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Abstract: Though more costly than petroleum-based fuels and a minor component of overall military
fuel sources, biofuels are nonetheless strategically valuable to the military because of intentional
reliance on multiple, reliable, secure fuel sources. Significant reduction in oilseed biofuel cost
occurs when grown on marginally productive saline-sodic soils plentiful in California’s San Joaquin
Valley (SJV). The objective is to evaluate the feasibility of oilseed production on marginal soils in
the SJV to support a 115 ML yr−1 biofuel conversion facility. The feasibility evaluation involves:
(1) development of an Ida Gold mustard oilseed yield model for marginal soils; (2) identification
of marginally productive soils; (3) development of a spatial database of edaphic factors influencing
oilseed yield and (4) performance of Monte Carlo simulations showing potential biofuel production
on marginally productive SJV soils. The model indicates oilseed yield is related to boron, salinity,
leaching fraction, and water content at field capacity. Monte Carlo simulations for the entire SJV
fit a shifted gamma probability density function: Q = 68.986 + gamma (6.134,5.285), where Q is
biofuel production in ML yr−1. The shifted gamma cumulative density function indicates a 0.15–0.17
probability of meeting the target biofuel-production level of 115 ML yr−1, making adequate biofuel
production unlikely.

Keywords: apparent soil electrical conductivity; ECa-directed soil sampling; electromagnetic
induction; proximal sensor; response surface sampling; salt tolerance; boron tolerance; soil mapping;
soil salinity; spatial variability

1. Introduction

The United States is the world’s largest consumer of crude oil, resulting in two major problems:
(1) low energy security and (2) high greenhouse gas (GHG) emissions. To increase national energy
independence and decrease GHG emissions, the U.S. Congress enacted the Energy Independence
and Security Act (EISA) in 2007 (110. P.L. 140). The EISA aims to increase the production of clean
renewable fuels within the USA. Biofuels, such as biodiesel and renewable jet fuel from oilseed crops,
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are an alternative to petroleum-based fuels [1]. As part of EISA, the Renewable Fuel Standard (RFS)
mandates the production of 137 billion liters of biofuel annually by 2022.

1.1. U.S. Military’s Need for Alternative Fuels

The Department of Defense is the leading consumer of fuel within the USA. The U.S. military
consumes 23 billion liters of aviation fuel a year. The United States military desires a secure fuel source
that is not threatened or controlled by world events. Biofuels developed from crops grown within
the borders of the USA are a secure source of fuel uninfluenced by the same world events that affect
petroleum-based fuels. To diversify their fuel sources the U.S. military set a goal of 5% of their yearly
aviation fuel needs (1.15 billion liters per year) from biofuel.

Even though alternative fuels may not be price competitive, there is a long-term commitment
by the military to use diversification in fuel sources as a means of reducing risk [2]. The military’s
reliance on alternative fuels is strategic to help to ensure their operational readiness by increasing the
ability to use multiple reliable fuel sources, thereby reducing dependence on any single fuel source that
would make military decisions vulnerable to foreign manipulation. Interest in biofuels stems (1) from
their potential to improve U.S. energy security because they are from renewable domestic sources that
are theoretically unlimited over time and (2) from their potential to reduce GHG emissions, which
is largely dependent on how the biofuels are produced and what land-use or land-cover changes
occur [3].

1.2. Need for a Feasibility Study of Biofuel Production on Marginal Land in the San Joaquin Valley

Technology is available to produce biofuels, such as biodiesel and renewable jet fuel, from oilseed
crops. The common oilseed crops for temperate regions include canola (rapeseed), sunflower, soybean,
flax, safflower, and mustard. Some oilseed crops, such as mustard, show considerable salt tolerance.

Because of its climate, which enables year-round crop growth, and its reasonably secure source
of irrigation water from surface, ground, and/or degraded water sources, California’s San Joaquin
Valley (SJV) is an ideal agricultural area for a secure source of biofuel. In the SJV, biofuel feedstock
that can grow on marginally productive soil of poor quality, particularly saline soils, is advantageous
for cost reduction since marginal soils are usually fallow or produce yields too low to be profitable.
The U.S. Department of Agriculture and the U.S. Navy’s Office of Naval Research identified the SJV as
a potentially strategic location for biofuel production to meet 10% of the yearly biofuel production of
aviation fuel (115 ML yr−1).

Marginally productive lands in California are an ample potential resource that can be used to
great advantage to reduce cost. In the early 1980s, Backlund and Hoppes [4] estimated that the
entire SJV had approximately 8.9 × 105 ha of marginally productive saline-sodic soil, much of which
resided on the west side of the SJV (WSJV). Current estimates of salt-affected soil for the WSJV
using National Resource Conservation Service’s (NRCS) Soil Survey Geographic Database (SSURGO;
https://websoilsurvey.nrcs.usda.gov/) are 3.6 × 105 ha. Recent estimates using satellite imagery place
this even higher at 5.5 × 105 ha [5].

Regardless of the estimate that is accepted, there is extensive salt-affected soil within the SJV to
grow salt-tolerant oilseed crops for conversion to biofuel that would not compete with food crops
for land use. Salt and drought tolerant biofuel feedstock, such as mustard oilseed, has tremendous
potential when grown on marginally productive salt-affected soils. Specially bred mustard varieties,
such as Ida Gold mustard (Sinapis alba L.), are salt tolerant and produce reasonably high oil yields.
Moreover, after the oil is pressed out from its seeds, the residual Ida Gold mustard seed meal can act
as an effective biodegradable bioherbicide and can provide Se as a nutritional supplement in livestock
feed. Se-enriched seed meal is a unique and extra cash-value product that can only be produced in the
Se-laden soils of the WSJV.

Legislative mandates and incentives, volatility in oil prices, and advances in research and
technology are driving the expectations of major increases in biofuel production as a viable alternative
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fuel source. USDOE and USDA [6] recommend the need for greater research to identify viable biofuel
feedstock production and management systems to support bio-refineries at commercially viable
capacities, i.e., 115 ML yr−1 or more. However, it is unknown if sufficient oilseed production could
support a biofuel conversion facility of sufficient capacity to be economically viable, i.e., cost less
than $1 L−1. Before considering an in-depth analysis of the economic viability and commercialization
of biofuel, answers to basic questions are needed. The most fundamental question is, can sufficient
biofuel feedstock be grown to support a biofuel conversion facility within agricultural regions of the
USA, whether the Southwest, Midwest, or Southeast? All are potential agricultural areas proposed for
biofuel production. More specifically, can Ida Gold mustard oilseed grow with sufficient yields on
marginally productive salt-affected soils in the SJV to support a 115 ML yr−1 conversion facility?

1.3. Objective

It is the objective of this study (1) to formulate a crop yield model relating Ida Gold mustard
oilseed yield to edaphic properties for the WSJV and (2) to use the crop yield model to predict the
yield of Ida Gold mustard oilseed on salt-affected soils (i.e., soils with an ECe greater than 4 dS m−1)
for evaluating the feasibility of oilseed production on marginal soils to support a 115 ML yr−1 biofuel
conversion facility in the SJV.

2. Materials and Methods

The feasibility evaluation involves four steps: (1) development of an Ida Gold mustard oilseed
yield model for marginal SJV soils using apparent soil electrical conductivity (ECa) directed soil
sampling; (2) identification of marginally productive salt-affected soils for oilseed production in the
SJV; (3) development of a spatial database of edaphic factors influencing mustard yield for the SJV
derived from satellite imagery and the SSURGO database and (4) applying the Ida Gold mustard
oilseed yield model on marginally productive soil for the SJV and performing Monte Carlo simulations
to show the range and probability of potential biofuel production in the region. Figure 1 provides a
flow chart showing the four steps and the flow of information.
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2.1. Development of a Field-Based Ida Gold Mustard Oilseed Yield Model

A field experiment was conducted to identify the edaphic properties that influence oilseed yield
of Ida Gold mustard. The approach of Corwin et al. [7] was followed. The approach uses geospatial
electromagnetic induction measurements of ECa to direct soil sampling for determining the soil
properties influencing crop yield. The approach is based on the concept that if a correlation exists
between crop yield and ECa, then ECa is measuring, either directly or indirectly, one or more soil
properties that are influencing the crop yield. By conducting an ECa survey to direct soil sampling,
crop yield/soil sampling sites can be identified that provide a range of edaphic properties and their
influence on yield.

