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Abstract: Recently, the development of wireless body area sensor network (WBASN) has accelerated
due to the rapid development of wireless technology. In the WBASN environment, many WBASNs
coexist where communication ranges overlap with each other, resulting in the possibility of
interference. Although nodes in a WBASN typically operate at a low power level, to avoid
adversely affecting the human body, high transmission rates may be required to support some
applications. In addition to this, since many varieties of applications exist in the WBASN environment,
each prospective user may have different quality of service (QoS) requirements. Hence, the following
issues should be considered in the WBASN environment: (1) interference between adjacent WBASNs,
which influences the performance of a specific system, and (2) the degree of satisfaction on the QoS
of each user, i.e., the required QoS such as user throughput should be considered to ensure that
all users in the network are provided with a fair QoS satisfaction. Thus, in this paper, we propose
a transmission power adjustment algorithm that addresses interference problems and guarantees
QoS fairness between users. First, we use a new utility function to measure the degree of the
satisfaction on the QoS for each user. Then, the transmission power of each sensor node is calculated
using the Cucker–Smale model, and the QoS satisfaction of each user is synchronized dispersively.
The results of simulations show that the proposed algorithm performs better than existing algorithms,
with respect to QoS fairness and energy efficiency.

Keywords: Bio-inspired; energy efficiency; fairness; power control; quality of service; wireless body
area sensor network

1. Introduction

With the rapid advance of wireless technology in recent years, the development of WBASN has
been accelerated in an effort to monitor patients and support applications used for telemedicine [1–3].
As the population is growing rapidly around the world, the demand for healthcare systems will
consequently increase. Especially the population aged between 60 and 80 is expected to double in 2050,
compared to the number in 2010. Thus, technological development in WBASNs is essential. Millions of
people die every year from diseases such as cancer and cardiovascular disease, where early detection
and treatment can dramatically reduce the mortality rate. Therefore, future healthcare systems should
provide preventive services. Wearable devices that can be attached to the body, to monitor and
analyze a bio-signal, are typically used as effective precautionary measures, for early disease detection.
Many studies have been conducted to address various problems that may occur in the WBASN
environment, where these wearable devices are used.

The WBASN can be configured by several wireless technologies that have advantages and
disadvantages depending on each radio technology [4]. In this paper, we focus on the IEEE
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802.15.6 standard. A study group on the WBASN communication standard was approved as Task
Group 6 (TG6) of the IEEE 802.15 working group, in January 2008. The first draft of the WBASN
standard was ratified in February 2012 [5]. The purpose of WBASN communication standardization
is “to provide an international standard for a short-range (i.e., about human body range), low power,
and highly reliable wireless communication for use in close proximity to, or inside, a human body” [1].

The WBASN has distinctive features compared with the existing wireless networks [6]. In the
WBASN environment, there are many WBASN networks where communication ranges overlap
with each other. Thus, interference may occur between each WBASN network, because of limited
frequency resources [7]. This inter-WBASN interference may cause problems that affect each user,
such as a decrease in the throughput, or an increase in the packet loss rate. In general, inter-WBASN
interference is maximized when there is no coordination between each network. Generally speaking,
techniques for reducing interference can be classified as centralized and distributed methods.
With centralized methods, a central coordinator is deployed like a base station, which regulates
the media access control (MAC) and transmit power of each sensor node that is dependent on
a WBASN, to reduce the effect of interference on each hub. However, since each user in the WBASN
environment is highly mobile, and user-dependent WBASNs operate independently of each other,
central coordinator based interference mitigation methods are not suitable for deployment with
WBASNs. Therefore, distributed methods are used to mitigate interference in the WBASN environment.

Figure 1 shows the transmission power requirements and data rates for different wireless
technologies [1]. From this image, it can be seen that the transmit power required in a WBASN
environment is significantly lower than with other networks. Since the sensor nodes in the
WBASN, for collecting biometric data, may exist on the inside, and on the surface of a human
body, lower power consumptions are required for WBASN technology than with existing wireless
technologies, in consideration of the specific absorption rate (SAR) of electromagnetic waves. In spite
of the limited transmit power of WBASNs, the range of transmission rates required for each application
is very broad. This is because the types of data measured by the sensor nodes vary depending on
the application, and the required data rate varies depending on the type of data being transmitted.
Since a maximum data rate of about 10 Mbps and low power consumption are required in the
WBASN environment, the WBASN protocol requires higher energy efficiency than existing protocols.
Depending on the type of application being used in a WBASN, the differences in the required data
rate may be very large. As a result, some sensor nodes may use an unnecessarily large transmission
power, reducing their energy efficiency, as well as the performance of other nodes. In addition,
since the types of applications utilized in a WBASN are different, the data rate required for satisfying
quality of service (QoS) may also be different for each WBASN. A required transmission rate based on
the QoS is directly related to fair treatment of users in the network [8]. If the difference in required
data rate for a satisfactory QoS is not taken into consideration, users in the network could be provided
with an unfair service. For example, allocating the same amount of resources to a voice service of
relatively low quality, and a high-quality video service, does not provide each user with fair treatment.
Therefore, in the WBASN environment it is necessary to consider different QoS requirements according
to the applications employed in WBASNs.

The remainder of this paper is organized as follows. In Section 2, we present the related works.
In Section 3, we describe the general system models and parameters of the WBASN. In Section 4,
we explain the Cucker–Smale model, which is the basis of the proposed algorithm. In Section 5,
we introduce the operation of the proposed transmission power control algorithm in WBASN.
In Section 6, we evaluate the performance of the proposed algorithm. Finally, we conclude this
paper in Section 7.
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Figure 1. Comparison of power requirements and data rates in different wireless technologies.

