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Abstract: Extrinsic calibration of a camera and a 2D laser range finder (lidar) sensors is crucial
in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms.
The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap
or share the same field of view. In this paper we propose a novel and flexible approach for the
extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform
self-calibration. The approach is based on the robot–world hand–eye calibration (RWHE) problem;
proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration
problem modeled as the linear relationship AX = ZB, where X and Z are unknown calibration
matrices. Then, we computed the transformation matrix B, which was the main challenge in the
above mapping. The computation is based on reasonable assumptions about geometric structure in
the calibration environment. The reliability and accuracy of the proposed approach is compared to
a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real
datasets indicate that the proposed approach provides better results with an L2 norm translational
and rotational deviations of 314 mm and 0.12◦ respectively.

Keywords: calibration; range sensing; mobile robot; mapping; 2D lidar sensor

1. Introduction

Accurate extrinsic calibration between different sensors is an important task in many automation
applications. In order to improve environmental perception in such applications, multiple sensors are
used for sensor data fusion to produce unified and accurate results [1]. Some of those applications
can be seen in surveillance and motion tracking, mobile robotics, etc. For example, in mobile robotics,
usually a given robotic platform is equipped with single or multiple laser range finders, single or
multiple cameras sensors, single or multiple RGB-D sensors, and others.

It is important to compute the relative transformations (i.e., extrinsic parameters) between such
different classes of sensors quickly and easily using a standard methodology. This would be more
efficient compared with using specialized routines or ad hoc implementations to adapt to a particular
application or platform [2–4]. Often, a sensor is added to a robotic platform, for the purpose of
extending functionality, or existing sensors being disassembled and assembled again after maintenance
or replacement. In this case, one should be able to efficiently calibrate the robotic platform without the
need of an expert knowledge. In fact, enabling workers in a mall, a workshop, or at an assembly line to
calibrate a robotic platform themselves will substantially reduce their workload and calibration time.
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Therefore, one of the main motivations of this paper is to present a novel and flexible approach
for the calibration of 2D laser range finder (or lidar) and camera sensors of different configurations
(e.g., overlapping and non-overlapping field of views of the sensors). Additionally, we aim on exploring
and solving the extrinsic calibration problem at hand into possibly other problem domains proven
to have efficient and accurate solutions, and that also best suitable for calibrating non-overlapping
sensors. To do so, the proposed work interprets the multi-sensor extrinsic calibration problem of
a camera and 2D lidar sensors as the well-known robot–world hand–eye (RWHE) calibration problem.
The only requirement is the availability of an additional reference frame, which is stationary with
respect to the calibration object frame and is detectable in the 2D lidar frame.

The RWHE calibration problem was formulated by Zhuang et al. [5] as the homogeneous matrix
equation AX = ZB for calibrating a visual sensor rigidly attached to the end effector of a standard robot
arm (The RWHE problem and its mathematical formulation AX = ZB are described and discussed in
Section 3). The advantages of the RWHE formulation compared to other state-of-the-art formulations
(e.g., [6–8]) are threefold. First, the RWHE solution is well investigated in the literature and there are
many efficient and accurate algorithms developed for it. Second, it is efficient and accurate to apply
the RWHE formulation on the extrinsic 2D lidar–camera calibration, especially, and to the best of our
knowledge, this was not been investigated before. (One might argue that the RWHE formulation seems
to complicate the extrinsic calibration problem that was originally compared; however, we demonstrate
that this is not a problem as shall be seen throughout the paper.) Third, such a formulation does not
constrain the extrinsic calibration setup of the multi-sensor systems of a 2D lidar and camera pair
to have an overlapping field of view. This allows for many possible calibration configurations of
the underlying sensors. It is important to mention that this work is only concerned with the spatial
extrinsic calibration of a 2D lidar–camera system, but not the temporal calibration. Readers interested
in temporal calibration are advised to refer to the work of Furgale et al. [9].

The remainder of this paper is structured as follows. Section 2 provides an overview of existing
approaches, recent work and contributions of this paper to the extrinsic calibration problem of
a 2D lidar and camera system without overlap. Section 3 briefly describes the formulation of the
robot–world hand–eye calibration problem. Section 4 first presents several configurations of 2D lidar
and camera sensors, which we used in our experimentations, followed by presenting our proposed
RWHE calibration procedure to extrinsically calibrate them. In Section 5, the experimental results are
discussed and compared with one of the state-of-the-art published reports, namely the work of Zhang
and Pless [6]. Lastly, Section 6 concludes the paper with final comments and future directions.

2. Recent Work and Contributions

There are many extrinsic calibration procedures published in the literature for calibrating multiple
lidar units [10], multiple cameras [11,12], or other variations of the lidars and cameras. However, the
majority of published calibration approaches focus on the extrinsic calibration of a camera and a lidar.
Such extrinsic calibration is well studied in computer vision and robotics literature for both 2D and 3D
lidars. Published work in calibration approaches of lidar–camera systems can be classified as follows:

• Targetless extrinsic calibration of lidar–camera sensors. Such approaches generally depend on
finding correspondences between features (e.g., edges, lines, corners) extracted from both the
lidar and camera systems and then minimizing the reprojection error associated with them.
In this category, there are two types of research:

– sufficient or partial overlap does exist between the sensors [13–15]; and

– no overlap [16].

• Target-based extrinsic calibration of lidar–camera sensors. Some examples of the calibration
targets include a planar checkerboard pattern [6,7] or a right-angled triangular checkerboard [17]
or a trirectangular trihedron [8] or an arbitrary trihedron [18] or a v-shaped calibration target [19]
or others. In this category, there are two types of research:
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– sufficient overlap does exist between the field of views of the camera and lidar
sensors [2,6–8,18–28]; and

– no overlap [29].

Target-based extrinsic calibration with no overlap has received very little attention of research [29].
According to [29], this category includes two more categories. The first category is based on using
a bridging sensor whose relative pose from both the camera and the lidar sensors can be calculated.
The second category is based on using a reasonable assumption about specific geometric structures
defined in the calibration environment. The calibration approach presented in this paper best fits in
this latter category of non-overlapping target-based extrinsic calibration similar to what was discussed
in [29]. In addition, the presented approach applies in the case of overlapping sensors similar to the
work in [6].

In what follows, we briefly review some of the state-of-the-art approaches in extrinsic calibration
of lidar–camera sensors. Afterward, we present our contributions to the state-of-the-art.