The development of a field-based Ida Gold mustard oilseed yield model involves the following
steps: (1) selection of an appropriate field that has a full range of edaphic properties that are suspected
of influencing Ida Gold mustard oilseed yield; (2) conducting an intensive ECa survey of the field;
(3) identification of sites within the field where crop yield and soil core samples are taken that reflect
the range and variability of edaphic influences on oilseed yield; (4) analysis of chemical and physical
properties of the soil cores thought to influence yield and (5) statistical analysis and crop yield
model formulation.

2.1.1. Study site description

The study site was a 16.2-ha field (latitude-longitude coordinates: 37º02′02.97′′N, 120º47′31.56′′)
located west of Los Banos in Merced County, California on the WSJV (Figure 2). The site provided
a range of soil properties thought to influence the yield of Ida Gold mustard oilseed. In particular,
the field was characterized by a broad range of salinity and boron values. Salinity and boron are
properties common to marginally productive soils in the SJV that are known to significantly influence
Ida Gold mustard oilseed yield. The soil at the study site is a Britto clay loam. The soil taxonomic class
is fine, smectitic, thermic Typic Natraqualfs. The Britto series consists of deep, very poorly drained
soils with high concentrations of salt and alkali in the lower horizons. The soil ranges from moderately
saline to strongly saline (8–16 dS m–1). The texture in the top 55 cm is a clay loam and 0.55–1.55 m is a
sandy clay loam. The parent material is alluvium derived from sedimentary rock. The mean annual
precipitation is 25 cm.
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Figure 2. Map showing the location of the 16.2-ha field in California’s Merced County.
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2.1.2. Preliminary and Intensive Apparent Soil Electrical Conductivity Surveys

Preliminary and intensive ECa surveys were conducted on 14 January and 28 January 2014,
following a pre-plant irrigation to bring the water content in the root zone to field capacity. The methods
and materials used in the ECa surveys followed the protocols and guidelines outlined in Corwin and
Lesch [8–10]. An EM38 Dual Dipole electrical conductivity meter (Geonics Ltd., Mississaugua, Ontario,
Canada. Product identification is provided for the benefit of the reader and does not imply endorsement
by USDA.) connected to a GPS and mounted on a non-metallic sled was used in the ECa surveys.
Geospatial ECa measurements in the vertical (EMv) and horizontal (EMh) coil configurations were
taken simultaneously every 3–5 m. Each ECa measurement was geo-referenced using GPS. The GPS
receiver accuracy had sub-meter accuracy. The preliminary ECa survey determined whether the study
site provided a sufficiently wide range in soil properties influencing Ida Gold mustard oilseed yield to
meet the objective of formulating a crop yield model. The preliminary survey consisted of making six
east-west traverses. From the geospatial ECa data set, six locations were selected to take core samples
(0–1.5 m depth increment), which were immediately analyzed for pHe, saturation percentage (SP), B,
and ECe.

Following the preliminary ECa survey, two separate intensive ECa surveys were conducted. One
ECa survey for the entire 16.2 ha and another survey confined to the southeastern corner of the field.
Figure 3 shows maps of a composite of the ECa survey data for EMv and EMh. The reason for taking
the two intensive ECa surveys was because the preliminary cursory ECa survey indicated the greatest
variability in salinity over the range that would affect Ida Gold mustard oilseed yield was in the
southeast corner of the field; consequently, a separate survey and crop yield/soil sampling were
performed for the southeast corner. The intention was to provide a range of soil properties, particularly
with regard to salinity and boron, which would influence Ida Gold mustard oilseed yield to varying
degrees thereby providing the data to formulate a more robust statistical model of crop yield.

2.1.3. Soil and Ida Gold Mustard Oilseed Yield Sampling Design

Once the two intensive ECa surveys were completed, ESAP software version 2.10R [11–13] was
used to identify sites where crop yield and soil core samples were taken based on the spatial variation in
the ECa survey data. The ESAP software package uses a model-based sampling strategy (i.e., response
surface sampling design) to identify sample site locations. The ESAP software identifies sites that
characterize the range and variation in the geospatial ECa measurements, reflecting the observed
spatial variability in ECa, while minimizing any clustering of the sample sites by maximizing the spatial
uniformity of the sampling design across the study area. A detailed discussion of the application of
the response surface sampling design using ECa survey data is in Lesch et al. [12].

The sample design for the 16.2-ha field consisted of 20 sample site locations for the entire field
and 20 sample site locations for the southeast corner as selected by ESAP (Figure 3). Soil cores were
taken at the 40 sites with a Giddings rig at six depth increments: 0–0.15, 0.15–0.30, 0.30–0.60, 0.60–0.90,
0.90–1.20, and 1.20–1.50 m. Duplicate soil samples were taken at eight sample site locations within 1 m
of the original core to establish local-scale variability as explained in Corwin and Scudiero [14]. All
soil samples were bagged in zip-lock bags and stored in an ice chest until refrigerated. A total of 288
soil samples were taken (6 depths at each site, 40 sites, and 8 duplicate sites). The depth to the water
table was recorded as <1.5 m or >1.5 m.

At each of the 40 sample-site locations biomass and Ida Gold mustard oilseed yield were
determined by hand within a 1 m2 area where each soil sample location was the centroid of the
1 m2 plant sample area. The biomass and oilseed yield were collected on 28–29 May 2014. Six of the 40
sample site locations had no Ida Gold mustard oilseed yield. All subsequent referral to yield is with
respect to oilseed yield.
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Figure 3. Maps of the apparent soil electrical conductivity (ECa) surveys taken with electromagnetic
induction in the horizontal (EMh) and vertical (EMv) coil configurations, combining entire (full) 16.2-ha
field and southeast (SE) corner surveys. Soil core sample sites are indicated by the clear and filled-in
circles. The clear circles are soil sample sites selected from the full field ECa survey and the filled-in
circles are from the SE corner ECa survey.

2.1.4. Soil Chemical and Physical Analyses

In the field, a subsample (100–300 g) of each soil core sample was taken for soil moisture
determination. The subsamples were weighed in the field to minimize error due to moisture
evaporation. The subsamples were subsequently oven-dried at 110ºC for 24 h and weighed again to
determine θg. Saturation pastes were prepared for all 288 soil samples and saturation paste extracts
were obtained following the procedure of Rhoades [15]. The saturation extracts were analyzed for
the following properties: ECe, SP, pHe, 5 major anions (Cl−, HCO3

−, PO4
3−, NO3

−, SO4
2−), 4 major

cations (Na+, K+, Ca2+, Mg2+), B, and sodium adsorption ratio (SAR). The chemical analysis procedures
followed were those found in Sparks [16]. Leaching fraction (LF), defined as the ratio of the quantity
of water draining past the root zone to that infiltrated into the soil’s surface, was estimated using two
techniques: (1) the ratio of the EMh ECa divided by EMv ECa and (2) the ratio of Cl concentration
in the irrigation water and Cl concentration at 1.2–1.5 m. The LF reflects the excess water applied to
translocate salts from the root zone. Each property selected for analysis had the potential to influence
Ida Gold mustard oilseed yield.
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2.1.5. Statistical Analysis and Ida Gold Oilseed Yield Model Formulations

Simple correlations were determined between yield and the edaphic properties of θg, ECe, SP,
pHe, Cl−, HCO3

−, PO4
3−, NO3

−, SO4
2−, Na+, K+, Ca2+, Mg2+, B, SAR, and LF. Correlations between

the edaphic properties and ECa and between oilseed yield and ECa were determined. Scatter plots of
yield vs. individual soil-related properties were also obtained.