2. Related Works

The interference problem has been dealt with in the existing network [9]. It is important to
design the wireless network by considering the signal-to-interference-ratio (SINR), as indicated by
the wide literature available on the topic, which we review in this section. The obtained SINR is
proportional to a variety of performance metrics including throughput [10]. However, the frequencies
assigned to two connections may incur interference to one another, resulting in quality loss of the
signal [11]. For this reasons, several studies in the traditional wireless networks had conducted
to mitigate interference. Resource allocation schemes in wireless network have been proposed to
assign channel and to associate the users with access points (APs) by considering SINR. To address
the co-channel interference problems, a biological behavior-based network resource management
method is proposed [12]. A solution to user association with the AP is proposed to guarantee the
best quality of service considering SINR [13]. In the cellular networks or the broadcasting systems,
the efficiency of SINR is an important factor and the optimization of the SINR problem have been
conducted. The planning methodologies in the cellular network that allow to minimize interference
overhead while maintaining the established network coverage are introduced [14]. A solution method
for SINR constraints problem in the cellular network is proposed that combines combinatorial Benders
decomposition, classical Benders decomposition, and valid cuts in a nested way [15]. A two-stage
heuristic methodology composed of power and frequency assignment stages is proposed so as to
minimize the loss from mutual interference in the broadcasting system [16]. An optimization problem
of transmission powers so as to guarantee the required SINR in the broadcasting system can be
formulated as a mixed integer linear program, and the analysis on the behavior of this model
is proposed [17]. To solve the interference problem caused by the coexistence of a plurality of
WBASNs that are dependent on a specific individual, unlike earlier works for the existing wireless
networks, many studies considering features of the WBASN have been conducted. The asynchronous
inter-network interference avoidance (AIIA) scheme has been proposed, to reduce the magnitude of
mutual interference that occurs in situations where two or more WBASNs share the same channel,
so that the active interval in each WBASN frame is not allocated at the same time [18]. AIIA is based
on a hybrid technique of carrier sense multiple access with collision avoidance (CSMA/CA) and time
division multiple access (TDMA). In this scheme, information relating to time occupied in a TDMA
interval is periodically exchanged and recorded in the AIIA table. The coordinator in each WBASN can
check if its TDMA interval conflicts with the time occupied by a neighbor, based on the information in
the AIIA table. If a collision is predicted, the coordinator occupies another time slot. A technique for
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adjusting the modulation parameter, data rate, and duty cycle, linearly, according to the SINR of the
receiver has been proposed, to solve co-channel interference [19].

Transmission power control plays an important role in mitigating interference in a wireless network.
The coverage extension of base stations (BSs) can be enhanced by mitigating interference in the cellular
networks [20]. In this scheme, the optimization of BS parameters leads to improving the system
performance. The overall power consumption of AP is also decreased by interference management
in the wireless local area network (WLAN) [21]. This approach adapts the branch-and-benders-cut
method to solve the non-linear power design problem on the interference management. Many studies
have been conducted on methods to improve performance in the WBASN environment by adjusting
transmission power. The received signal strength indicator (RSSI) is one of the commonly used
parameters for power control algorithm. Due to inter-sensor node interference caused by body
movement or variance of channel status, a method for detecting changes to the link quality using
the received signal strength indicator (RSSI), and adjusting the transmission power, is proposed [22].
An energy efficient transmission power control scheme in an on-demand way to adapt to varying
channel environments is proposed [23]. A power control schemes based on the reinforcement learning
(RL) and mathematical optimization are proposed to consider interference. To determine the optimal
combination of beamforming and power control in sensor arrays, the RL algorithm is proposed [24].
In this case, the power configuration set of this kind of scheme could be explored by [25]. A method
for channel and power allocation based on a RL mechanism and convex optimization is proposed [26].
Studies on game theory-based algorithm have been conducted in existing wireless networks to
obtain the optimal transmission power that maximizes system performance. The non-cooperative
differential game is used to control transmit power of wireless powered sensor network [27].
This scheme extends working hours and improves throughput by optimal power control. The proactive
power update (PAPU) algorithm applied this theory to WBASN environments with the purpose
of maximizing the data rate of the entire WBASN networks [7]. The scheme recognizes changes
in SINR or transmission power of neighboring WBASNs, and determines whether to adjust the
transmission power. If a coordinator decides to adjust transmission power, the optimal power that
increases the transmission rate is found using the Nash equilibrium, based on the quality of the channel,
interference from other WBASNs, noise, and other predetermined power parameters.

Besides, studies on various problem occurring in WBASN have been conducted. Researches on
using relays have conducted to improve performance of far nodes. In the system of using relay
node, routing is essential to improve network lifetime and system performance. A global routing
scheme using Dijkstra’s algorithm is proposed with a novel cost function specialized for balancing
energy consumption [28]. A relay selection scheme is proposed to maximize the lifetime of WBASNs
through formulating and solving an optimization problem where relay selection of each node acts
as optimization variable [29]. Traffic uncertainty causes degradation of network performance and
interruption to operate protocols [30]. Therefore, design of network protocol should take into account
some uncertain factors in order to make it realistic [31]. In the WBASN, the sensed data is generated
by event-driven and this makes the algorithm to be outdated. For this reason, some optimization
schemes are proposed to consider the event-driven data generation. A heuristic approach combining
deterministic and probabilistic variable fixing strategies is proposed for WBASN optimal design,
formulated as an integer programming problem [32]. An original optimization algorithm is proposed
that exploits suitable linear relaxations to guide a randomized fixing of the variables [33]. It is supported
by an exact large variable neighborhood search. Several robust algorithms considered the SINR.
The robust optimization scheme using SINR is proposed to deal with the jamming problem in wireless
networks [34]. The stochastic programming-based convex optimization with the probabilistic SINR
constraints is proposed to optimize the transmission power [35]. A stochastic revenue optimization
model based on bid pricing model for cellular networks is proposed [36]. There also exist techniques
that integrate various functions of wireless networks. An integrated optimization is proposed to
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handle the collide functions and to allocate the radio resources [37]. An optimal cross layer design is
developed in order to construct hierarchical system [38].