2.1. Targetless

Castorena et al. [15] proposed a joint automatic calibration and fusion approach for a 3D lidar
and a camera via natural alignment of depth and intensity edges without requiring any calibration
target. The approach jointly optimizes calibration parameters and fusion output using an appropriate
cost function. This requires the sensors to have an overlapping field of view.

Pandey et al. [14] proposed a targetless calibration approach for calibrating 3D lidar and camera
sensors that share a common field of view. The approach is based on using appearance of the
environment by maximizing mutual information between sensor-measured surface intensities.

Napier et al. [16] calibrated a 2D push broom lidar to a camera and required no overlap
or calibration target. The proposed approach relies on optimizing a correlation measure between
lidar reflectivity and grayscale values from camera imagery acquired from natural scenes. However,
the approach requires an accurate pose estimate from an inertial measurement unit (IMU) mounted on
a moving platform.

2.2. Target-Based

Wasielewski and Strauss [20] proposed a calibration approach for a monochrome charge-coupled
device (CCD) camera and a 2D lidar. They used a specific calibration pattern consisting of two
intersected planes to match data provided by the camera and lidar sensors and therefore to identify the
lidar–camera geometric transformation. The calibration parameters were estimated using nonlinear
least squares. Similarly, Yu et al. [1] calibrated a lidar and a camera for data fusion using camera
calibration toolbox for MATLAB [30].

Geiger et al. [26] presented an online toolbox to fully automate camera-to-camera and
camera-to-range calibration using a single image and 3D range scan shot. The approach uses a set
of planar checkerboard calibration patterns, which are placed at various distances and orientations.
The approach requires that the camera(s) and the 3D lidar sensors have a common field of view,
which may or may not include all of the checkerboard patterns. Given one image or scan from each
sensor, 3D range data is segmented into planar regions to identify possible checkerboard mounting
positions. An exhaustive search is performed over all possible correspondences of pattern locations to
find the optimal desired transformation estimates.

Gong et al. [18] proposed an approach for calibrating a system composed of a 3D lidar and
a camera. They formulated the calibration problem as a nonlinear least squares in terms of geometric
constraints associated with a trihedral object.

Khosravian et al. [28] proposed a Branch-and-Bound (BnB) approach for checkerboard extraction
in the camera-lidar calibration problem. They formulated the checkerboard extraction as a combinatorial
optimization problem with a defined objective function that relies on the underlying geometry of the
camera-lidar setup. The BnB approach was used for optimizing the objective function with a tight upper
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bound to find the globally optimal inlier lidar points (i.e., the lidar scan points and their corresponding
camera images). The approach requires that the calibration target is placed within the field of view of
both the camera and the lidar sensors.

Zhang and Pless [6] proposed a practical implementation for the extrinsic calibration of a camera
and 2D lidar sensors. The implementation requires that a planar calibration pattern is posed such that
it is in the field of view of the camera and the lidar. The implementation also requires at least five
planes input (five planar shots). Initially, a solution that minimizes an algebraic error is computed.
Next, the computed solution is nonlinearly refined by minimizing a camera reprojection error.
The implementation lacks a systematic study on the minimal solution of the original problem [31].
This implementation has been extended to extrinsically calibrate other kinds of lidars and cameras,
and since then has become state of the art [31]. For example, a similar implementation for full 3D lidars
is described in [32]. An efficient implementation of [6] through an online toolbox is given in [33,34].

The lack of the minimal solution issue in the Zhang and Pless implementation [6] motivated other
studies to deal with this issue such as Vasconcelos et al. [7], Zhou [31], and Hu et al. [8]. For example,
Vasconcelos et al., only using three planar shots, derived the minimal solution; however, it requires
solving a sophisticated perspective-three-point (P3P) problem in dual 3D space with eight solutions, and
might suffer from degeneration problems as discussed in [8]. Zhou’s study proposed an algebra method
instead of geometric ones based on three plane-line correspondences to derive the minimal solution;
however, multiple solutions and degeneration problems also exist as in the Vasconcelos’s method.
The study in Hu et al. [8] derived the minimal solution only using a single shot of a trirectangular
trihedron calibration object. The study avoided the degeneration problem found in Vasconcelos et
al. and Zhou. It showed the ability to obtain a unique solution based on solving a simplified P3P
and perspective-three-line (P3L) problems separately for the lidar and the camera poses, respectively.
However, to uniquely determine the actual camera pose without scaling ambiguity from the formulated
P3L problem, they needed some metric information from the scene, such as the actual lengths of two
edges of the used trirectangular trihedron. Unfortunately, the availability of such information was not
discussed further in the paper.

Bok et al. [29] proposed an approach for calibrating a camera and a 2D lidar, which requires no
overlap between the camera-lidar sensors. The approach relies on an initial solution computed via
singular value decomposition (SVD). The approach adopts a reasonable assumption about geometric
structures in the calibration scene—either a plane or a line intersecting two planes. Then, the solution
is refined via nonlinear optimization process to minimize Euclidean distance between the structures
and the lidar data.

2.3. Our Contributions

Our contributions to the state of the art in extrinsic lidar–camera calibration are summarized
as follows:

• The formulation of the extrinsic 2D lidar–camera calibration problem as a variant of the
robot–world hand–eye calibration problem to support a non-overlapping field of view of the
sensors.

• The computation of the transformation matrix B in the RWHE linear formulation AX = ZB,
based on reasonable assumptions about geometric structure in the calibration environment.

• A novel approach for calibration to allow flexibility for sensor and calibration object placement.
• A calibration paradigm that involves a moving robotic platform and a stationary calibration

object, which allows for automatic or semi-automatic robotic platform self-calibration.
• A demonstration of the proposed calibration approach on real sensors, including multiple

configurations of lidars and cameras.
• Results were compared with a state-of-the-art method in lidar–camera calibration.
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3. Robot–World Hand–Eye Calibration Problem

The RWHE calibration problem is modeled as the linear relationship AX = ZB, where X and Z
are unknown calibration matrices composed of rotation and translation components. Calibration
matrices (A, X, Z, and B) are represented by 4 × 4 homogeneous affine transformation matrices
(HTMs), where the last row of each HTM is set as [0, 0, 0, 1]. Each HTM matrix represents a distinct
transformation function between two coordinate frames.

