N. Meas.) and interpolation MAE for each variable by using k-NN,
RBF-SVR, Ma-SVR, and Au-SVR methods for River Stretches 1, 2, 3, and 4. Bold numbers indicate the
best performance among the methods.

Stretch Variable N. Meas. k-NN RBF-SV R Ma-SV R Au-SV R

Stretch 1

Q 177 0.11 0.11 0.10 0.09
T 177 1.52 1.29 1.31 1.27

DO 177 1.02 0.98 0.98 0.81
BOD 177 124.54 105.99 108.65 105.3
COD 177 283.75 244.81 246.28 238.6

COD/BOD 177 0.68 0.64 0.65 0.54

Stretch 2

Q 212 0.15 0.15 0.14 0.13
T 212 1.58 1.54 1.59 1.20

DO 212 1.18 1.17 1.15 0.75
BOD 212 38.41 37.96 37.52 30.38
COD 212 92.69 88.86 86.77 77.44

COD/BOD 212 0.90 0.80 0.82 0.73

Stretch 3

Q 306 0.58 0.48 0.49 0.48
T 393 1.88 1.50 1.51 1.38

DO 329 1.03 1.01 0.99 0.74
BOD 396 49.14 40.96 40.15 36.19
COD 396 114.96 94.82 94.24 83.56

COD/BOD 396 0.79 0.65 0.65 0.55

Stretch 4

Q 303 1.07 1.05 0.96 0.90
T 303 1.90 1.76 1.76 1.30

DO 303 0.93 0.85 0.85 0.71
BOD 303 12.02 10.89 10.89 7.63
COD 303 38.34 32.48 32.23 24.30

COD/BOD 303 2.01 1.74 1.74 1.12

Average 32.13 28.02 28.02 25.67

Figures 4 and 5 depict all these diagnostic plots for DO and T measurements, respectively,
together with the scatter plots of the measured and estimated variables with the different methods.
Bland-Altman plots show a strong model bias with k-NN and RBF-SVR, and this is seen in the
scatterplots as stiffness in the model to follow the variations in the measurements. However, this trend
is smoothed both for Ma-SVR and for Au-SVR, being the last one the best in terms of lower model
bias and improved scatter. Spatio-temporal plots of ∆AE also reveal the predominance of increased
performance of Au-SVM compared with the other methods, which can be seen on the predominant
presence of blue markers for the absolute residuals in all cases. This explanation is valid both for DO
and T data models.
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Figure 4. Residual analysis for DO in Stretch 2: (a–d) Bland-Altman plots; (e–h) Scatter plots;
(i–l) |∆AE| of Au− SVM compared with the other methods.
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3.2. Dynamics Analysis of Water Quality Measurements

In this section, we first scrutinize in detail the dynamics of Stretch 3 according to all the algorithms
(Figure 3), and then we study all the stretches with the two best algorithms according to the previous
section, namely Au-SVR (Figure 6) and Ma-SVR (Figure 7).

Figure 3 shows the spatio-temporal dynamics of the six water quality variables of Stretch 3 for
all the algorithms. We have chosen the representation of this stretch because it belongs to the final
section of the most important river (i.e., Machángara) in Quito. Then, after monitoring station ST15,
the river leaves the city and moves to less populated areas. In Figure 3a–d, Q dynamics is represented
as estimated by each interpolation algorithm, showing in all of them a trend to increase the flow rate,
with a maximum value of about 5 m3/s at about 7 km (ST14) and at day 600 (July 2002). This trend
is maintained for the entire sampling period (2002–2007) and it can be more clearly seen in the last
3 algorithms. Figure 3e–h shows the dynamics of T at Stretch 3, revealing that changes in T are not
smooth with the k-NN algorithm compared to Ma-SVR and Au-SVR algorithms, indicating that this
algorithm intends to follow the atypical measurements without fully catching the dynamics. On the
other hand, RBF-SVR softens too much the estimated dynamics, while Ma-SVR and Au-SVR show
similar and better smoothness of spatio-temporal trends. As observed, T trends to rise at the last
monitoring stations, possibly because they collect more human and industrial wastewater than the
other ones. Also, every about 500 days (15 months) T rises up to its maximum value (between 19 ◦C
and 21 ◦C), which could indicate periodicity or near-seasonal change affecting to the Quito temperature.
Figure 3i–l shows the dynamics of DO. A similar trend was observed for all the algorithms in the
DO concentration between days 1500 and 2025 (August 2004 to January 2007), where DO reaches
near 6.5 mg/L and there is an increase of DO up to this maximum value from 3 km and downstream.
This can be interpreted taking into account that the last 6.49 km of this section (total distance of 9.49 km)
include topographical changes in the river course, which cause strong tapping of water over the rocks,
and this effect could help to increase the DO concentration.