The correlation analyses and scatter plots served as a basis for the development of the yield model
for Ida Gold mustard oilseed. The correlations were useful to determine what properties were likely
significant in influencing oilseed yield, while the scatter plots helped to determine the general form of
the oilseed yield model. The oilseed yield model was developed using (spatial) multiple regression
techniques [17]. The edaphic properties were the regressor or independent variables, and yield was
the response or dependent variable. Backward variable selection was used to screen out the clearly
nonsignificant edaphic properties with t-score values below 1.8. This predictor screening helped to
filter out any multicollinearity in the regressor variables. Statistical data analyses were performed on
the individual depth increment data (i.e., 0–0.15, 0.15–0.3, 0.3–0.6, 0.6–0.9, 0.9–1.2, and 1.2–1.5 m) and
composite depth increment data (i.e., 0–0.15, 0–0.3, 0–0.6, 0–0.9, 0–1.2, and 0–1.5 m). Multiple regression
modeling was performed on the composite depth increment data, and the increment characterized by
the best goodness-of-fit was retained for further analyses.

In some instances, sufficient input data for the Ida Gold mustard oilseed yield model did not
exist or fell outside the range of data that were used to develop the oilseed yield model. In those
instances, the two-piece linear salt tolerance model of Maas and Hoffman [18] was used. For soil
salinities exceeding the threshold salinity level, relative yield is estimated by the following equation:

Yr = 100 − b
(

ECe − a
)

(1)

where Yr is the relative crop yield, a is the salinity threshold (dS m−1), b is the slope expressed in yield
decrement percentage per dS m−1, and ECe is the mean electrical conductivity of the saturation extract
for the root zone (dS m−1). Maas and Hoffman [18] proposed that crop salt tolerance was represented
by two linear lines, one a tolerance plateau with a slope of zero and the other shown in Equation (1) as
a salinity dependent line whose slope was the yield reduction per unit increase in salinity. The point
where both lines intersect is the salinity threshold, which represents the maximum soil salinity that
does not reduce yield. The parameters a and b were determined from a compilation of salt tolerance
data available for Ida Gold mustard oilseed for the SJV, including the data collected within this study
and the work of Maas [19] and Grieve et al. [20]. If salinity was not limiting yield, then the B level
determined the oilseed yield when B data were available. The three-piece trace element tolerance
model presented in Page et al. [21] and first suggested by Burton et al. [22] was used. The salt and B
tolerance data to develop these models were obtained from the 40 soil core and oilseed yield sample
sites identified from ECa-directed soil sampling and from 10 supplemental sites. The locations of the
supplemental sites were from a transect covering a range of yields. Salt tolerance data were from those
sites varying in oilseed yield where all soil properties were optimal except salinity, which varied over a
wide range, while B tolerance data were from those sites where all soil properties were optimal except
B, which varied over a wide range. If no salinity and B data were available, then all properties were
considered optimal for yield.

2.2. Identification of Salt-Affected Soils for Oilseed Production in the SJV

To assess the potential production of Ida Gold oilseed in the SJV, the yield model was applied
over all salt-affected soils in the valley. Bohn et al. [23] defines salt-affected soils as soils with a
root-zone salinity (i.e., ECe) above 4 dS m−1. Above 4 dS m−1 very sensitive, sensitive, and moderately
salt-sensitive crops will show yield decrements. From 4–8 dS m−1 the yields of many crops are
restricted, from 8–16 dS m−1 only salt tolerant crops yield satisfactorily, and above 16 dS m−1 only a
few very tolerant crops produce satisfactory yields [24].
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One means of identifying salt-affected soils in the SJV is the use of SSURGO. However, the accuracy
and reliability of soil salinity in SSURGO is dubious because salinity is a spatially and temporally
variable soil property influenced by crop and irrigation management strategies. Recent NRCS reports
(e.g., [25]), provided salinity estimations only for non-irrigated farmland because the influence of
irrigation on soil salinity cannot be accounted for using traditional soil survey protocols. Therefore,
an evaluation of SSURGO’s accuracy with respect to soil salinity is needed. To evaluate the accuracy
of SSURGO, salinity assessment surveys were performed on 22 agricultural fields (total area: 542 ha)
scattered throughout the WSJV. In 2013, intensive ECa surveys conducted at the 22 fields, collected
41,779 ECa readings at an average density of 175 readings ha−1. Simultaneous EMh and EMv

measurements of ECa were taken. Across the 22 fields, 267 soil-sampling locations were identified
using ESAP. Soil cores were taken to a depth of 1.2 m, representing the root-zone depth. Details of the
ECa survey and soil sampling are in Scudiero et al. [26].

Soil samples were analyzed for salinity (ECe; dS m−1), gravimetric water content (θg; g g−1), pHe,
and saturation percentage (SP) using procedures presented in Methods of Soil Analysis Part 3 [16] and
Part 4 [27]. The SSURGO salinity data for the 22 fields were compared to both root-zone ECe hard and
ECa soft data. The hard data (i.e., laboratory measurements of ECe of the 0–1.2 m soil samples) were
averaged for each field. The soft data (i.e., geospatial measurements of ECa) were calibrated to the ECe

data using spatial linear regression models [17] with an overall R2 = 0.93 by Scudiero et al. [26].
A map of ECe using the soft data and ECe-ECa calibration prepared for each field established

spatial patterns for comparison to SSURGO map units. If the SSURGO database proved unreliable,
then the regional-scale salinity assessment approach developed by Lobell et al. [28], which combines
ECa-directed soil sampling with satellite imagery, would be used. This work has already been
completed and published by Scudiero et al. [29] for the WSJV.

2.3. Development of a Spatial Database of Edaphic Properties Influencing Ida Gold Mustard Yield for the SJV

The most extensive spatial database of edaphic properties in the USA is the SSURGO Database.
Collection of the information in SSURGO occurred by walking over the land and observing variation
in the soil and vegetation to delineate map units. Characterization of soil properties within map units
occurred by the collection of numerous soil samples and their analysis in the laboratory. Occasionally
observation trenches are dug to characterize the horizonation. Soil maps outline areas called map
units, which describe soils and other components that have unique properties, interpretations,
and productivity. Collection of the information occurred at scales ranging from 1:12,000 to 1:63,360.
The soils maps are intended for natural resource planning and management. Examples of information
available from the database include available water capacity, texture, pH, electrical conductivity,
and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland; and limitations
affecting recreational development, building site development, and other engineering uses. SSURGO
map data can be viewed in the Web Soil Survey or downloaded in ESRI® Shapefile format. Attribute
data can be downloaded in text format. For the marginal soils of the SJV, information for water capacity,
texture, pH, and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland;
and limitations affecting recreational development, building development, and other engineering uses
was obtained through SSURGO.

To supplement the SSURGO data an extensive spatial database of quantitative soils information
(i.e., ECe, pHe, saturation percentage, B, available water content, LF) for the SJV exists.
The supplemental data set, collected over a period of 25 years by Corwin and colleagues, is a
compilation of data that appeared in publications by Bourgault et al. [30], Corwin [31], Corwin and
Lesch [8–10,32], Corwin et al. [7,33–36], Lesch and Corwin [17], Lesch et al. [37–39], Loague et al. [40],
Rhoades et al. [41], Sanden et al. [42], and Scudiero et al. [26,29,43]. The supplemental data set consisted
of edaphic property data from 83 fields within the SJV ranging in spatial extent from 0.4 to 65 ha
with from 6 to 72 sample sites within a field. Soil samples were collected at 0.3-m increments to a
minimum depth of 1.2 m and occasionally to 1.5 and 1.8 m. The supplemental data were used to
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determine frequency distributions (i.e., histograms), averages, ranges, and standard deviations for
those properties found to influence Ida Gold mustard oilseed yield in the SJV. From this statistical
information probability density functions (PDFs) were developed for LF, θg, and B for the composite
depth increment of 0–1.2 m, which was found to be the root zone depth for Ida Gold mustard oilseed.
In general, SSURGO provides water content and B ranges associated with soil type. The PDFs, defined
within the ranges of water content and B provided by SSURGO, were used as input for Monte Carlo
simulations with the oilseed yield model. In instances where ranges of water content or B were not
given in SSURGO, then B was assumed optimal and water content was estimated from a pedotransfer
function using SSURGO texture data.