The original RWHE calibration formulation has four coordinate frames: world, camera, robot
base and robot manipulator [5] as shown in Figure 1a. However, in this work, we assume having
the following coordinate frames: world, camera, floor, and 2D range finder as shown in Figure 1b.
The floor coordinate frame is an important element in our interpretation of the RWHE problem.
The floor coordinate frame is assumed to be a stationary frame with respect to the world frame
(or calibration object) and is detectable in the laser range finder frame. Subsequently, we define the
(A, X, Z, and B) HTMs as follows. The transformation from the world coordinate frame to the camera
coordinate frame is defined as A. The HTM A is assumed to be known, which is usually calculated
using a camera calibration procedure such as Zhang’s method in [35], where the world coordinate
frame is defined by a calibration object in the workspace. The transformation from the floor coordinate
frame to the 2D range finder frame is B, and is assumed to be known or at the least easily computable.
The transformation from the floor coordinate frame to the world frame is the unknown HTM X.
Finally, the transformation from the 2D range finder coordinate frame to the camera coordinate frame
is the desired unknown HTM Z.

Calibration
Object

Eye
 or Camera

World

Robotic 
Manipulator

or Hand

Robot
Base

(a) Original RWHE formulation

World

Floor

Calibration
Object

Range
Finder

Camera

(b) Proposed RWHE interpretation

Figure 1. Hand–Eye Robot–World calibration formulation: (a) original; (b) proposed interpretation.

In practice, many different positions of the 2D lidar and camera are used to generate many
relationships AiX = ZBi, i ∈ [0, n− 1] to get a single estimate of both X and Z, where n is the number
of robot poses used for the calibration.

Many different approaches exist in the literature for estimating X and Z, including linear and
iterative methods such as the work of [36–38]. An accurate approach to robot–world hand–eye
calibration was proposed in [39] based on the Euler parameterizations for rotations, which was recently
extended to include other parameterizations as well (axis-angle and quaternions) [40]. Due to the
high accuracy of this proposed approach [39,40], it has been adopted in this paper for estimating the
extrinsic calibration parameters (Z) as will be discussed in the next section. Specifically, we used
the “Euler parameterization I” method from [39] or what was then named as “c1, Euler angles,
simultaneous” in [40]. Furthermore, we used the open source code accompany to [40], available
at [41], for the implementation of the selected RWHE method. The open source code includes other
methods or parameterizations of the rotational angles (angle-axis representation or quaternion),
which we incorporated in our implementation as well. However, for the datasets that we recorded,
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Euler parameterization I comparably gave the best estimated results without singularity issues, hence it
was selected in this paper. In the event of singularity issues, other parameterizations can be considered
with little impact on our proposed approach.

4. The Proposed Calibration Procedure

The proposed RWHE calibration formulation consists of the following steps:

1. Select a configuration that relates the lidar–camera sensors together.
2. Define the calibration environment with respect to the RWHE coordinate frames (world, camera,

floor, and 2D range finder) and the transformation matrices (A, B, X, Z).
3. Compute the transformation matrices A and B.
4. Apply the selected RWHE Euler parameterization I method to estimate the desired extrinsic

calibration parameters Z.
5. Verify the accuracy of the estimated extrinsic calibration results.

In what follows, the above steps are discussed in detail.

4.1. Camera–Lidar Configurations

To compute the calibration parameters, we considered the following camera–lidar configurations:

• Configuration 1 consists of a left camera sensor of a stereo camera pair and a 2D lidar attached
to a PeopleBot robotic platform (Adept MobileRobots LLC., Amherst, NH, USA), as shown in
Figure 2a. The combination of the lidar–camera sensors in this configuration is assumed to
represent a non-overlapping field of view of the sensors (or in other words the lidar scans need
not be on the calibration object imaged by the camera sensor).

• Configuration 2 consists of a pan-tilt-zoom (PTZ) camera sensor and a 2D lidar attached to the
PeopleBot robot, as shown in Figure 2b. The combination of the lidar–camera sensors in this
configuration is assumed to represent an overlapping field of view of the sensors (the lidar scans
are on the calibration object imaged by the camera sensor). The goal of configurations 1 and 2 is
to compute the extrinsic transformation between the 2D lidar sensor and each of the left camera
sensor of the stereo pair and the PTZ camera. Such transformations are required for sensor data
fusion of different applications such as simultaneous localization and mapping (SLAM) [42,43],
place recognition and robot self-localization [44], and others.

• Configuration 3 consists of an Xbox 360 Kinect V1 camera sensor (Microsoft, Washington,
DC, USA) and a 2D lidar sensor attached together. The vertical distance between the Kinect
camera and the 2D lidar simulates that of an indoor mobile robot. See Figure 2c.

• Configuration 4 is similar to configuration 3, except that the vertical distance between the camera
and the 2D lidar sensor is shorter as depicted in Figure 2d. In configurations 3 and 4, no robot is
involved, but the problem remains in the context of mobile robots or autonomous systems in that
two sensors need to be calibrated together in order to accomplish a task. Although the camera
that we used in configurations 3 and 4 is the Xbox 360 Kinect V1 sensor, we are only using the
RGB data (the depth data was not used).

All of the configurations above were used in our experimentations as shall be discussed in Section 5.
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Z

Y

X

Extrinsic
Transformation
to be computed

Z

YX

Range Finder Sensor
Coordinate Frame

The Coordinate Frame 
of the Left Camera 
of the Stereo Pair

Stereo Camera Pair

RangeFinder Sensor

Left Camera Sensor

(a) Configuration 1

Z

YX

Range Finder Sensor
Coordinate Frame

X Z

-Y

PTZ Camera 
Coordinate 
Frame

Extrinsic
Transformation
to be computed

RangeFinder Sensor

PTZ Camera

(b) Configuration 2

(c) Configuration 3 (d) Configuration 4

Figure 2. Four configurations of lidar–camera sensors: (a) SICK LMS-500 2D lidar (Minneapolis,
MN, USA) and a mobileRanger C3D stereo camera (Focus Robotics, Hudson, NH, USA) rigidly
attached to a PeopleBot robotic platform; (b) SICK LMS-500 2D lidar and AXIS 214 PTZ network
camera (Axis Communications, Lund, Sweden) rigidly attached to a PeopleBot robotic platform;
(c) SICK LMS-100 2D lidar and a Kinect Xbox 360 camera rigidly attached at a height similar to
a mobile robot; (d) same configuration as of (c), but the camera is mounted at a shorter vertical distance
from the lidar.

4.2. Calibration Environment

To apply the RWHE formulation AX = ZB on the underlying extrinsic calibration problem,
we need to further discuss the involved coordinate frames introduced in Section 3.

From the standard RWHE calibration problem, there is the world coordinate frame that is defined
by a stationary calibration object. In this work, we decided to use a planar chessboard pattern. There is
also the floor coordinate frame that serves as the reference coordinate frame for the lidar sensor.
As mentioned before, the main requirement on this floor frame is to be a stationary with respect to the
calibration object and detectable by the lidar sensor. A corner of a wall in the calibration workspace
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was chosen for this floor frame, using the assumption that the wall planes are orthogonal. This is
shown in Figure 3 for configuration 1. We should mention that Figure 3 also serves as the calibration
environment for the rest of the configurations in Figure 2.