Figure 3m–p shows the interpolation results for BOD, revealing very well-defined spatial and
temporal trends for the three SVR algorithms, whereas k-NN turns to be extremely sensitive to atypical
observations. During the time span of 800 to 1300 days (December 2003 to February 2005), the BOD
concentration decreased to about 70 mg/L, and there was an increment of BOD in the last two
monitoring stations (at 7 and 9 km). Figure 3q–t shows the COD estimated dynamics, with similar
accuracy shown by the algorithms to the BOD case. Also, COD concentration at 9 km (ST15) is kept
at approximately 540 mg/L for the entire sampling period. Figure 3u–x shows the dynamics of the
biodegradability index (COD/BOD). It is clearly observed that, from 900 to 1300 days (March 2004
and February 2005), this parameter increased to 4.3 and it remains almost constant on the monitoring
stations from ST10 to ST15. Recall that this index can describe the organic matter biodegradability
according to the following ranges [22,23]:

• If COD/BOD ≤ 2.5, then the organic matter is very degradable.
• If COD/BOD ∈ (2.5, 5), then the organic matter is moderately degradable.
• If COD/BOD ≥ 5, then the organic matter is little degradable.

Therefore, this river section can be classified as moderately degradable, while for the other time
spans beyond this range, the COD/BOD index is averaged to 2.1, meaning that organic matter is then
highly degradable.
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Figure 6. Dynamics of water quality variables for Stretches 1, 2, 3, and 4 (from left to right), when they
are smoothed with the Au-SVR algorithm in terms of the estimated autocorrelation of the available
data: (a–d) Q in m3/s; (e–h) T in ◦C; (i–l) DO in mg/L; (m–p) BOD in mg/L; (q–t) COD in mg/L;
and (u–x) COD/BOD ratio (dimensionless).
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Figure 7. Dynamics of water quality variables for Stretches 1, 2, 3, and 4 (from left to right), when they
are smoothed with the Ma-SVR algorithm in terms of the Mahalanobis distance from data covariance:
(a–d) Q in m3/s; (e–h) T in ◦C; (i–l) DO in mg/L; (m–p) BOD in mg/L; (q–t) COD in mg/L;
and (u–x) COD/BOD ratio (dimensionless).

Now, we study the dynamics of all the variables in all the stretches, by looking at the two best
algorithms so far, namely Au-SVR and Ma-SVR. In Figure 6, panels (a,b) exhibit an increase in Q at the
last monitoring stations of each section during the 5-year observation, pointing at the gradual increase
of human and industrial waste. In contrast, panel (c) shows an increasing Q to about 5 m3/s between
4 and 7 km (ST13 and ST14). Panel (d) shows a different behavior, as Q is maximum (up to 8 m3/s)
for the first 8 km, and then it decreases near to 1.5 m3/s, which may be associated to the use of some
water to irrigate crops in this spatial section of San Pedro River. Figure 6e–h shows the T dynamics
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in the four studied sections. In general, a trend to increased T is observed at the last station of each
river section for the 5 years of monitoring. In panels (a,b,c), some periodicity of increasing T can be
detected for all stations and for each year. Figure 6i–l shows the variations in DO. Panels (a,b,c) exhibit
an increase in DO during the last two years (2006–2007), while panel (d) presents a different behavior
with greater DO at the beginning of each river section and year, due to the abrupt topography.

Figure 6u–x shows the variations of the biodegradability index (COD/BOD) in the four river
sections. The first panel shows an index increment up to 6 for the time period between 800 and
1000 days (December 2003 to June 2004), and from 0.5 to 2.5 km. The second panel shows an index
increment up to 3.4 between 820 and 1400 days (January 2004 to May 2006) for all the monitoring
stations. The time period in which this increment occurred was after the increase of the previous period
and section. The third panel shows the index dynamics of Stretch 3, where an increment is observed
between 820 and 1400 days (January 2004 to May 2006) for all monitoring stations. This time period in
which the COD/BOD rises is similar to the time period of Stretch 2, which could be expected since
Section 3 is its continuation in the same river. The fourth panel shows a different behavior regarding
to the temporal trends in the different sections. From 200 to 600 days (June 2002 to May 2003),
the biodegradability index rise to an alarming level, up to 9, showing a non-degradable water-type.
These increments reappear up to an 8 value, from days 1000 to 1100 (June 2004 to September 2004),
however, the index decreases to 1 (i.e., very degradable) after 1580 days (November 2005). Then,
it remains near constant until the end of the sampling period in 2007.