In conventional studies, the objective of transmission power control schemes is to minimize
the energy consumption [21], or to maximize the data rate in considering interference occurred in
inter-WBASN [7]. Actually, determining the data rate according to QoS requirements in wireless
environment is one of the important issues rather than merely considering high transmission rates or
energy efficiency [39]. However, as these schemes do not consider the QoS of each user in the WBASN
environment, transmission power could operate regardless of the required data rate. Thus, there may
be a limit in the ability to provide fair QoS to the users in WBASNs. In this paper, we propose
an algorithm that can achieve fair QoS satisfaction across all users in WBASNs considering different
QoS levels of the users. First of all, a utility function, which indicates how closely the current
data rate matches the required data rate, is defined. Next, based on information from neighboring
WBASNs, each network derives the transmission power needed for a QoS satisfaction value equal to
the average QoS satisfaction value of the neighboring WBASNs. We use the Cucker–Smale model [40]
in calculating the appropriate transmission power for each user. The Cucker–Smale model is typically
used to simulate phenomena in which organisms move in groups, based on individual behavior with
simple rules, using limited information. The model is thus suitable for the WBASN environment,
where the transmission power must be controlled in a distributed manner, because it uses only
information available from the neighboring nodes. In addition, the Cucker–Smale model can be
applied to solving the problem of fair distribution of a satisfactory QoS in all neighboring WBASNs,
because it synchronizes the specific variables of each entity to the same value.

3. System Model

In this paper, we employ IEEE 802.15.6-based system as a target system [5]. In IEEE 802.15.6,
multiple nodes belong to one coordinator (or hub). The hub shall operate in one of the three access
modes: ‘beacon mode with superframe’, ‘non-beacon mode with superframe’, and ’non-beacon mode
without superframe’. The superframe is divided into contention-based period and managed access
period (MAP) as shown in Figure 2. In the contention-based period, there are three types of access
phases: exclusive access phase (EAP), random access phase (RAP), and contention access period (CAP).
In this period, sensor nodes use CSMA/CA or slotted ALOHA methods to access medium. Otherwise,
in the MAP, it is possible to allocate resource by scheduling such as TDMA. If the beacon signal
is available, the hub can determine whether to use each access phase or not, and broadcast some
information such as the value of the utility function. For this reason, the beacon mode with superframe
is used to facilitate a WBASN in our system.

Figure 2. The layout of access phase in superframe. EAP, exclusive access phase; RAP, random access
phase; MAP, managed access period; CAP, contention access period.

A WBASN can consist of a hub and multiple sensor nodes. Each sensor node has a different QoS
requirement, which leads to scheduling issue on resource allocation in the given MAC protocol. In this
paper, we assumed that there is no intra-WBASN collision by assuming the TDMA-based WBASN
protocol such as IEEE 802.15.6, in order to focus on the performance evaluation of our algorithm
proposed in the context of control over inter-WBASN collision. The hub allocates time resources of
the MAP to each sensor node by using the beacon signal. Figure 3 shows medium access in the MAP.
Each sensor node periodically generates data and transmits it at the allocated time interval. At this time,
the sensor node set the Ack field in the MAC header to immediate-Ack (I-Ack). After data transmission
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is completed, the hub sends back I-Ack including the information of calculated transmission power
to the sensor node. The sensor node can adjust its power level by using the power information in
the I-Ack.

Figure 3. Example of scheduling in MAP. I-Ack, immediate-Ack. pSIFS, Short Inter-Frame Spacing.

It is assumed that a single sensor node SNi exists in WBASNi because contention-free MAC
scheme is assumed to avoid intra-WBASN collision between sensor nodes associated with a WBASN,
as shown in many studies on previous power control schemes in the WBASN environment [41–44].
As shown in Figure 4, there may be other WBASNs within transmission range, which may cause
interference. Suppose that each user i constitutes a single WBASN WBASNi and one hub Hi in
WBASNi collects information from each sensor node. The coefficient gij represents the channel gain
between the transmitter i and the receiver j, i.e., The coefficient gij represents intra-WBASN channel
gain in the WBASN when i = j, and inter-WBASN interference gain between different WBASNs when
i 6= j. For example, in Figure 4, SN1 tries to transmit measured data to H1 in WBASN1, which it belongs
to, and, at the same time, SN2 tries to transmit data to H2 in WBASN2, which causes interference to
each other’s network.

Figure 4. Inter-WBASN interference model.

The SINR, γi(t), of the i-th WBASN at time t is:

γi(t) =
pi(t)gii

∑j∈Ni :j 6=i pj(t)gji + n0
, i = 1, 2, · · · , N (1)



Sensors 2017, 17, 2344 7 of 24

where pi(t) is the transmission power of SNi, Ni is the set of neighboring nodes within transmission
range of SNi, and n0 is additive white Gaussian noise (AWGN). According to Shannon’s theory,
the data rate, Ri(t), of the i-th WBASN at time t is described as follows:

Ri(t) = B log2(1 + γi(t)), b/s (2)

where B is the bandwidth of the channel. Finally, the energy efficiency, Ei(t), of the i-th WBASN at
time t is defined as,

Ei(t) =
Ri(t)
pi(t)

, b/J (3)

4. Cucker–Smale Model

When observing naturally occurring phenomena, organisms often move in groups based on
individual behavior with simple rules, using limited information. For example, when birds move in
groups, they all move at the same speed. Cucker and Smale proposed a model (the Cucker–Smale
model) to simulate this phenomenon, using the rule that each object adjusts its speed and direction
individually, in consideration of the speed and direction of neighboring objects [40].