Hand Z

YX

Z

Y

X

Turning Axis of the Robot

X
Z

Y

Eye
World

Base

Z

Robotic

Platform

dpattern

Ground Level

World Coordinate

Frame

X

Y

Floor

Coordinate

Frame Distance

Camera

Coordinate Frame

Range Finder

Coordinate Frame
dRF

Figure 3. The calibration environment for configuration 1.

Additionally, the camera and the 2D lidar have their own coordinate frames, giving a total
of four coordinate frames that are related by linear transformations (A, B, X, Z). Consequently,
the relationships of the four coordinate frames can be modeled using the linear relationships of
the RWHE calibration problem that is given by Equation (1):

AX = ZB. (1)

Substituting in the superscripts and subscripts for clarity and completeness (C = camera,
W = world calibration pattern, F = floor coordinate frame, RF = lidar or range finder coordinate
frame), we get the following equation:

CAW
WXF = CZRF

RFBF. (2)

The different transformations shown in Equation (2) are depicted in Figure 3, which show how
the extrinsic calibration problem of a 2D lidar–camera system is now a valid variant of the general
RWHE calibration problem. Our main objective is to estimate the CZRF matrix between the lidar and
camera frames in addition to the WXF matrix.

We can solve the formulated calibration problem in Equation (2) for WXF and CZRF using the
established methods for the robot–world hand–eye [39,40]. This requires computing the transformation
matrices CAW and RFBF. CAW is assumed to be computable using a camera calibration procedure such
as Zhang [35]. RFBF is also assumed to be computable, though with extensive efforts. To compute RFBF
we used the 2D range data obtained from the lidar sensor and made several assumptions. In what
follows, we describe our procedure and assumptions for computing RFBF.

4.3. The Computation of the RFBF Matrix

Originally, we assumed to have a corner of the wall to define the floor coordinate frame.
The transformation matrix RFBF is not fixed because it varies according to each pose of the 2D lidar
sensor with respect to the floor coordinate frame. Hence, we relied on the 2D lidar point measurements
in our computation of the RFBF matrix. Using the mathematical notation, a 2D lidar point measurement
is usually expressed in polar coordinates (ρ, θ). ρ is the measured radial distance of the lidar beam
at an angle θ in the x-y plane of the lidar frame at a certain vertical distance from the ground level
(dRF) as defined by the floor coordinate frame’s z-axis. For example, using the coordinate frames in
Figure 3, dRF distance represents the perpendicular distance between the origin of the lidar sensor
and the ground. The dRF distance is assumed to either be manually measured or given in the robotic
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platform’s manual that comes already equipped with a lidar sensor. Thus, in terms of the Cartesian
coordinates, a lidar point measurement (x, y, z) at certain angular resolution can be expressed in the
lidar frame as described below:

x = ρ× cos(θ),
y = ρ× sin(θ),

z = 0.
(3)

During the calibration procedure, we assume that the calibration data is being recorded during
stop and go mode of the robotic platform against the calibration object as shown in Figure 3.
The calibration data contains an image of the calibration object and a lidar scan at each position
of the robot platform (or lidar–camera pair) as recorded by the camera and lidar sensors. Each recorded
lidar scan consists of a large number of lidar point measurements. The lidar points from each lidar scan
are supplied to a linear least squares line fitting procedure to generate a 2D line map. This map is used
to compute the RFBF matrix after locating the origin of the floor frame with respect to the origin of the
lidar frame (i.e., (0,0) location on the map). Locating the origin of the floor frame within the map allows
computation of three translational components (xt, yt and dRF) and one rotational component (φ)
between the origins of the floor and lidar frames of the RFBF matrix. This provides the transformation
RFBF under the assumption that the lidar scans are all parallel to the floor x-y plane (i.e., the roll
and pitch angles of the lidar are zeros). We understand that this assumption might be considered
a limitation of the proposed work; however, this will mainly affect how the rotational components
of the RFBF matrix are computed. We believe that the presented work with such an assumption
can be tolerated as to just prove the main idea of applying the RWHE formulation for the extrinsic
lidar–camera calibration with no overlapping field of views of the sensors. The computed RFBF matrix
is expressed as given in Equation (4). Figure 4 summarizes the steps taken to compute the RFBF matrix
for one pose of the lidar–camera pair:

RFBF =


cos(φ) −sin(φ) 0 xt

sin(φ) cos(φ) 0 yt

0 0 1 −dRF
0 0 0 1

 . (4)

y
m

m

Calibration
Target

Corner on the Floor

2D Lidar

−3 −2 −1 0 1
0

1

2

Floor

x mm

y
m

m

−2 −1 0 1

0.5
1
1.5
2
2.5

Real Scene Diagram depicting real scene 
 

(xt , yt)

phi

x mm

x10
3

x10
3

x10
3

x10
3

robot

Diagram depicting lidar 
point measurements

Diagram depicting fitted lines 
of lidar point measurements 

Figure 4. Steps to estimate the RFBF matrix.
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4.4. Solving the Extrinsic Calibration Parameters

After computing the transformations CAW and RFBF, the WXF and CZRF transformations can
be estimated using the Euler parameterization I method [39]. In Euler parameterization I, the cost
function to be minimized is given in Equation (5), where CAW,i represents the ith camera pose.
The transformations WXF and CZRF are decomposed into rotation and translation components as
shown in Equation (6). Therefore, in the minimization process, we have a function of 12 variables:
three Euler angles and three translation components for each of the WXF and CZRF matrices:

c1 =
n−1

∑
i=0
||CAW,i

WXF − CZRF
RFBF,i||2, (5)

c1 =
n−1

∑
i=0

∥∥∥∥∥∥∥∥∥Ai

 RX(θa, θb, θc)

tX0

tX1

tX2
~0 1

−
 RZ(θd, θe, θ f )

tZ0

tZ1

tZ2
~0 1

Bi

∥∥∥∥∥∥∥∥∥
2

. (6)

The overall minimization problem is shown in Equation (7):

{θ̂a, θ̂b, θ̂c, t̂X0, t̂X1, t̂X2, θ̂d, θ̂e, θ̂ f , t̂Z0, t̂Z1, t̂Z2} = arg min
θa ,θb ,θc ,tX0,tX1,tX2
θd ,θe ,θ f ,tZ0,tZ1,tZ2

c1. (7)