We can contrast the previous results with the ones obtained with the Ma-SVR algorithm.
For instance, in Figure 7a–d, the Q dynamics of the four stretches shows the same spatio-temporal
trends as those in Figure 6. The behavior of T in Figure 7e–h seems more smoothed when compared to
Figure 6, and some peaks turn to be smoother, as seen in Stretch 1 results. The variations of DO, BOD,
COD, and COD/BOD, exhibit a similar smoothing behavior when using this kernel.

4. Discussion and Conclusions

A set of spatio-temporal interpolation methods have been benchmarked in order to determine their
performance to estimate the measurement dynamics in water quality control campaigns. Emphasis
has been made in including a priori information into the interpolation schemes.

Algorithmic considerations. From an algorithmic performance point of view, we can conclude
that the changes in MAE are consistent for each stretch and for each variable when the same algorithm
is used. The quality provided by k-NN and SVR-RBF is similar, just slightly better for the second one
in some few variables. However, there is a consistent improvement when using Ma-SVR and Au-SVR
algorithms when compared to the two previous ones, and there is also a consistent improvement
when using Au-SVR even in comparison with Ma-SVR. These results imply that the use of kernel
methods improves the existing interpolation techniques in these environments, and more, that the
use of increasingly advanced statistical description of the spatio-temporal properties dramatically
improves the dynamics estimation for all the variables. The use as Mercer’s kernels of the estimated
autocorrelation of the data turns to be much more effective than the use of the Mahalanobis distance
from the estimated covariance.

Estimation and visualization of spatio-temporal dynamics. The dynamics of water quality
variables can be often hard to predict due to its very changing nature [24,25]. The spatio-temporal
interpolation of measurements in different stations and in different campaigns has been previously
shown not to be limited to a mere visualization, but instead it represents the estimation of the
variable dynamics, which allows the researcher to get deep further knowledge into the relevant
information conveyed in the already available data, such as temporal space trends or physical and
chemical characteristics of pollutants that are closely related to environmental conditions and the
geographical areas though which the stretches of the river circulate. In this work, 5-year databases
were used, going further than previous works in the literature [26,27] which are constrained to data
from 2 years. This represents an advantage in terms of the amount of data used for the study of
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spatio-temporal dynamics of the water quality variables. Therefore, graphical representations showed
more reliable and consistent spatial and temporal trends in the dynamics. The quality of our database
is affected by technological limitations, as previously pointed in the literature for this kind of data [25],
thus, water quality databases contains both the dynamics and its own different types of noise of the
measurement process.

Kernel methods advantages. The use of machine learning algorithms has been previously shown
to be a key point in retrieving the dynamics from the measurements in campaigns [6], where classic
interpolation algorithms were shown to extract the spatio-temporal dynamics from the available
observations. The best classic interpolation algorithm was used in this work, namely k-NN, but it
was shown to exhibit some estimation limitations. Whereas k-NN has been proven to be an excellent
multidimensional interpolation algorithm in a number of applications [28–30], it is limited if we want
to include a priori information available from our problem. This has motivated the proposal of kernel
methods, and particularly, the proposal of SVR. The extremely good generalization capabilities of SVR
brings improvement when using a general Mercer’s kernel like the RBF one [31,32]. But this work has
gone further, and two ways of including the higher order statistical description of the observations
have been scrutinized, namely, the estimated covariance matrix and the estimated autocorrelation
matrix. The average MAE obtained in previous work [6] with respect to these six variables for Stretch 3
when using the k-NN algorithm was 28.1, whereas the use of SVR with estimated autocorrelation kernel
yielded 20.5. The inclusion of this statistical data structure has proven to be significantly advantageous,
any of them definitely improves the estimation quality, and the autocorrelation kernel yields always
the best model in our data.

Limitations of the study. Our approach to the analysis of spatio-temporal dynamics in water
quality measurements was necessarily constrained to the availability of measurements in conventional
campaigns. Other richer data sources, as satellite monitoring images, could improve the data quality,
but this is not possible for a good number of the measured variables. Sampling density clearly resulted
in limited expression of spatio-temporal models, hence, increased sampling density would be desirable,
both in time and space, and some technological possibilities for this purpose could include the use of
wireless sensor networks. These data sources have not been covered in the present approach, though
our findings could be readily applied when they become technologically more available.

The analysis of the water quality of three sections of the Machángara River and a section of
the San Pedro River by means of non-parametric interpolation methods in a non-uniform sampling
scenario has allowed us to obtain relevant information about the spatio-temporal dynamics of these
stretches. The best interpolation method evaluated in terms of the MAE was the SVR with the
estimated autocorrelation kernel, which points out the relevance of including a priori knowledge of the
problem. The interpolation results partially solve the practical problem of the absence of water quality
measurements in difficult-to-access places and for municipalities with a tight budget for carrying out
more sampling campaigns. In addition, these results can provide with complementary information
to public enterprises managing water for cities and fields, and better exploitation of the currently
available measurements from campaigns.
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