This mathematical model deals with the relationship of individuals that interact with each other.
Each entity interacts with its neighbors, to adjust its velocity according to the weighted mean of the
relative velocities of other neighbors in the group together with its own velocity. Assuming that there
are N entities, the position of the i-th entity is defined as xi(t), and the velocity is defined as vi(t).
Based on the above description, the Cucker–Smale model can be expressed as follows:

dxi(t)
dt

= vi(t) (4)

vi(t + 1)− vi(t) =
λ

N

N

∑
j=1

ψ(
∣∣xj − xi

∣∣)(vj(t)− vi(t)) (5)

In the above equation, i = 1, · · · , N, t > 0, and λ is a non-negative value indicating the coupling
strength between individuals, which also refers to the learning weight. ψ(·) is a function expressing
the communication range and weight between the affected entities. A typical ψ(·) function is given
as follows:

ψ1(
∣∣xj − xi

∣∣) = 1 (6)

ψ2(
∣∣xj − xi

∣∣) = 1|xj−xi|≤r (7)

ψ3(
∣∣xj − xi

∣∣) = 1(
1 +

∣∣xj − xi
∣∣2)β

(8)

In the above equation, r is a positive number, and β is a non-negative value. In this paper, we will
use Equation (7) to express the communication range between entities. Furthermore, Cucker and
Smale demonstrated that the velocities of all individuals converge, when ψ(·) is a non-negative and
non-increasing function. Therefore, flocking phenomena satisfy the two following time-asymptotic
convergence properties.

lim
t→∞

∣∣vi(t)− vj(t)
∣∣ = 0, f or i 6= j (9)

sup
0≤t<∞

∣∣xi(t)− xj(t)
∣∣ < ∞, f or i 6= j (10)

Equations (9) and (10) show that the difference in velocity between individuals converges to zero over
time, and the distance between individuals does not diverge.
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5. Proposed Algorithm

The Cucker–Smale model described in Section 3 is suitable for application to distributed resource
allocation, because each node can achieve the global goal by acquiring and processing local information.
In the Cucker–Smale model, the velocity vectors of each node are synchronized, as detailed in
Equation (9). If the operational principle of the Cucker–Smale model is applied to the synchronization
of each WBASN, the data rate of each node can be synchronized. However, different applications exist
in the WBASN environment, where the difference in data rate varies, from several tens of kilobits
per second, to ten megabits per second. Therefore, QoS fairness cannot be achieved for each node,
if they share the same data rate. Moreover, if all users have the same data rate, some users may
consume power unnecessarily in maintaining a data rate that is higher than required. To solve these
problems, we propose a new power control algorithm for use in the WBASN environment based on
the Cucker–Smale model. In the proposed algorithm, termed the flocking-based transmission power
control with utility (FTPC-U) algorithm, the QoS of each user is defined as a utility function and the
transmission power is adjusted to synchronize the value of the utility. This algorithm also increases
the energy efficiency of the network, by preventing unnecessary energy consumption in transmission,
and enables each user to be provided with a fair QoS.

5.1. Utility Function

In this paper, we define a utility function to express the QoS satisfaction of each user according to
the data rate. Existing utility functions used to represent QoS satisfaction typically have a sigmoidal
or logarithmic shape [45]. The shapes of these utility functions are applied depending on the type,
and characteristics of the applications in use. We express two types of utility as one function. The utility,
Ui(t), of the i-th WBASN at time t is given as follows:

Ui(t) = Umax −
e−ceb·r(t)

e−ce−b − e−c
, r(t) =

Ri(t)− RReq
i

RReq
i

(−1 ≤ r(t) < ∞) (11)

where b and c are the control parameters (b > 0, c > 0), and RReq
i is the required data rate of WBASNi.

The shape of the above function can be changed according to the values of control parameters, b and
c, as shown in Figure 5. The term, Umax = 1 + e−c/(e−ce−b − e−c), refers to the maximum possible
value of the utility. In this paper, RReq

i does not change over time, but has a fixed value for each
user. Since Ri(t) has a minimum value of zero, r(t) is greater than or equal to −1. If Ri(t) is zero,
the value of r(t) is −1, and Ui(t) is zero. If the values of Ri(t) and RReq

i are same, the value of r(t) is
zero, and the value of Ui(t) is one. r(t) goes to infinity as Ri(t) goes to infinity. The value of Ui(t) is
maximized in this case (Ui(t) = Umax).

-1 -0.5 0 0.5 1
r(t)

0

0.2

0.4

0.6

0.8

1

U
i(t

)

b = 1, c = 9

b = 7, c = 3

Figure 5. Proposed utility function.
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5.2. Operation of the FTPC-U algorithm

We use the above utility function to calculate the utility value of each user, and apply it to the
Cucker–Smale model to adjust the transmission power by synchronizing the value of utility function.
The operational procedure of the proposed algorithm is as follows:

1. At time t, the sensor node SNi of each network WBASNi transmits a data packet to the hub Hi
with a transmission power given by pi(t).

2. Hi measures the SINR γi(t) based on the received packet.
3. Hi computes the current data rate Ri(t) using Equation (2).
4. Hi calculates the current utility value Ui(t) using Equation (11).

5. When the calculated utility is greater than one, i.e., Ri(t) > RReq
i , Hi reduces the transmission

power of SNi, such that the current data rate Ri(t) becomes the required data rate RReq
i . Using the

SINR information at time t, pReq
i (t), the transmission power required to convert Ri(t) to RReq

i ,
can be obtained from Equations (1) and (2).

RReq
i = B log2

(
1 + γ

Req
i (t)

)
= B log2

1 +
pReq

i (t)gii

∑Ni
∀j,j 6=i pj(t)gji + n0

 (12)

= B log2

(
1 + pReq

i (t)× γi(t)
pi(t)

)

where γ
Req
i (t) is the SINR required for the hub Hi to obtain the required data rate RReq

i considering
the channel conditions and interference from neighboring WBASNs at time t. From Equation (12),
we can determine pReq

i (t) as follows:

pReq
i (t) = max

[
pmin, min

[
pmax,

(
2

RReq
i
B − 1

)
× pi(t)

γi(t)

]]
(13)

where pmax and pmin are the predetermined maximum and minimum transmission
power, respectively.