An approximate solution to Equation (7) is found using an L2 norm with the Levenberg–
Marquardt method for nonlinear least squares, as provided by the implementation levmar [45].
(The initial solutions of θa, θb, θc, θd, θe, θ f are set to zeros such that the corresponding rotational matrices
are identity, and similarly the translation components are set to zero. It is important to mention that
for the selected RWHE method, as quoted from [40], “various different initial solutions were tested,
and there was small or negligible difference in the solution quality versus using an identity matrix
for rotation matrices and translation component with all elements zero. For this reason, we conclude
that for the experiments ... for the first class of methods is not sensitive to initial solutions”. Therefore,
the reader should notice that, with initial solutions as set above, the proposed extrinsic calibration
approach will still converge even if the orientations of the camera and the lidar are highly not aligned
(i.e., a rotation that is not being closed to the identity) as well as a translation that is not fairly easy to
estimate.) Then, substituting in the estimated parameters gives WXF and CZRF in approximate forms
W X̂F and CẐRF as shown in Equations (8) and (9):

W X̂F =

 RX(θ̂a, θ̂b, θ̂c)

t̂X0

t̂X1

t̂X2
~0 1

 , (8)

CẐRF =

 RZ(θ̂d, θ̂e, θ̂ f )

t̂Z0

t̂Z1

t̂Z2
~0 1

 . (9)

The transformations W X̂F and CẐRF will have an ambiguity in the translation components. This is
explained as follows. The reader should note that since the used lidar is only a 2D sensor, the distance
between the world coordinate frame and the floor coordinate frame is not constrained by Equation (5).
Moreover, in the calibration procedure, when we recorded our calibration datasets, the calibration
object was assumed to be stationary with a moving robotic platform against it. Hence, considering
the sensors attached to a heavy weight robot platform, similar to the ∼25 Kg PeopleBot platform in
our configurations 1 and 2, we will have a problem in our recorded datasets. The problem is that the
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moving robot platform will not have tilting poses during the calibration procedure. This results in that
the recorded calibration datasets lack any excitation in the roll and pitch angles, which in turn renders
the mounting height of the camera unobservable and accordingly an ambiguity in the translational
components of the estimated extrinsic parameters. However, we can create a constraint and solve this
problem by manually measuring a defined distance that we call dpattern. dpattern distance is defined as
the distance (in terms of the world coordinate frame’s y axis) from the (0, 0, 0) location of the calibration
object to the ground plane. However, other configurations of the world frame are possible, such as in
Figure 5. In this case, to find dpattern distance, some trigonometry is needed in terms of measuring the
perpendicular distance from the origin of the world frame along the y-axis to the ground.

Z
dpattern

Ground Level

World
Coordinate
Frame Y

Floor
Coordinate
Frame

Distance

X

X

Y

Figure 5. Schematic view of possible orientation of the world coordinate system.

When the value of dpattern is known, we can specify that the y translation component of WXF is
−dpattern as shown in Equation (10):

W X̂F =

 RX(θ̂a, θ̂b, θ̂c)

t̂X0

−dpattern

t̂X2
~0 1

 . (10)

While it is possible to adjust W X̂F with a constant such that the translational ambiguity is resolved,
in order to reconcile CẐRF to that change, another Levenberg–Marquardt minimization procedure is
recommended to be performed.

Consequently, we minimize the function c1 in Equation (6) via another application of the
Levenberg–Marquardt method, but this time with one less parameter. This is because the y component
of the translation in W X̂F will remain constant as −dpattern. The minimization problem is shown
in Equation (11); the initial solution given to the Levenberg–Marquardt method is W X̂F and CẐRF.
The new approximate solutions W ˆ̂XF and C ˆ̂ZRF are produced by substituting the estimated parameters
as in Equations (8) and (9) and ˆ̂tX1 = −dpattern:

{ ˆ̂θa, ˆ̂θb, ˆ̂θc, ˆ̂tX0, ˆ̂tX2
ˆ̂θd, ˆ̂θe, ˆ̂θ f , ˆ̂tZ0, ˆ̂tZ1, ˆ̂tZ2} = arg min

θa ,θb ,θc ,tX0,tX2
θd ,θe ,θ f ,tZ0,tZ1,tZ2

c1. (11)

Algorithm 1 summarizes the process of estimating the transformations W ˆ̂XF and C ˆ̂ZRF. It is
recommended that the order in Algorithm 1 of lines 3, 5, and 6 is maintained. The reason is that the
search for an approximate local minimum gets stuck in poorer quality estimates of WXF and CZRF if
this order is not followed. Of course, this behavior is method and dataset dependent. In addition, it
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may not be true in all situations, but, through experimentation, it was found true with the datasets
that we used in this work.

Algorithm 1 Perform calibration of two sensors

1: Compute CAW,i for each pose i.
2: Compute RFBF,i for each pose i.
3: Compute solution to Equation (7) using 12 parameters, using zeros as initial solutions for all

parameters. This solution is W X̂F and CẐRF.
4: Manually measure the dpattern distance.
5: Set the y translational component of W X̂F to −dpattern as in Equation (10).

6: Compute W ˆ̂XF and C ˆ̂ZRF, which are the approximate solution to Equation (11) using 11 parameters,
where W X̂F and CẐRF (from line 3) serve as the initial solution.

4.5. Verifying Accuracy

With the extrinsic calibration results C ˆ̂ZRF and W ˆ̂XF estimated using Algorithm 1, the laser
data from the 2D lidar can be projected onto the imaging plane of the camera sensor. This will be
an important step to check the accuracy of the estimated results. To this end, we next discuss how
a given lidar point measurement is projected onto the camera sensor plane.

To project a homogeneous point ~Xi defined with respect to the lidar coordinate frame
(see Equation (3)) onto a point~xi in the image plane of a camera sensor, we can use the following
forward projection relationship:

~xi = K ˆ̂Z3×4 ~Xi, (12)

where~xi is composed of a (3× 1) homogeneous vector, ~Xi is composed of a (4× 1) homogeneous
vector (the third z component is zero), K3×3 is the intrinsic camera calibration matrix, and ˆ̂Z3×4 is
C ˆ̂ZRF without the last row (i.e., [0, 0, 0, 1]). The relationship in Equation (12) assumes either zero radial
and tangential distortion or that such distortion has already been removed.