The use of degraded soil is crucial to driving down the cost of biofuel production in the SJV.
Subsequently, the reliability of spatial salinity data for the SJV was of paramount importance for
identifying salt-affected soils and for model input data. There were concerns regarding the reliability
of the salinity ranges provided in SSURGO for the root zone due to anthropogenic influences
(e.g., leaching of salts due to irrigation); consequently, as discussed in detail in Section 2.2 an evaluation
of the reliability of SSURGO root-zone salinity was conducted by comparison to salinity ground-truth
measurements of 22 fields in the WSJV presented by Scudiero et al. [26]. If SSURGO salinity in the root
zone proved unreliable, then salinity predictions from the regional-scale soil salinity model of Scudiero
et al. [29] were used. Scudiero et al. [29] found that as salinity increased, the prediction error increased,
and quantified the error within salinity categories (i.e., 0–2, 2–4, 4–8, 8–16, >16 dS m−1). To incorporate
this uncertainty into the Monte Carlo simulations, PDFs were established for each salinity category.
The PDFs were defined by the average residuals and standard deviation of the residuals between
observed salinities from the ground-truth salinity measurements of Scudiero et al. [26] and predicted
salinities from the regional-scale soil salinity model of Scudiero et al. [29].

Leaching fraction is a difficult edaphic property to obtain and is not found in SSURGO.
The supplemental data set of Corwin and colleagues was used to determine the frequency distribution,
average, range, and standard deviation of LF for the SJV. Leaching fraction was determined from a
ratio of EMh ECa to EMv ECa and from a ratio of Cl in irrigation water to Cl concentration below the
root zone). Only those LFs where EM and Cl ratios agreed to within 5% were used.

2.4. Feasibility of Biofuel Production for the SJV: Application of the Yield Model and Monte Carlo Simulations

Monte Carlo simulations with the Ida Gold mustard oilseed yield model were performed with
10,000 iterations to provide a range of potential yields (kg ha−1) and probability of those yields, which
are easily converted to L ha−1 of biofuel. This was done first for the WSJV and then for the entire
SJV. The mean, median, standard deviation, skewness, and kurtosis of the Monte Carlo simulation
distribution were calculated to characterize quantitatively the PDF and subsequently derive the
cumulative density function (CDF) of biofuel production. Once the CDF is known, the probability
(and thereby feasibility) of oilseed production in the SJV to support sufficiently a conversion facility
becomes evident.

Sufficient input data was not always available for each field in the WSJV or SJV or sometimes the
input data was outside the range of data used to develop the crop yield model for Ida Gold mustard
oilseed. For these instances, an alternative model was needed (see Figure 1). When a complete set of
input data was available at a field location, then the full crop yield model was used. For instances
where input data was available but was outside the range of data from which the crop yield model
was formulated, then either the ECe (i.e., Equation (1)) or B tolerance model was used, whichever was
more limiting at the site. For instances where insufficient input data existed and only ECe and B input
data were available, then either the ECe (i.e., Equation (1)) or B tolerance model was used, whichever
was more limiting at the site. If insufficient input data existed and only ECe input data was available,
then the ECe tolerance model (Equation (1)) was used.
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3. Results and Discussion

The preliminary ECa survey revealed that the greatest variation in salinity over the range that would
result in oilseed yield decrements was in the southeast corner of the study site; consequently, two intensive
ECa surveys were conducted with separate soil sampling designs for each survey. One ECa survey and
associated soil sampling covered the full field and the other focused on the SE corner. Figure 3 shows maps
of the horizontal coil configuration (EMh) and vertical coil configuration (EMv) ECa surveys. The combined
soil sampling designs (i.e., full field and southeast corner) provided a full range of soil properties and
oilseed yields to build a robust Ida Gold mustard oilseed yield model. The only property potentially
influencing Ida Gold mustard oilseed yield that did not vary significantly at the study site was texture.
In general, the fine-textured soils (mainly loams and clay loams), which predominate the WSJV, do not
vary to a significant extent because the soil is a consequence of lacustrine deposits and of fine-grained
alluvium material originating from the Coastal Ranges [44,45].

Geospatial ECa measurements, both EMh and EMv, were higher on the west side of the 16.2-ha
field than on the east side (see Figure 3). The lowest ECa measurements were in the southeast corner,
where ECa ranged from 0.15 to 0.76 dS m−1. Over this range of ECa the yield was found to vary the
greatest (see Figure 4) and therefore provided the most useful data for oilseed yield model formulation.
The range of ECa over the entire 16.2 ha was 0.15 to 3.97 dS m−1. Oilseed yield over the ECa range of 0.76
to 3.97 dS m−1 tended to be low. Yield significantly correlated to both EMh and EMv ECa, with correlation
coefficients of 0.68 and 0.51, respectively. The higher correlation of EMh ECa to oilseed yield suggests that
the root zone for Ida Gold mustard was around 1 m since the EMh measurement penetrates to a depth
of approximately 1 m, while EMv penetrates to approximately 1.5 m. The fact that ECa and oilseed yield
correlated indicates that ECa must be measuring a soil property or properties that influence oilseed yield;
therefore, the response surface sampling design will successfully map the property or properties [9].
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Figure 4. Map of Ida Gold mustard oilseed yield. Oilseed yield sample sites (1 m2 sample area) are
indicated by the clear and filled-in circles. The clear circles are oilseed yield sample sites selected from
the full field ECa survey and the filled-in circles are from the SE corner ECa survey.

The measured edaphic properties that were felt to potentially influence Ida Gold mustard oilseed
yield included: ECe, θg, SP, pHe, trace elements (B, Se, As, Mo), major cations (Na+, K+, Ca2+, Mg2+),
major anions (Cl−, HCO3

−, PO4
3−, NO3

−, SO4
2−), SAR, micro-elevation, depth to groundwater, and

groundwater EC. Table 1 is a summary by depth of these edaphic properties, except for micro-elevation,
depth to groundwater, and groundwater EC.
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Table 1. Mean and range statistics of soil edaphic properties for the depths within the root zone of 0–0.15, 0.15–0.3, 0.3–0.6, 0.6–0.9, 0.9–1.2, and 1.2–1.5 m of the
combined full-field (20 soil sample locations) and southeast-corner (20 soil sample locations) surveys.

Soil Property † No. of Sample Sites Mean Minimum Maximum Range Standard Deviation Standard Error Coefficient of Variation Skewness Kurtosis

Depth 0–0.15 m
θg, kg kg−1 40 0.10 0.01 0.27 0.26 0.05 0.01 47.9 1.11 1.86

SP 40 53.41 44.26 65.45 21.19 5.49 0.87 10.3 0.40 ‡ −0.81 ‡

ECe, dS m−1 40 10.29 2.54 33.00 30.46 7.74 1.22 75.2 0.92 0.08 ‡

pHe 40 7.29 6.64 8.45 1.80 0.33 0.05 4.5 1.29 3.29
Cl−, meq L−1 40 64.07 12.67 204.95 192.28 57.52 9.09 89.8 0.98 −0.36 ‡

HCO3
−, meq L−1 40 2.91 1.28 7.59 6.31 1.54 0.24 52.8 1.32 1.41 ‡

PO4
−, meq L−1 40 0.23 0.04 0.70 0.66 0.14 0.02 60.3 1.52 3.18

NO3
−, meq L−1 40 4.19 0.69 17.99 17.31 4.35 0.69 103.7 1.32 1.08 ‡

SO4
2−, meq L−1 40 51.76 7.20 343.94 336.74 61.99 9.80 119.8 3.03 12.12

SAR 40 6.53 2.26 40.33 38.07 7.73 1.22 118.4 2.90 9.39
Na+, meq L−1 40 10.97 5.21 48.07 42.86 8.20 1.30 74.7 2.80 10.06
K+, meq L−1 40 62.14 11.58 360.84 349.26 66.69 10.54 107.3 2.57 9.28

Ca2+, meq L−1 40 1.85 1.00 4.11 3.11 0.70 0.11 37.9 1.91 3.98
Mg2+, meq L−1 40 19.89 4.42 57.50 53.08 13.96 2.21 70.2 0.80 −0.25 ‡

B, mg L−1 40 33.93 5.24 105.38 100.14 29.27 4.63 86.3 0.93 −0.35 ‡

Depth 0.15–0.3 m
θg, kg kg−1 40 0.13 0.03 0.24 0.21 0.06 0.01 43.1 0.24 ‡ −1.29 ‡