6. Hi transmits information of Ui(t) to neighboring WBASNs.
7. Hi computes the next target data rate using Equation (14) (defined below), with the received Ui(t)

information and the Cucker–Smale model, as follows:

Ui(t + 1)−Ui(t) =
λ

N

N

∑
j=1

ψ
(∣∣xj − xi

∣∣) · (Uj(t)−Ui(t)
)

(14)

If any WBASN is out of communication range, ψ(|·|) = 0. Assuming ψ(
∣∣xj − xi

∣∣) = 1|xj−xi|≤r
and λ = 1, Equation (14) can be expressed simply, as the following equation:

Ui(t + 1) =
1
|Ni| ∑

j∈Ni

Uj(t) (15)

where Ni is a set of WBASNs neighboring Hi, and |·| denotes the cardinality of the
corresponding set.

8. If the difference between Ui(t + 1) and Ui(t) is very small, i.e., |Ui(t + 1)−Ui(t)| < ε, where ε

is a very small predefined constant, Hi determines that the utility has converged and does not
adjust the transmission power.
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9. Hi determines the transmission power to be used at the next time interval pi(t + 1) based on
the calculated target utility Ui(t + 1). pi(t + 1) can be expressed as a single Equation (16) based
on Equations (16), (2), and (11), with the same method used to define Equation (13).

pi(t + 1) = max

{
pmin, min

{
pmax,

pi(t)
γi(t)

× (2
RReq

i ln(− 1
c ln(α+e−c−αUi(t+1)))−b+RReq

i
B − 1)

}}
(16)

where α = e−ce−b − e−c.

Algorithm 1 is a pseudo-code of the FTPC-U algorithm. During the execution of the proposed
algorithm, it is possible to prevent sensor nodes from wasting transmission power in each WBASN,
using Equation (13). It is also possible to synchronize the utilities of the WBASNs dispersively,
using Equation (16). The data rate of the coordinator Hi which is dependent on the user i is related
to the transmission power of all other neighboring sensor nodes SNj (∀j ∈ Ni, j 6= i). Accordingly,
adjusting the transmission power of one sensor node affects the data rate of all other coordinators.
Therefore, the operating procedure of the proposed algorithm must be repeated, such that the utility
value converges completely. Figure 6 is a schematic diagram of the operational procedure detailed
above. Table 1 shows a comparison between elements used in the Cucker–Smale model and the
proposed algorithm.

Algorithm 1: FTPC-U

Data: pi(t), γi(t), Ri(t), RReq
i , Ui(t), ε

1 %At each time t;
2 for i← 1to N do
3 SNi transmits data packet to Hi;
4 SNi calculates γi(t) and Ri(t);
5 Hi calculates Ui(t);
6 if Ui(t) > 1 then
7 %Hi calculates the transmit power to satisfying Ui(t) = 1;

8 pi(t) = pReq
i (t);

9 else
10 pi(t) = pi(t);
11 end
12 Hi(t) broadcast its Ui(t) information;
13 Hi(t) computes the target utility Ui(t + 1);
14 if |Ui(t + 1)−Ui(t)| ≥ ε then
15 Hi calculates next transmission power, pi(t + 1);
16 else
17 pi(t + 1) = pi(t);
18 end
19 end
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Table 1. Comparison between elements used in the Cucker–Smale model and the proposed algorithm.
FTPC-U, locking-based transmission power control with utility.

Elements Cucker–Smale Model FTPC-U

Adjusted parameter Velocity Transmission power
Communication range function ψ (|·|) 1|xj−xi|≤r

Comparison of algorithm model dvi(t)
dt = λ

N ∑N
j=1 ψ

(∣∣∣xj − xi

∣∣∣) (vj(t)− vi(t)
)

dUi(t)
dt = 1

|Ni | ∑j∈Ni
Uj(t)

Objective to converge Velocity Utility

Figure 6. Operational procedure of the proposed algorithm.

5.3. Convergence of the FTPC-U Algorithm

In this section, to show the stability of the proposed algorithm, we prove its convergence.
First, we consider Equation (14) in the continuous time domain, using the following equation:

Ui(t + 1)−Ui(t) =
dUi(t)

dt
=

λ

N

N

∑
j=1

ψ
(∣∣xj − xi

∣∣) · (Uj(t)−Ui(t)
)

(17)
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The center of Ui(t), Uc(t), is given by:

Uc(t) :=
1
N

N

∑
i=1

Ui(t) (18)

By differentiating Equation (18), we obtain the following:

dUc(t)
dt

=
1
N

N

∑
i=1

dUi(t)
dt

=
1
N

N

∑
i=1

N

∑
j=1

λ

N
ψ
(∣∣xj − xi

∣∣) · (Uj(t)−Ui(t)
)

=
λ

N2

N

∑
i=1

N

∑
j=1

ψ
(∣∣xj − xi

∣∣) · (Uj(t)−Ui(t)
)

(19)

=
λ

2N2

N

∑
i=1

N

∑
j=1

ψ
(∣∣xj − xi

∣∣) · (Uj(t)−Uj(t) + Ui(t)−Ui(t)
)

= 0

The derivative value in Equation (19) becomes zero, indicating that Uc(t) = Uc(0). Ûi(t),
the fluctuations around Uc(0), can be defined as follows:

Ûi(t) := Ui(t)−Uc(0) (20)

From Equations (18) and (20), we have:

N

∑
i=1

Ûi(t) = 0 (21)

Here, we define U(t) as U(t) :=
{

Û1(t), Û2(t), · · · , ÛN(t)
}
∈ RN , which is the set of Ûi(t).