Similarly, with the estimated calibration results (C ˆ̂ZRF and W ˆ̂XF), the world calibration points on
the calibration pattern can be projected onto the imaging plane using a newly estimated A matrix that
we refer to as Anew = C ˆ̂ZRF

RFBF
W ˆ̂X−1

F matrix. This is done using the forward projection equation
as follows:

~xi = KAnew3×4
~Xi, (13)

where~xi is again composed of a (3× 1) homogeneous vector, ~Xi is composed of a (4× 1) homogeneous
vector in the world coordinate frame, K3×3 is the intrinsic camera calibration matrix, and Anew3×4

is Anew without the last row. The relationship in Equation (13) also assumes either zero radial and
tangential distortion or that such distortion has already been removed.

Subsequently, we could check the accuracy of the estimated calibration results C ˆ̂ZRF and W ˆ̂XF,
by computing the reprojection root mean squared error (rrmse). The rrmse is computed between
projected world calibration points (i.e., the grid points of the calibration object) to the image plane
using the original A matrix and the same world calibration points projected using the Anew matrix.
This rrmse computation is given in Equation (14):

rrmse =

√
1
m

m

∑
i
‖~xi,new −~xi‖2, (14)

where i is an image point index, m total number of world projected calibration points,
~xi,new = KAnew3×4

~Xi, and~xi = KA3×4 ~Xi.
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5. Experimental Results

This section presents the experimental extrinsic calibration results for the four configurations
shown in Figure 2. For configurations 1 and 2, in Figure 2a,b, a SICK-LMS 500 lidar is used. This lidar
was set to an angular resolution of 0.5◦ and 180◦ angular field of view. For configurations 3 and 4,
in Figure 2c,d, a SICK-LMS 100 is used with an angular resolution of 0.5◦ and 270◦ angular field of view.

In all configurations (1–4), we assume valid and known intrinsic calibration parameters of the
cameras. We also assume a pin-hole camera model for the cameras with radial and tangential lens
distortion as described in [35]. (It is assumed that, for configurations 1 and 2 in Figure 2, the individual
intrinsic camera calibration and the remaining extrinsic transformation, say between the left and right
camera or between the left camera and the PTZ camera sensors, to be computed using the standard
stereo camera calibration [30,46] when needed.) All of the results shown in this paper were generated
on a workstation with two quad-core processors and 8 GB of RAM. The camera calibration was carried
out using the open source computer vision library (i.e., OpenCV’s camera calibration functions) [46],
where the calibration object does not have to be moved. The calibration object used in all configurations
was a 9× 7 checkerboard, where the size of a checker square was 40 mm × 40 mm.

The number of calibration images and lidar scans used in configurations 1 and 2 was 18, while 15
and 12 were used for configurations 3 and 4, respectively. The number of poses reported above for all
of the configurations has no link to the accuracy of the reported results, but rather an indication of the
actual poses that was recorded and used to generate the estimated calibration results.

It should be mentioned that when more poses (i.e., calibration images and lidar scans) are used
during the calibration procedure, then more robust estimation of the intended calibration parameters
are obtained. However, the observed changes in accuracy were not significant when the number of
poses is larger than 10 in terms of both of the rotational and translational components. This was actually
deduced from Figure 6 for configuration 2 (other configurations have a similar trend). To generate such
a figure and stated observation above, we set the minimum number of poses, to be used in the RWHE
calibration procedure, to 3 (the minimum possible) and 18 for the maximum number of poses (i.e., all of
the recorded poses). Then, we randomly generated an array of indices from the range of all of the
18 poses (nposes). The size (s) of the generated array is set to vary from 3 to 17 with an increment of
one. The poses correspond to each of the generated array of s indices are fed to the RWHE calibration
procedure to estimate the desired calibration parameters X and Z. To avoid being biased toward
certain set of poses and thus to a particular set of estimated results, this process of randomly selecting
the set of s poses from all of the available poses and estimating the calibration parameters is iterated
several times (17 trials to be exact, which can be changed). Then, from all of the iterated experiments,
the estimated calibration results are averaged over the total number of trials (ntrials = 17). Afterwards,
using all of the 18 poses, the calibration parameters are estimated. Particularly, we are interested in the
Z matrix that is composed of the rotation matrix RZ or its Rodrigues vector representation that we
denote RodZ and the translation vector tZ. We are also interested in how much the accuracy of the
estimated parameters get affected when using less number of posses (s) with respect to using the full
set of poses. Consequently, using the L2 norm, we estimated the rotational errors (eR) and translational
errors (et), as a function of the number of poses used in the calibration procedure (s), which are shown
below in Equation (15) and graphically plotted in Figure 6:

Average(RodZ(s)) = 1
ntrials

ntrials
∑

k=1
(RodZ(s, k))

Average(tZ(s)) = 1
ntrials

ntrials
∑

k=1
(tZ(s, k))

eR(s) = ‖Average(RodZ(s))− RodZ(nposes)‖
et(s) = ‖Average(tZ(s))− tZ(nposes)‖,

(15)

where s ∈ 3, 4, ..., 17, ntrials = 17, and nposes = 18.
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Figure 6. The accuracy of the extrinsic camera calibration parameters as a function of the number of
poses used in the RWHE calibration procedure for configuration 2: (a) rotation error of the estimated Z
matrix; (b) translation error of the estimated Z matrix.

From Figure 6 and related experiments discussed above, we can draw several observations.

• Using few poses produced calibration results comparable to that of large number of poses.
• Comparing three poses with 18 poses, the averaged translational errors were just 8 mm and the

averaged rotation errors were just 0.0105 indicating that the presented RWHE calibration method
works fine with the three poses case (i.e., minimum number of possible poses).

• The most important poses that would mostly affect the accuracy of the results are those poses
that are very close to the calibration pattern, although this was not shown in Figure 6, as we
are taking the average of the randomly selected poses over many trials. This observation was
actually discussed in [29], and as such no experimental results about this study were presented
and analyzed further in this paper.

Table 1 lists the manually measured distances dRF and dpattern for the Configurations 1–4.

Table 1. The calibration distances dRF and dpattern for the four configurations in Figure 2.

Measured Distance (mm) Configuration 1 Configuration 2 Configuration 3 Configuration 4

dpattern 830 830 830 160
dRF 340 340 140 140

Throughout all of the experiments, once the A and B matrices are determined, the time to estimate
the ˆ̂X and ˆ̂Z transformations is usually less than a minute. Practically speaking, the exact time will
depend on the size of the calibration data supplied to the calibration procedure. Further insight on the
timing performance of the employed RWHE calibration procedure is provided in [40].
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For the configurations in Figure 2, configuration 2 allows for overlapping filed of views of the
sensors as done in Zhang and Pless method [6]. Hence, it was easier to compare this configuration
with the work in [6].