SP 40 53.86 39.02 63.83 24.81 6.47 1.02 12.0 −0.21 ‡ −0.67 ‡

ECe, dS m−1 40 9.50 2.01 33.70 31.69 7.73 1.22 81.4 1.14 0.93 ‡

pHe 40 7.34 6.70 8.62 1.92 0.32 0.05 4.4 1.54 5.24
Cl−, meq L−1 40 42.42 8.04 132.50 124.46 39.31 6.22 92.7 1.03 −0.44 ‡

HCO3
−, meq L−1 40 2.33 0.78 5.01 4.24 1.12 0.18 48.2 0.84 −0.26 ‡

PO4
−, meq L−1 40 0.20 0.00 0.93 0.93 0.15 0.02 78.2 2.93 12.69

NO3
−, meq L−1 40 2.24 0.58 6.26 5.68 1.65 0.26 73.7 0.86 −0.51 ‡

SO4
2−, meq L−1 40 71.28 6.93 370.34 363.41 78.73 12.45 110.5 1.89 4.25

SAR 40 10.71 1.99 58.32 56.34 15.06 2.38 140.6 2.33 4.60
Na+, meq L−1 40 12.58 5.15 48.78 43.63 9.73 1.54 77.3 2.20 5.03
K+, meq L−1 40 66.41 10.03 360.01 349.98 72.63 11.48 109.4 2.12 5.73

Ca2+, meq L−1 40 1.20 0.43 3.80 3.37 0.56 0.09 46.8 2.80 11.32
Mg2+, meq L−1 40 15.63 3.02 36.93 33.91 10.64 1.68 68.1 0.41 ‡ −1.23 ‡

B, mg L−1 40 30.09 3.69 89.71 86.01 27.12 4.29 90.1 0.84 −0.70 ‡

Depth 0.3–0.6 m
θg, kg kg−1 40 0.18 0.12 0.25 0.13 0.04 0.01 23.4 0.04 ‡ −1.34 ‡

SP 40 54.85 44.90 63.64 18.74 4.99 0.79 9.1 −0.20 ‡ −0.77 ‡

ECe, dS m−1 40 12.64 1.28 47.00 45.72 11.49 1.82 90.9 1.45 1.69
pHe 40 7.53 6.32 8.76 2.44 0.42 0.07 5.6 −0.10 ‡ 1.97

Cl−, meq L−1 40 52.37 4.44 186.89 182.46 55.67 8.80 106.3 1.20 0.11 ‡

HCO3
−, meq L−1 40 1.71 0.67 3.83 3.16 0.58 0.09 33.8 1.66 4.61

PO4
−, meq L−1 40 0.18 0.00 0.74 0.74 0.21 0.03 117.7 1.35 1.08 ‡

NO3
−, meq L−1 40 1.33 0.52 4.60 4.08 0.83 0.13 62.2 1.93 5.06

SO4
2−, meq L−1 40 121.15 4.58 643.29 638.71 140.95 22.29 116.3 2.10 4.59

SAR 40 19.04 1.83 103.37 101.54 25.51 4.03 133.9 2.13 3.85
Na+, meq L−1 40 17.59 5.69 69.43 63.74 15.58 2.46 88.6 2.26 4.66
K+, meq L−1 40 108.07 7.28 598.83 591.55 133.51 21.11 123.5 2.16 4.59

Ca2+, meq L−1 40 0.91 0.18 3.50 3.32 0.77 0.12 84.7 1.70 2.66
Mg2+, meq L−1 40 17.35 1.47 44.45 42.98 11.72 1.85 67.6 0.15 ‡ −0.93 ‡

B, mg L−1 40 41.29 1.80 141.13 139.33 38.29 6.05 92.7 1.08 0.64 ‡
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Table 1. Cont.

Soil Property † No. of Sample Sites Mean Minimum Maximum Range Standard Deviation Standard Error Coefficient of Variation Skewness Kurtosis

Depth 0.6–0.9 m
θg, kg kg−1 40 0.21 0.17 0.26 0.09 0.03 0.004 12.9 0.14 ‡ −1.38 ‡

SP 40 54.14 46.03 70.77 24.74 5.80 0.92 10.7 0.72 ‡ 0.37 ‡

ECe, dS m−1 40 12.49 1.57 46.00 44.43 11.21 1.77 89.8 1.36 1.27 ‡

pHe 40 7.74 6.80 8.93 2.13 0.44 0.07 5.6 −0.13 ‡ 0.84 ‡

Cl−, meq L−1 40 49.10 1.67 205.33 203.67 51.18 8.09 104.2 1.35 1.05 ‡

HCO3
−, meq L−1 39 1.85 0.80 3.90 3.10 0.60 0.10 32.7 1.34 2.22

PO4
−, meq L−1 40 0.15 0.00 0.56 0.56 0.17 0.03 116.3 1.09 0.12 ‡

NO3
−, meq L−1 40 0.66 0.20 1.74 1.54 0.34 0.05 52.0 1.53 2.38

SO4
2−, meq L−1 40 117.17 7.11 504.59 497.48 135.06 21.35 115.3 1.75 2.32

SAR 40 18.94 1.99 80.32 78.33 22.26 3.52 117.5 1.76 2.10
Na+, meq L−1 40 18.98 7.23 61.72 54.48 14.74 2.33 77.6 1.91 2.74
K+, meq L−1 40 108.10 10.43 450.35 439.92 125.52 19.85 116.1 1.75 2.16

Ca2+, meq L−1 40 0.81 0.14 3.15 3.01 0.75 0.12 92.0 1.57 2.05
Mg2+, meq L−1 40 15.36 1.80 35.49 33.68 10.85 1.72 70.6 0.09 ‡ −1.64

B, mg L−1 40 36.89 2.36 152.45 150.09 38.00 6.01 103.0 1.38 1.59
Depth 0.9–1.2 m

θg, kg kg−1 40 0.22 0.18 0.26 0.08 0.02 0.003 9.1 0.43 ‡ −0.74 ‡

SP 40 51.21 39.47 75.44 35.96 8.80 1.39 17.2 1.03 0.41 ‡

ECe, dS m−1 40 9.78 2.24 41.50 39.26 9.07 1.43 92.8 1.66 2.79
pHe 40 7.90 7.10 8.30 1.21 0.31 0.05 3.9 −0.72 ‡ −0.31 ‡

Cl−, meq L−1 40 33.06 4.44 163.47 159.03 33.83 5.35 102.3 2.07 5.24
HCO3

−, meq L−1 40 2.15 1.10 3.88 2.77 0.78 0.12 36.3 0.48 ‡ −1.15 ‡

PO4
−, meq L−1 40 0.10 0.00 0.39 0.39 0.12 0.02 113.3 1.03 0.00 ‡

NO3
−, meq L−1 39 0.46 0.15 1.30 1.16 0.26 0.04 55.5 1.82 3.72

SO4
2−, meq L−1 40 90.62 10.68 418.43 407.76 102.12 16.15 112.7 1.68 2.37

SAR 40 14.18 2.20 66.34 64.14 17.39 2.75 122.6 1.68 1.75
Na+, meq L−1 40 16.75 5.00 54.08 49.08 12.61 1.99 75.3 1.82 2.27
K+, meq L−1 40 80.93 14.28 389.51 375.22 94.43 14.93 116.7 1.85 2.82

Ca2+, meq L−1 40 0.60 0.12 2.12 2.00 0.51 0.08 85.4 1.39 1.31 ‡

Mg2+, meq L−1 40 13.70 2.02 28.78 26.76 10.53 1.66 76.9 0.10 ‡ −1.89
B, mg L−1 40 24.95 3.28 118.77 115.49 26.92 4.26 107.9 1.99 4.60

Depth 1.2–1.5 m
θg, kg kg−1 40 0.24 0.21 0.30 0.09 0.02 0.004 9.8 0.61 ‡ 0.03 ‡

SP 40 48.13 36.59 67.57 30.98 8.61 1.36 17.9 0.85 −0.35 ‡

ECe, dS m−1 40 7.91 2.09 33.80 31.71 7.24 1.15 91.6 1.75 3.17
pHe 40 7.98 7.39 8.34 0.95 0.27 0.04 3.4 −0.68 ‡ −0.67 ‡