The L2-norm of this set, which denotes quantities proportional to the standard deviations of U(t),
is given by:

||U(t)|| =
(

N

∑
i=1

∣∣Ûi(t)
∣∣2) 1

2

(22)

Substituting Equation (20) into Equation (17) yields:

d|Ûi(t)|2
dt = 2Ûi(t) ·

d|Ûi(t)|
dt

= 2Ûi(t) · λ
N ∑N

j=1 ψ
(∣∣xj − xi

∣∣) · (Ûj(t)− Ûi(t)
) (23)

We calculate the derivative of ||U(t)||2 as follows:

d||U(t)||2
dt = d

dt ∑N
i=1
∣∣Ûi(t)

∣∣2 = ∑N
i=1

d|Ûi(t)|2
dt

= λ
N ∑N

i=1 2Ûi(t)∑N
j=1 ψ

(∣∣xj − xi
∣∣) · (Ûj(t)− Ûi(t)

)
= − λ

N ∑N
i=1 ∑N

j=1 ψ
(∣∣xj − xi

∣∣) · (2Ûj(t)2 − 2Ûj(t)Ûi(t)
)

= − λ
N ∑N

i=1 ∑N
j=1 ψ

(∣∣xj − xi
∣∣) · ∣∣Ûj(t)− Ûi(t)

∣∣2
(24)
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We assume that the maximum difference in location between any two WBASNs in the network is
given by xmax = maxi,j

∣∣xj − xi
∣∣. Because ψ (·) is a non-negative and non-increasing function, we can

rewrite Equation (24) as,

d ||U(t)||2

dt
≤ − λ

N

N

∑
i=1

N

∑
j=1

ψ (xmax) ·
∣∣Ûj(t)− Ûi(t)

∣∣2
= − λ

N
ψ (xmax)

N

∑
i=1

N

∑
j=1

(
Ûj(t)2 + Ûi(t)2 − 2Ûj(t)Ûi(t)

)
= − λ

N
ψ (xmax)

(
N

∑
i=1

N

∑
j=1

2Ûi(t)2 − 2
N

∑
i=1

Ûi(t)
N

∑
j=1

Ûj(t)

)
(25)

= − λ

N
ψ (xmax)

(
2N ||U(t)||2 − 0

)
= −2λψ (xmax) ||U(t)||2

By solving Equation (25), we can get the following inequalities:

||U(t)||2 ≤ ||U(0)||2 e−2λψ(xmax)t (26)

||U(t)|| ≤ ||U(0)|| e−λψ(xmax)t (27)

which dictate that the proposed algorithm achieves exponential convergence.

6. Simulation Results

In this section, we evaluate the performance of the proposed algorithm using Monte-Carlo
simulations. We assume the network topology proposed in Section 2. Each WBASN operates in
beacon mode according to the IEEE 802.15.6 standard, and exchanges utility information. A hospital
waiting room was considered, as a dense environment where interference could occur. Figure 7
depicts the network environment, assuming a hospital waiting room. The area is set to 14 m × 4 m,
where the maximum number of WBASNs is 48. In all subsequent simulations, we will use
a logarithmically-shaped utility function, with control parameters b = 1 and c = 9. Table 2 summarizes
the applications used in the simulations detailed in this paper, and considers the requirements for
various services used in the WBASN [1,46,47].

Figure 7. Network environment, assuming a hospital waiting room.
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Table 2. Type of application used in the WBASN and required data rate.

Application Name Required Data Rate

ECG 288 kbps
Artificial retina 700 kbps

Capsule endoscope 1 Mbps
EMG 1.536 Mbps

The simulation considers an uplink situation where measured data is transmitted from the sensor
node to the coordinator. The channel gain in decibels is given by gij = 16.7 log10 d− 0.45, where d is
the distance [48]. Table 3 summarizes the commonly-used parameters in this paper.

Table 3. Commonly-used simulation parameters.

Parameter Value

Network size 14 m × 14 m
Size of each seat 1 m × 1 m
Location of hub Center of assigned seat

Location of sensor node Uniformly random distribution within the area of each seat
Initial transmission power Uniformly random allocation in (−14,−6), dBm

Bandwidth 1 MHz
Path loss model gij = 16.7 log10 d− 0.45 (in dB, d = distance)

Convergence error (ε) 10−4

Furthermore, we compared the performance of the proposed algorithm with two algorithms:
PAPU and transmission power control for body area network (TPC-BAN). PAPU controls transmission
power based on game theory and aims to increase the transmission rate within a given power limit,
and calculates the Nash equilibrium using the best response concept to determine the optimized
transmission power value by distributed processing [7]. This algorithm is adapted to update the
transmit power according to the occurrence of the event. There are two kinds of events. The first one
occurs when the transmission power is adjusted in the other network, and the second event occurs
when the SINR variation according to the time is equal to or greater than a predetermined threshold
value. When an event occurs, the hub changes the transmit power according to the best response and
informs the neighboring network of the change of the transmit power of the hub by broadcasting.
TPC-BAN controls transmission power using the detected RSSI [23]. In TPC-BAN, the hub updates
its own average RSSI by giving weighted parameter in order to mitigate the effects of instantaneous
channel mutation. The hub determines whether to control transmission power or not by comparing
the average RSSI value with the predetermined target reception power. If the average RSSI value
is located in the offset range of the target RSSI, the hub does not change the power of sensor node.
However, if the average RSSI value is out of the offset range of the target RSSI, the hub changes the
transmission power of the sensor node. The algorithm periodically updates its average RSSI and
adjusts the transmit power of the sensor nodes until it reaches the offset range of the target RSSI.

To verify the performance of the proposed algorithm, we create a network environment where
nine WBASNs are placed close together, at specific locations, as shown in Figure 8. Table 4 shows
information of applications used by each WBASN in this environment.