The rest of the section is organized as follows. First, the calibration results (i.e., the estimated X
and Z transformations) are presented for configurations 1 and 3, when the calibration pattern is not in
the field of view of both the lidar and camera sensors (Section 5.1). Then, the results are discussed for
configurations 2 and 4, when the lidar and camera sensors view the calibration pattern (Section 5.2).
The comparison with the Zhang and Pless method [6] is presented in Section 5.3. The uniqueness of
the proposed calibration approach is highlighted in Section 5.4.

5.1. Calibration Results for Configurations 1 and 3

To estimate the calibration parameters for configurations 1 and 3, we used the corresponding
measured dpattern and dRF values provided in Table 1. The accuracy of the obtained results is calculated
using Equation (14).

Figures 7 and 8 show projection of world calibration points (grid points) to one selected calibration
image in configurations 1 and 3. The error difference between the location of the point in images
(based on the original A matrix) and the reprojected point (based on the Anew = ZBX−1 matrix) is
shown by a blue line. The rrmse error values are (in pixels); 3.77658 and 5.17108 for configurations
1 and 3, respectively. The error values imply high accuracy in the estimated calibration results.

Zoomed

Figure 7. Configuration 1: Reprojection error based on the estimated X and Z matrices. Blue lines
indicate the amount of the reprojection error (original image resolution 752× 480).

Zoomed

Figure 8. Configuration 3: Reprojection error based on the estimated X and Z matrices. Blue lines
indicate the amount of the reprojection error (original image resolution 640× 480).
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Figures 9 and 10 show forward projection of lidar point measurements to two selected test images
for configurations 1 and 3, using the corresponding estimated Z matrix. It should be noted that no
ground truth of the estimated calibration parameters is available. With visual inspection, the lidar
points are correctly projected to the image plane, in configurations 1 and 3, at about the same height
of the corresponding lidar from the ground level based on the dRF distance. The verification was
manually done by measuring the distances of where the lidar points projected on the wall plane(s) or
on the calibration object (see next subsection), and then comparing that to the reported dRF values in
Table 1. The measured distances of the projected lidar scans to the ground plane were all very close
to the dRF values in Table 1 within 1–5% of an error. While this error is small, it is believed that the
error sources might be due to uncertainties in the estimated intrinsic camera parameters, measured
distances, lidar point measurements, and the computed A and B matrices. This is consistent with
the assumption that the lidar scans are parallel to the ground plane, and shows high accuracy in the
estimated calibration results. Similar verification was done for the rest of the configurations.

(a) (b)

Figure 9. Configuration 1: Projection of lidar data to two test images using the estimated Z matrix
(points are shown in red color): (a) first test image; (b) second test image.

(a) (b)

Figure 10. Configuration 3: Projection of the lidar data to two test images using the estimated Z matrix
(points are shown in red color): (a) first test image; (b) second test image.
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5.2. Calibration Results for Configurations 2 and 4

Figures 11 and 12 show reprojection error based on the estimated calibration results for
configurations 2 and 4, respectively. Blue lines indicate error difference between projected world
points and their corresponding original image points. The rrmse error values are (in pixels) 3.54517
and 3.10974 for configurations 2 and 4, respectively. Figures 13 and 14 show forward projection of
lidar point measurements to selected test images for configurations 2 and 4, which demonstrate high
accuracy in the estimated calibration results.

Zoomed

Figure 11. Configuration 2: Reprojection error based on the estimated X and Z matrices. Blue lines
indicate the amount of the reprojection error (original image resolution 704× 480).

Zoomed

Figure 12. Configuration 4: Reprojection error based on the estimated X and Z matrices. Blue lines
indicate the amount of the reprojection error (original image resolution 640× 480).

(a) (b)

Figure 13. Configuration 2: The projection of the range data to two test images using the estimated Z
matrix (points are shown in red color): (a) first test image; (b) second test image.
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Figure 14. Configuration 4: The projection of the range data to a test image using the estimated Z
matrix (points are shown in red color).

Additionally, extra verification steps were conducted in configurations 1 and 2 to further
demonstrate the accuracy of the estimated calibration results. Specifically, we first performed standard
stereo camera calibration using [30] between the left camera of the stereo pair and the PTZ camera sensors,
which are mounted on PeopleBot platform and employed in these two configurations. Then, we used
the estimated extrinsic calibration parameters for each configuration to project selected lidar point
measurements onto their corresponding image planes (these were shown in Figures 9a and 13a).
Next, we used the estimated stereo calibration parameters to project the projected lidar points from the
left camera (configuration 1) to the PTZ camera (configuration 2). Finally, we computed the average error
to the originally projected lidar points on the PTZ camera in configuration 2. The computed average
error using the L2 norm is 4.6628 in pixels. Figure 15 demonstrates the results from this experiments,
which verify the high accuracy of the proposed calibration approach and results.

Figure 15. Extra step verification. The blue colored points (upper points) are projection of lidar points
onto a test image using the estimated calibration result from configuration 2. The red colored points
(lower points) are projection of the same lidar points but using the product of the extrinsic calibration
result from configuration 1 and the estimated stereo transformation between the left camera to the
PTZ camera.
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5.3. Comparison with Zhang and Pless Method

In configuration 2, since the calibration object is in the field of view of the camera and lidar
sensors, a comparison between the proposed approach and Zhang and Pless [6] was conducted. In [6],
the lidar to camera transformation is determined by fitting the lidar points, which project on the planar
calibration object, to the location of the calibration object’s plane as determined by the extrinsic camera
calibration parameters. Zhang and Pless estimate one HTM, broken into a rotation matrix (Φ) and
translation (∆) that correspond to the extrinsic transformation from the camera to the lidar sensor.
This HTM is analogous to the Z−1 matrix in our proposed calibration approach.

Because of differences in collecting the calibration dataset between the two approaches: in our
calibration setup:

• the robotic platform cannot be tilted due to platform weight.
• the calibration object is stationary.

Hence, our recored calibration datasets cannot be tested using the the Zhang and Pless approach.
Therefore, to address this issue, a new dataset was recorded, where:

• the sensory platform is now stationary,
• the calibration pattern is posed at different views with respect to the sensory platform,
• the recored dataset was collected from 12 poses.

The newly recorded calibration dataset allowed using Zhang and Pless source code [47].
Figure 16a–d show two sample images and their corresponding lidar measurements from the newly
recorded dataset when being supplied to Zhang and Pless method.