Cl−, meq L−1 40 22.92 3.39 117.63 114.23 24.12 3.81 105.2 2.55 7.36
HCO3

−, meq L−1 40 2.18 0.97 3.86 2.88 0.75 0.12 34.6 0.47 ‡ −0.80 ‡

PO4
−, meq L−1 40 0.09 0.00 0.39 0.39 0.11 0.02 128.0 1.31 0.96 ‡

NO3
−, meq L−1 40 0.36 0.14 1.04 0.90 0.21 0.03 56.7 1.65 2.78

SO4
2−, meq L−1 40 72.13 9.72 336.59 326.88 78.87 12.47 109.3 1.56 2.11

SAR 40 10.72 1.72 50.15 48.43 13.78 2.18 128.5 1.69 1.69
Na+, meq L−1 40 14.55 4.28 45.79 41.51 10.28 1.63 70.7 1.78 2.16
K+, meq L−1 40 62.22 14.00 328.97 314.97 72.11 11.40 115.9 2.01 4.04

Ca2+, meq L−1 40 0.49 0.10 1.71 1.61 0.43 0.07 87.1 1.29 0.83 ‡

Mg2+, meq L−1 40 11.76 1.49 25.69 24.20 9.67 1.53 82.3 0.29 ‡ −1.88
B, mg L−1 40 18.26 2.93 81.23 78.31 18.69 2.95 102.3 1.95 4.33

† Definitions: θg = gravimetric water content, SP = saturation percentage, ECe = electrical conductivity of the saturation extract, SAR = sodium adsorption ratio. ‡ Significant. Skewness is
significant if skewness divided by standard error of skewness > 2. Kurtosis is significant if kurtosis divided by stand error of kurtosis > 2.
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Table 2. Soil edaphic property mean and range statistics of the composite depths of (a) 0–1.5 m and (b) 0–1.2 m for the combined full-field (20 soil sample locations)
and southeast-corner (20 soil sample locations) surveys.

Soil Property † No. of Sample Sites Mean Min. Max. Range Standard Deviation Standard Error Coefficient of Variation Skewness Kurtosis

(a) Depth 0–1.5 m
θg, kg kg−1 40 0.18 0.14 0.24 0.10 0.03 0.005 16.1 0.26 ‡ −1.17 ‡

SP 40 52.97 43.46 64.56 21.10 4.93 0.78 9.3 0.10 ‡ −0.57 ‡

ECe, dS m−1 40 10.70 2.05 36.22 34.17 9.03 1.43 84.4 1.30 1.13 ‡

pHe 40 7.63 7.18 8.53 1.35 0.27 0.04 3.6 0.68 ‡ 1.80
Cl−, meq L−1 40 44.09 8.16 152.11 143.95 40.08 6.34 90.9 1.08 0.08 ‡

HCO3
−, meq L−1 40 2.12 1.18 3.40 2.22 0.60 0.09 28.4 0.30 ‡ −0.72 ‡

PO4
−, meq L−1 40 0.16 0.01 0.58 0.57 0.14 0.02 91.5 1.27 1.03 ‡

NO3
−, meq L−1 40 1.40 0.48 4.52 4.04 0.96 0.15 68.8 1.22 1.18 ‡

SO4
2−, meq L−1 40 92.43 7.95 420.42 412.47 101.32 16.02 109.6 1.75 2.63

SAR 40 31.86 3.48 112.13 108.66 28.73 4.54 90.2 1.10 0.74 ‡

Na+, meq L−1 40 14.30 2.17 65.31 63.14 17.76 2.81 124.2 1.91 2.59
K+, meq L−1 40 15.73 6.86 54.73 47.86 12.08 1.91 76.8 2.04 3.37
Ca2+, meq L−1 40 85.14 11.56 398.95 387.39 95.56 15.11 112.2 1.85 2.88
Mg2+, meq L−1 40 0.94 0.32 3.00 2.68 0.58 0.09 61.8 1.83 3.66
B, mg L−1 40 15.57 2.65 35.06 32.41 10.45 1.65 67.1 0.15 ‡ −1.63
(b) Depth 0–1.2 m
θg, kg kg−1 34 £ 0.19 0.12 0.25 0.13 0.05 0.01 24.9 −0.12 ‡ −1.60 ‡

SP 34 £ 53.23 45.83 61.61 15.77 4.01 0.69 7.5 0.29 ‡ −0.54 ‡

ECe, dS m−1 34 £ 9.97 1.84 29.97 28.13 6.29 1.08 63.0 0.99 1.57 ‡

pHe 34 £ 7.74 7.06 8.74 1.68 0.33 0.06 4.2 0.46 ‡ 1.50 ‡

Cl−, mEq L−1 34 £ 51.83 7.87 279.17 271.30 54.37 9.32 104.9 2.53 8.49
PO4

−, mEq L−1 34 £ 0.19 0.00 1.11 1.11 0.24 0.04 126.4 2.01 4.89
SO4

2−, mEq L−1 34 £ 67.16 6.40 165.86 159.46 41.82 7.17 62.3 0.41 ‡ −0.36 ‡

SAR 34 £ 12.06 6.08 22.47 16.40 4.02 0.69 33.4 0.71 ‡ 0.12 ‡

Na+, mEq L−1 34 £ 63.68 9.91 166.12 156.21 41.48 7.11 65.1 0.71 ‡ 0.00 ‡

K+, mEq L−1 34 £ 0.92 0.39 3.91 3.51 0.60 0.10 65.1 4.05 19.62
Ca2+, mEq L−1 34 £ 17.65 2.68 53.90 51.22 11.34 1.95 64.3 0.87 1.64 ‡

Mg2+, mEq L−1 34 £ 33.94 3.23 112.97 109.75 25.44 4.36 75.0 0.95 1.27 ‡

B, mg L−1 34 £ 10.03 2.14 24.24 22.10 6.06 1.04 60.4 0.60 ‡ −0.59 ‡

LF § 34 £ 0.27 0.08 0.61 0.53 0.15 0.02 53.1 0.61 ‡ −0.30

† Definitions: θg = gravimetric water content, SP = saturation percentage, ECe = electrical conductivity of the saturation extract, SAR = sodium adsorption ratio, LF = leaching fraction.
‡ Significant. Skewness is significant if skewness divided by standard error of skewness > 2. Kurtosis is significant if kurtosis divided by stand error of kurtosis > 2. § Leaching fraction was
determined by dividing the Cl- concentration of the irrigation water by the Cl− concentration of the saturation extract at the 1.2–1.5 m depth increment at each site where the oilseed yield
was greater than zero. £ Sites where oilseed yield was greater than zero. These sites were used for Ida Gold mustard oilseed yield model development.
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Table 1 reveals patterns in the field-wide soil profile. Field-wide average soil salinity (ECe)
increases with depth up to the 0.3–0.6, levels off at the 0.3–0.6 and 0.6–0.9 m depth increments, and then
decreases with depth. Saturation percentage (SP) is reasonably constant over depth ranging from
means of 48.13% at 1.2–1.5 m to 54.85% at 0.3–0.6 m, indicating uniform texture through the soil profile.
Gravimetric water content (θg) at field capacity increases with depth from 0.10 kg kg−1 at 0–0.15 m to
0.24 kg kg−1 at 1.2–1.5 m. Boron levels tend to be lower below 0.3–0.6 m. pH increases with depth
from 7.29 at 0–0.15 m to 7.98 at 1.2–1.5 m. SAR increases with depth from 6.53 at 0–0.15 m to 19.04 at
0.3–0.6 m, then decreases to 10.72 at 1.2–1.5 m.