Figure 9 shows the changes in performance for each user over time, using the proposed algorithm
in the network environment shown in Figure 8 and Table 4. As shown in Figure 9a, WBASN1,
WBASN2, and WBASN3 have a low required data rate (288 kbps). Thus, each coordinator reduces the
transmission power of the corresponding sensor nodes, which do not require a large transmission
power. In the case of WBASN9, the coordinator increases the transmission power of the sensor node,
which has a high required data rate (1.536 Mbps). By adjusting the transmission power, the data rate
of each WBASN converges to a specific value, based on the required data rate, as shown in Figure 9b.
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As shown in Figure 9c, the utility of each user converges to the same value. As shown in Figure 9d,
when the proposed algorithm is applied, only the transmission power needed for data transfer at the
required data rate is consumed. Hence, it shows that transmission using the proposed algorithm has
a high energy-efficiency.

Figure 8. Location distribution of each WBASN in the performance-evaluation-over-time.
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Figure 9. Performance of FTPC-U over time. (a) Transmission power over time; (b) data rate over time;
(c) utility over time; (d) energy efficiency over time.

Table 4. Applications used by WBASNs in the performance-evaluation-over–time.

WBASN ID Application WBASN ID Application

1 ECG (288 kbps) 6 Artificial retina
2 ECG 7 Capsule endoscope (1 Mbps)
3 ECG 8 Capsule endoscope
4 Artificial retina (700 kbps) 9 EMG (1.536 Mbps)
5 Artificial retina - -
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Figure 10 compares the performance of the proposed algorithm with PAPU and TPC-BAN.
With the distribution of locations and applications as shown in Figure 8 and Table 4, we conduct
simulations to obtain an average performance value of each WBASN over time when the proposed
algorithm, PAPU, and TPC-BAN are employed. The purposes of PAPU and TPC-BAN are to increase
the overall data rate of the entire node and to satisfy global target RSSI value, respectively, while the
proposed scheme aims to increase the fairness of the QoS, and decrease the transmission power of
each user, simultaneously. Therefore, when using the proposed scheme, lower transmission powers
and average data rates are observed as shown in Figure 10a,b, and a higher utility value is observed
as shown in Figure 10c. Since with the proposed algorithm each user has a high average utility,
the number of users with a satisfactory QoS is greater than when PAPU or TPC-BAN is used, as shown
in Figure 10d. In addition, since the proposed scheme requires a lower transmission power on average,
energy efficiency is high, as shown in Figure 10e.

To evaluate the QoS fairness of network users, we use Jain’s fairness index [49], defined as follows:

J (x1, x2, · · · , xN) =

(
∑N

i=1 xi

)2

N ∑N
i=1 x2

i
(28)

where xi = Ri(t)/RReq
i . Jain’s fairness index defines a variable xi that indicates how close the current

data rate Ri(t) is to the required data rate RReq
i for each of the N users in the network. As the difference

in xi is reduced, the QoS for each user is satisfied fairly, and the value of Jain’s fairness index approaches
one. Figure 10f is a graph comparing the Jain’s fairness index of the proposed method with the index
obtained using PAPU and TPC-BAN. Since the proposed algorithm synchronizes the utility, higher QoS
fairness is observed than with PAPU and TPC-BAN.

Figure 11 shows the average performance of FTPC-U, PAPU, and TPC-BAN according to the number
of nodes. We change the number of nodes from 2–24, placing each node in a 14 m× 4 m space, as shown in
Figure 7. Each node is randomly assigned one of the applications listed in Table 2. Figure 11a shows the
transmission power according to the number of nodes. In this case, the overall interference increases as
the number of nodes increases. With PAPU and TPC-BAN, the hub tries to reduce the transmission power
of the sensor node as the interference increases. However, with FTPC-U, the hub adjusts the transmission
power of each sensor node using Equation (16), for synchronization of the utilities. In this case, if a decrease
in SINR caused by the increase in interference from Equation (16) occurs, the transmission power of the
sensor node is increased. Figure 11b is a graph showing the data rate according to the number of nodes.
When the number of nodes is small, we observe a high data rate, which decreases as the number of nodes
increases, using PAPU or TPC-BAN. In contrast, with FTPC-U, we observe a low data rate when the number
of nodes is small, because the required data rate can be achieved without a high transmission power. We
note that Figure 11c shows an average utility of one, until the number of nodes is about 12. This shows
that the actual data rate is close to the required data rate. Therefore, even though the data rate observed
in Figure 11b is low, the user does not perceive a deterioration in performance. We note from Figure 11c
that the effect of the number of nodes on performance is less prevalent using FTPC-U, which controls the
transmission power considering the interference caused by the increase in the number of nodes, and the
data rate of each user, than it is with PAPU or TPC-BAN. Therefore, as shown in Figure 11d, the number of
users with a satisfactory QoS is kept high with FTPC-U, but decreases gradually with PAPU and TPC-BAN.
Since the minimum power required for a satisfactory QoS is used with the proposed algorithm, the energy
efficiency is high as shown in Figure 11e. Figure 11f shows the QoS fairness according to the number of
nodes. FTPC-U shows higher QoS fairness than PAPU and TPC-BAN because it adapts the synchronization
of utilities.
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(f)
Figure 10. Performance of FTPC-U compared with PAPU and TPC-BAN over time. (a) Change in
average transmit power over time; (b) change in average data rate over time; (c) change in average
utility over time; (d) change in qualified users over time; (e) change in average energy efficiency over
time; (f) change in fairness over time. PAPU, proactive power update; TPC-BAN, transmission power
control for body area network.

Figure 12 shows the order that each WBASN arrives to the network environment, and its
corresponding location information. In the initial stage, we assume that only four WBASNs,
WBASN1–WBASN4, exist. Then, one WBASN sequentially enters when the number of iterations
increases by a 100, so that up to nine WBASNs are in the network environment. To evaluate
performance in dense situations, an arriving WBASN is placed in a location adjacent to an existing
WBASN. Table 5 shows the application information of each WBASN in this environment.