The results of comparison between the estimated lidar to camera transformation from the Zhang
and Pless approach and the proposed approach are shown in Figure 16e–f, where the comparison is
made using the same camera intrinsic parameters and distortion coefficients. Figure 16c,d show the
actual lidar points (in red color circles) that went into the estimation of the calibration parameters
(those are the actual lidar points on the calibration pattern). Figure 16e,f show forward projection of
lidar points to the image planes using (1) the Zhang and Pless estimated parameters (points shown in
blue color) and (2) using the estimates from our proposed approach (points shown in red color) for the
two sample images in Figure 16a,b.

Figure 16e,f show that the translational and rotational components of both approaches match
the shape of the scene only in the vicinity of the calibration pattern or the calibration plane.
Overall, our proposed approach performs better in estimating the calibration parameters. Specifically,
the rotational components, as computed from our proposed approach, is more accurate especially in the
tilting direction when looking at the right wall plane in the images. This can be verified by inspecting the
projected lidar points using the estimated parameters from our proposed approach as they tend to be
more parallel to the ground plane. The estimated extrinsic transformation computed by our proposed
approach is shown in Equation (16), while the transformation computed by the Zhang and Pless approach
[Φ−1 (−Φ−1∆)] is shown in Equation (17). The L2 norm of the difference between the translational
components of the two transformations is equal to 314.43 mm , whereas the L2 norm of the difference
between the Euler angles vector representation of the rotational components is equal to 0.1215◦:

Z =


0.999890 −0.013132 −0.006903 −51.299995
−0.005976 0.069357 −0.997574 234.444555
0.013579 0.997505 0.069271 48.846367
0.000000 0.000000 0.000000 1.000000

 , (16)

[
φ−1 −φ−1∆
−→
0 1

]
=


0.99955 0.022982 −0.019517 −11.342
0.023362 −0.18112 −0.98318 −76.293
−0.019061 0.98319 0.18157 22.173
0.000000 0.000000 0.000000 1.000000

 . (17)
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Figure 16. Two sample images and their corresponding lidar measurements from the newly recorded
dataset. (a,b) show the reprojection of the grid points onto the image planes with estimated extrinsic
world-camera calibration parameters; (c,d) show lidar points that were detected in the same plane
of the calibration pattern in red color circles, where other lidar points are shown in blue dots
(angular resolution is 1◦); (e,f) show forward projection of the lidar points to the image planes using
(1) the Zhang and Pless estimated parameters (points shown in blue color) and (2) using the estimates
from our proposed approach (points shown in red color).
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5.4. Uniqueness of the Proposed Approach

The presented approach in this paper share many similarities that come from both Zhang and
Pless [6] and Bok et al. [29]. In this subsection, the added values of our approach are highlighted.

While our proposed approach and that of Zhang and Pless similarly estimate the desired extrinsic
calibration parameters, our approach does not require that the camera–lidar sensors share a common
field of view of the calibration object. Both approaches estimate the desired extrinsic calibration
parameters by minimizing the distance between the plane of the calibration pattern and the location
of the pattern as estimated by the camera. However, our approach casts the problem using the
RWHE calibration formulation and considers different assumptions about the scene and the calibration
procedure. Compared with the Zhang and Pless approach, our calibration paradigm is considered
a harder problem because the field of views of the sensors need not overlap, and the moving robotic
platform may not be tilted during calibration due to many reasons such as a heavy mobile robot
base. The sensory platform weight leads to the problem in that the recorded calibration dataset
lacks any excitation in the roll and pitch angles and thus having some of the extrinsic calibration
parameters be unobservable. This was successfully mitigated by using manually measured dpattern

distance. Additionally, having the robot platform moving against a stationary calibration target allows
for automatic or semi-automatic robot platform self-calibration (considering the manually measured
distances dpattern and dRF), which is not feasible with the Zhang and Pless approach.

Comparing our approach with Bok et al. [29], both approaches deal with no-overlap extrinsic
calibration of a lidar–camera systems and also adopt some reasonable assumptions about the calibration
environment. However, there are few differences between the two approaches. First, Bok et al. defined
either a plane perpendicular to one of the axes of the world coordinate system (as defined by the
calibration pattern), or a line intersecting two planes that is parallel to one of the axes of the world
coordinate system to perform the calibration. In our approach, we defined a corner on the floor
and required that the lidar scans are to be parallel to the ground plane. Second, the approach by
Bok et al. requires manual selection of lidar data that overlapped the defined geometric structure.
In our proposed approach, the manual selection of lidar data is not required; instead, dpattern and dRF
distances are assumed to be manually measured. Lastly, the nonlinear optimization cost function used
in the Bok et al. approach is structure dependent, where in our approach the cost function is structure
independent and only associated with the employed RWHE calibration approach.

Finally, our proposed approach is flexible and scalable to consider other configurations or setups.
For example, one could add many other lidars and cameras and be very flexible with the presented
approach to estimate the calibration parameters. The only requirement is to compute the transformation
matrices (As and Bs) for the RWHE method to estimate the desired calibration parameters X and Z.
In addition, one may need to consider fixing the translational components of the estimated matrices
similar to what was done when we fixed the y translational component of the W X̂F matrix in Equation
(10) to remove the translational ambiguity.

6. Conclusions

This paper presented a novel approach for the extrinsic calibration of a camera–lidar system
without overlap based on a RWHE calibration problem. The system was mapped to the RWHE
calibration problem and the transformation matrix B was computed, by considering reasonable
assumptions about the calibration environment. The calibration results of various experiments and
configurations were analyzed. The accuracy of the results was examined and verified. Our approach
was compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Results indicate
that the proposed approach provides better accuracy with an L2 norm translational and rotational
deviations of 314 mm and 0.12◦, respectively.

The presented work is unique, flexible, and scalable. Our approach is considered one of the few
studies addressing the topic of target-based extrinsic calibration with no overlap. We believe that it
can easily be a part of an automatic robotic platform self-calibration assuming the required distances
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(i.e., dRF and dpattern) are known. Additionally, we could add other lidars and cameras to the proposed
system and still be capable of using the proposed calibration approach.

Future work could consider applying the presented ideas to other robotic platforms with possibly
different placements of the heterogeneous sensors after deciding the possible importance of such
configurations in the robotic and computer vision communities. For example, Figure 17 illustrates
a system of a camera and 2D lidar sensors with a non-overlapping field of view, and the views of
the sensors are in completely different planes. Considering the possible sources of uncertainties in
the calibration procedure, and thus in the estimated parameters, is another point of future work.
Furthermore, future work may possibly include researching the calibration problem when the lidar
sensor on the robotic platform is being tilted such that the lidar scans are not being parallel to the
ground floor anymore.

Figure 17. A configuration where the views of the sensors are in different planes.
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