Table 2a presents mean and range statistics, standard deviation, standard error, coefficient of
variation, skewness, and kurtosis for the composite 0–1.5 m depth. The highest coefficients of variation
(CVs) are for ECe, various cations and anions (e.g., Na+, Ca2+, SO4

2−, PO4
−, and Cl−), and SAR, while

the lowest CVs are for pHe, SP, and θg. All edaphic properties in Table 2a are positively skewed. Most
properties show a positive kurtosis except θg, SP, HCO3

−, and B. The range, minimum, and maximum
of the edaphic properties in Table 2a are of particular interest because they confirm that the study site
is well suited for developing a crop yield model based on edaphic properties since a wide range of
edaphic conditions influencing oilseed yield are present. For instance, ECe, pHe, B, and SAR cover
broad ranges from low to very high. For the composite depth of 0–1.5 m, ECe ranged from 2.05 to
36.22 dS m−1, pHe ranged from 7.18 to 8.53, B ranged from 2.65 to 35.06 mg L−1, and SAR ranged from
3.48 to 112.13. The SP is the only soil property that is narrow in range, nonetheless it reflects a texture
that is typical of the WSJV.

3.1. Ida Gold Mustard Oilseed Yield Models for Marginal SJV Soils

Exploratory statistical analyses revealed that Ida Gold mustard oilseed yield was most significantly
correlated to individual edaphic properties for the top 1.2 m. Table 2b presents mean and range
statistics, standard deviation, standard error, coefficient of variation, skewness, and kurtosis for the
composite 0–1.2 m depth. Table 3 presents simple correlations between edaphic properties and both
ECa and oilseed yield for the 0–1.2 m depth increment. The edaphic properties most significantly
correlated to ECa include θg, ECe, B, SAR, LF (determined by the ratio EMh ECa /EMv ECa), and SP.
The edaphic properties most significantly correlated to oilseed yield include θg, ECe, B, LF, and SP.

Table 3. Correlation coefficients between edaphic properties and both ECa and oilseed yield that are
significantly correlated. †

Edaphic Property ‡ ECa Oilseed Yield

θg 0.73 ** 0.46 **
ECe 0.98 ** −0.41 **

Boron 0.88 ** −0.32 *
pHe −0.09 0.28
SAR 0.87 ** −0.30
LF 0.80 ** 0.55 **
SP 0.45 ** −0.45 **

† Using 34 locations where yield > 0. ‡ Averaged over 0–1.2 m. Definitions: θg = gravimetric water content,
SP = saturation percentage, ECe = electrical conductivity of the saturation extract, SAR = sodium adsorption ratio.
* Significant at p < 0.05 level. ** Significant at p < 0.01 level.

Corwin and Lesch [9] indicate that the depth increment or composite depth increment associated
with the best-fitting yield model (i.e., highest R2) reflects the root zone of the crop. The top 1.2 m
resulted in the most statistically significant and best-fit Ida Gold mustard oilseed yield model
(see Equation (3)). Consequently, the 0–1.2 m soil interval was taken to represent the root zone
of Ida Gold mustard at the study site. Subsequently, all data presented and discussed are with respect
to the 0–1.2 m composite depth or to individual depth increments that lie within the composite depth
of 0–1.2 m.
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Exploratory statistical analyses revealed that θg, ECe, B, and LF were the most influential edaphic
properties on oilseed yield. Scatter plots of these properties vs oilseed yield indicated quadratic
relationships of ECe and B to oilseed yield and linear relationships of LF and θg to yield. Based on the
initial exploratory correlation and multiple linear regression analysis, the following regression model
structure was proposed to describe edaphic property effects on oilseed yield:

Y = β0 + β1(B) + β2(B)2 + β3(ECe) + β4(ECe)2 + β5(LF) + β6(θg) + ε (2)

where Y is the Ida Gold mustard oilseed yield (kg ha−1); B is boron concentration (mg L−1); ECe is
electrical conductivity of the saturation extract (dS m−1); LF is the leaching fraction; θg is the gravimetric
water content (kg kg−1); β0, β1, β2, . . . , β6 are the regression model parameters, and ε is the random
error component, initially assumed to be normally distributed and spatially independent. Ordinary
least squares (OLS) regression techniques resulted in a fitted regression equation with a R2 = 0.89 and
adjusted R2 = 0.78. Adjusting for spatial autocorrelation using the maximum-likelihood approach
resulted in the following Ida Gold mustard oilseed yield model (Equation (3)):

Y = 146.4(B) − 18.3(B)2 + 83.0(ECe) − 6.1(ECe)2 + 1301.0(LF) + 319.8(θg) + 30.1 (3)

Equation (3) represents the most parsimonious and robust model for marginally productive
salt-affected soils of the WSJV. Any locations where no oilseed yield was obtained were not used in
the model development. The LF and θg parameters are highly significant at or near the 0.01 level,
and the ECe (linear and quadratic) and B (linear and quadratic) parameter estimates are significant at
or near the 0.05 level. The LF and θg parameters are both positive, implying that the yield increased as
either LF or θg increased, which is physically sound since increased leaching reduces osmotic stress
and increased water content increases the plant-available water reducing matric stress. The positive
linear and negative quadratic ECe terms imply that the yield increased at low ECe up to a point of
maximum yield with respect to ECe and decreased beyond the maximum. The point of maximum
yield with respect to ECe was calculated by setting the first partial derivative of the fitted regression to
zero with respect to ECe, which resulted in a value of 6.8 dS m−1. Similarly, the positive linear and
negative quadratic B terms imply that the yield increased under low B up to a point of maximum yield
with respect to B and decreased beyond the maximum. The point of maximum yield with respect to B
was 4 mg L−1.

In those instances where sufficient input data for Equation (3) did not exist or fell outside the range
of data that was used to develop the model, the two-piece linear salt tolerance model (i.e., Equation (1))
of Maas and Hoffman [18] was used to predict oilseed yield. Salt tolerance data at the study site
established a salinity threshold of 8.3 dS m−1, which is the term a in Equation (1), and a yield decrement
slope of 17%, which is the term b in Equation (1) (Figure 5a). The salinity threshold of 8.3 dS m−1

corresponds reasonably well with the salinity of maximum oilseed yield of 6.8 dS m−1 in Equation (3).
Equation (1) established the upper limit of the salinity range of salt-affected soils that would grow Ida
Gold mustard oilseed. A 17% yield decrement for each 1 dS m−1 increase in root-zone soil salinity
beyond 8.3 dS m−1 resulted in no oilseed yield above 14.3 dS m−1. It is important to note that the
salinity range of 4–14.3 dS m−1 was not necessarily economically viable. Once the feasibility of reaching
the 115 ML yr−1 goal is established, then the maximum yield decrement that is economically viable
could be determined. Viability would take into account other economically relevant factors such as (1)
selling the seed meal remaining, after the oilseed has been pressed to extract the oil, as Se-enriched
meal for livestock or as a herbicide used in organic agriculture and (2) incorporation of gasification to
generate power to run the oil press.

The two-piece linear salt tolerance model (i.e., Equation (1)) of Maas and Hoffman [18] was not
the best model to fit the data as seen in Figure 5a. A quadratic model (Figure 5b) actually fits the
data best:

Y = 74.0 + 254.6 ECe − 18.8 ECe
2 (R2 = 0.87) (4)
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By taking the derivative of Equation (4) with respect to ECe and setting it equal to 0, ECe

corresponds to the peak mustard oilseed yield, which is 6.8 dS m−1. This is equal to the ECe producing
the maximum yield in Equation (3). Similarly, a quadratic relationship between yield and ECe was also
found by Corwin et al. [7] for cotton seed yield. The explanation for a quadratic relationship between
ECe and yield of cotton seed and mustard oilseed is that when the plant is osmotically stressed it
puts energy into the development of the reproductive part of the plant rather than vegetative tissue;
consequently, as ECe increases up to the salinity threshold biomass yield of both crops remains constant
or may decrease, while mustard oilseed and cotton seed yield steadily increase. After the salinity
threshold is reached then oilseed and cotton seed yield and the biomass of both crops decrease as
salinity increases. This quadratic relationship indicates that more breeding research is needed to obtain
new cultivars of mustard that have their peaks of potential yield at different ranges of salinity to
maximize production in the SJV.
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Figure 5. Salt tolerance models for Ida Gold mustard oilseed: (a) two-piece linear salt tolerance model
(thick dashed line) of Maas and Hoffman [18] and (b) quadratic salt tolerance model (solid line). Thin
dashed line indicates the salinity threshold of the two-piece linear salt tolerance model.