Figure 13 shows the change in performance according to the entry of WBASNs, when the
network environment detailed in Figure 12 and Table 5 is applied. Figure 13a,b shows the changes
in transmission power and data rate when a new WBASN enters an existing network environment.
Here, when the new WBASN enters, a temporary change in interference may cause a temporary
change to the transmission power, and a decrease in the data rate. In addition, the utility of each
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WBASN can be reduced temporarily, as shown in Figure 13c. Due to the instantaneous change in
utility, the number of users with a satisfactory QoS temporarily decreases, as shown in Figure 13d.
As shown in Figure 13e, high energy efficiency is observed using the proposed algorithm, because
only as much transmission power as required is consumed. Figure 13f shows the QoS fairness in
the entry environment, indicating that the proposed scheme achieves high QoS fairness through
utility synchronization.
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(f)
Figure 11. Performance of FTPC-U compared with PAPU and TPC-BAN according to the number of
nodes. (a) Change in average transmit power; (b) change in average data rate; (c) change in average
utility; (d) change in qualified users; (e) change in average energy efficiency; (f) change in fairness.
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Figure 12. Location distribution of each WBASN in the performance-evaluation-with-entry model.
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(f)
Figure 13. Performance of FTPC-U over time in the entry model. (a) Change in transmit power over
time in the entry model; (b) change in data rate over time in the entry model; (c) change in utility over
time in the entry model; (d) change in qualified users over time in the entry model; (e) change in energy
efficiency over time in the entry model; (f) change in fairness over time in the entry model.
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Table 5. Applications used by WBASNs in the performance-evaluation-with-entry model.

WBASN ID Application WBASN ID Application

1 ECG (288 kbps) 6 Artificial retina
2 Artificial retina (700 kbps) 7 Capsule endoscope (1 Mbps)
3 Capsule endoscope (1 Mbps) 8 EMG
4 EMG (1.536 Mbps) 9 ECG
5 ECG - -

Figure 14 shows the average performance of FTPC-U, PAPU, and TPC-BAN when a new WBASN
enters an existing network environment. With the entry model and applications as shown in Figure 12
and Table 5, we evaluate the average performance value of each WBASN with FTPC-U, PAPU,
and TPC-BAN. As shown in Figure 14a, transmission power is not consumed unnecessarily with
FTPC-U, as the influence of interference and required data rate are considered, whereas PAPU and
TPC-BAN controls the transmission power to maximize the data rate and to satisfy global target
RSSI, respectively. Therefore, as shown in Figure 14c, although a lower data rate is observed using
FTPC-U than with PAPU or TPC-BAN, the converged utility value is almost the same in both cases.
Moreover, since all of algorithms maintain a utility close to one, the number of users with a satisfactory
QoS is also maintained at about 100% as shown in Figure 14d. Figure 14e shows the energy efficiency
in the WBASN entry environment. FTPC-U has a significantly higher energy efficiency than PAPU
or TPC-BAN, because it operates at low power. Figure 14f shows the QoS fairness for users in the
WBASN entry environment. When PAPU or TPC-BAN is used, the QoS fairness of the users is reduced
each time a new WBASN enters the network environment. However, if FTPC-U is used, Jain’s fairness
index is maintained at about one. In the entry environment, the performance temporarily decreases,
because interference increases at the moment of entry. The overall performance degradation at this
moment is larger with FTPC-U than with PAPU or TPC-BAN. This is because, with PAPU or TPC-BAN,
the transmission power of most of the sensor nodes is adjusted to a relatively high level, however,
with FTPC-U, many sensor nodes are adjusted to use a low transmission power, and sensor nodes
with low transmission powers are more seriously affected by interference caused by a newly entering
WBASN. Nevertheless, using FTPC-U, we observe high performance in the converged state.
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(f)
Figure 14. Performance of FTPC-U compared with PAPU and TPC-BAN over time in the entry
environment. (a) Change in average transmit power; (b) change in average data rate; (c) change
in average utility; (d) change in qualified users; (e) change in average energy efficiency; (f) change
in fairness.

7. Conclusions

We introduced FTPC-U, which is a flocking-inspired algorithm for controlling transmission power
using the Cucker–Smale model, to solve interference problems that occur in the WBASN environment
and to guarantee QoS fairness between users. With the proposed algorithm, a fair QoS is guaranteed
for each user, by calculating a utility that expresses the QoS satisfaction numerically and synchronizing
this utility with those of neighboring WBASNs. Results of simulations show that FTPC-U operates
stably in both static and dynamic states. Comparing to PAPU and TPC-BAN, FTPC-U consumes less
power and exhibits higher or equal utility values. Improved energy efficiency and QoS fairness were
observed with FTPC-U, in both static and entry environments, compared with PAPU and TPC-BAN.
As a result, FTPC-U can effectively mitigate interference in dense environments and ensure that
the QoS satisfaction value for each user is fair. In addition, we expect that using this algorithm,
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high performance can be achieved with other types of networks where various applications coexist in
a dense and highly mobile environment.

In this paper, we assumed that only one sensor node is associated with a WBASN. However,
it is more natural to assume the coexistence of multiple sensor nodes associated with a WBASN.
Each sensor node associated with a WBASN may have a different QoS requirement, and this leads to
the scheduling issue in a WBASN. For this reason, it is necessary to consider QoS-fairness of multiple
sensor nodes in a WBASN. Therefore, a study on the joint transmission power control and resource
allocation algorithm for QoS-fairness of all users considering both intra-WBASN and inter-WBASN
collisions would be our further work. In addition, the proposed algorithm assumes that all hubs
and sensor nodes operate normally without any malicious node. However, the performance of the
network may deteriorate by malicious nodes, which may cause interference increase, data collision
and obstruction of convergence. We have a plan to extend the proposed algorithm considering the
existence of malicious nodes.
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