Boron tolerance studies at the field site showed an excellent fit of the three-piece linear model
with an optimum range for B of 4.2–8 mg L−1 (Figure 6a). Below 4.2 mg L−1 of B and above 8 mg L−1

the yield of Ida Gold mustard oilseed drops, where B < 4.2 mg L−1 is a B deficiency and B > 8 mg L−1

is a B toxicity. Above 8 mg L−1 the drop was 28% for every 1 mg L−1 increase in B with no yield
occurring above 11.6 mg L−1 of B. A quadratic model (Equation (5)) produced a comparable fit to the
B tolerance data (Figure 6b):

Y = 555.2B − 42.4B2 − 418.0 (R2 = 0.90) (5)

By taking the derivative of Equation (5) with respect to B and setting it equal to 0, B corresponds
to the peak oilseed yield, which is 6.5 mg L−1.

The piece-wise linear models of Figures 5a and 6a for salinity and B, respectively, are traditional
models found throughout the literature. The piece-wise linear models were used in the Monte Carlo
simulations. However, the quadratic models provided slightly better fits to the data; consequently,
a second set of Monte Carlo simulations was performed with the salinity and B quadratic models,
Equations (4) and (5), respectively.
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3.2. Evaluation of SSURGO Soil Salinity Accuracy and Identification of Salt-Affected Soils

An evaluation of the accuracy of SSURGO spatial data for root-zone soil salinity revealed that only
5 out of 22 fields assessed the mean salinity or range in salinity accurately, suggesting that the more
transient salinity levels and patterns in the root zone are not captured in the one-time measurements
of NRCS soil surveys. However, SSURGO was able to assess 15 out of 22 fields accurately for salinity
below the root zone, indicating that the salt levels below the root zone remained relatively unchanged
and unaffected by anthropogenic influences. The failure of SSURGO to provide accurate root-zone
soil salinity spatial data necessitated a reliance on the regional-scale salinity model developed by
Scudiero et al. [29] as input data for the Ida Gold mustard oilseed yield model.

Because of the inaccuracy of salinity in SSURGO the Scudiero et al. [29] regional-scale salinity
model was used to identify salt-affected soils (EC > 4 dS m−1) for the SJV. Figure 7 shows the extent of
salt-affected soils for the WSJV as estimated by the Scudiero et al. [29] regional-scale salinity model.
A comparison of total land cover greater than 4 dS m−1 for SSURGO and the Scudiero et al. [29]
regional-scale salinity model indicates that SSURGO estimated 33% less salt-affected land for the WSJV.
Furthermore, the distribution of salt-affected soils was concentrated in contiguous patterns along the
eastern half of the WSJV for SSURGO, whereas the Scudiero et al. [29] salinity patterns were more
diffusely spread as shown in Figure 7. Only fields identified as salt-affected were subsequently used in
the Monte Carlo simulations. Any field where the field average root zone ECe was estimated to be
<4 dS m−1 was disregarded and not included in the Monte Carlo simulations.
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from the regional-scale soil salinity model of Scudiero et al. [5,29].

3.3. Input Data for Ida Gold Mustard Oilseed Yield Model

The reliability and accuracy of the spatial data that serves as input into any model are just as
critical as the model itself, exemplified by the old adage, garbage in garbage out. Sensitivity analysis
of the crop yield model provides an indication of the input variables that need the greatest level of
accuracy and therefore need particular scrutiny when building a spatial database of inputs for the
crop yield model. Sensitivity analysis (Table 4) established the degree of influence that each edaphic
property had on oilseed yield in Equation (3). The influence was determined by calculating how much
the predicted oilseed yield changed when the value for each independent variable in Equation (3)
was individually shifted by 1 standard deviation from its mean level or point of maximum yield with
respect to the edaphic property. The means and standard deviations were obtained for the 0–1.2 m
depth increment excluding any points where no yield occurred (Table 2b). A baseline yield was used
as the point of reference to establish the percentage of change. A baseline value of 6.8 dS m−1 was used
for salinity, rather than the mean ECe level of 10.0 dS m−1 from Table 2b because the value 6.8 dS m−1

represents the point of maximum yield with respect to the quadratic salinity response pattern. For the
same reason a B baseline of 4.0 mg L−1 was used in the sensitivity analysis. The calculated percentage
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yield change shown in Table 4 indicates that B is the most significant factor influencing Ida Gold
mustard oilseed yield, followed by ECe, then LF, and finally θg.

Table 4. Degree of predicted oilseed yield sensitivity to 1 standard deviation (SD) change in each
edaphic property of Equation (3). †

Parameter
Sensitivity ‡

Calculated Yield
(kg ha−1)

Conversion to
Biofuel (L ha−1)

Percentage Change
(%)

Boron
(mg L−1) ECe (dS m−1) LF θg (kg kg−1)

Baseline 1017.3 178.3 4.0 6.8 0.27 0.19
B + 1 SD 345.2 60.5 −66.1 10.1 6.8 0.27 0.19

ECe + 1 SD 776.2 136.0 −23.7 4.0 13.1 0.27 0.19
LF + 1 SD 1212.3 212.5 19.2 4.0 6.8 0.42 0.19
θg + 1 SD 1033.3 181.1 1.6 4.0 6.8 0.27 0.24

† For the 0–1.2 m composite depth increment. ‡ Definitions: B = boron, ECe = electrical conductivity of the saturation
extract, LF = leaching fraction, θg = gravimetric water content.

In the case of ECe, oilseed yield model input values were obtained from the 30 x 30 m predictions
from Scudiero et al. [29] and used to determine the average ECe for each field for the root zone
(0–1.2 m) within the SJV. For the Monte Carlo simulations, PDFs were defined by the average residual
and standard deviation of the residuals for each category of salinity (i.e., 0–1, 1–2, 2–3, 3–4, 4–5, 5–6,
6–7, 7–8, 8–9, 9–10, 10–11, 11–12, 12–13, 13–14, 14–15, 15–16, and >16 dS m−1) using the predicted and
ground-truth ECe data from Scudiero et al. [5,29]. The input ECe of each pixel in the Monte Carlo
simulations was determined from the predicted ECe and residual PDF. Table 5 is a summary of the
average residuals, standard deviation of the residuals, and data count for each salinity category and
for the entire data set. All PDFs were normally distributed. The PDFs for categories 0–1, 1–2, 2–3,
and 3–4 d S m−1 were not used since only those fields with an average root zone ECe of greater than
4 dS m were used in the Monte Carlo simulations. There was not a substantial difference in the Monte
Carlo simulation findings using the PDF for the entire data set in Table 5 as compared to the individual
salinity categories; consequently, all subsequent Monte Carlo simulation discussions will be for the use
of the PDF for the entire ECe residual data set.

Table 5. Summary of the average residual, standard deviation of the residual, and data count for each
category of predicted salinity (i.e., ECe) from Scudiero et al. [29], indicating the uncertainty of the ECe

prediction and used in defining the ECe residual PDFs.

Lower Limit of ECe Interval
(dS m−1) Average ECe Residual (dS m−1)

Standard Deviation of the ECe
Residuals (dS m−1) Data Count

0 −2.29 3.38 131
1 −0.38 2.13 577
2 −0.68 2.39 623
3 −0.32 2.21 584
4 −0.86 2.62 351
5 −0.97 2.45 245
6 −0.95 2.49 298
7 −0.75 2.69 267
8 −0.86 3.01 215
9 −0.52 2.67 143
10 −0.50 3.03 82
11 1.27 2.38 83
12 2.18 1.51 121
13 3.00 1.69 193
14 3.64 1.65 127
15 4.91 2.07 77
16 6.57 2.60 194

Entire data set 0.14 3.11 4311

Definition: ECe = electrical conductivity of the saturation extract.

The edaphic property data collected and presented by Corwin and colleagues
(Bourgault et al., [30]; Corwin [31]; Corwin and Lesch [8–10,32,46]; Corwin et al. [7,33–36];
Lesch and Corwin [17]; Lesch et al. [37–39]; Loague et al. [40]; Rhoades et al. [41]; Sanden et al. [42];
and Scudiero et al. [26,29,43]) over 2.5 decades of salinity assessment field studies were used to
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develop the PDFs for B, LF, and θg for the SJV, which were subsequently used as input data in the
Monte Carlo simulations. The PDFs for B, LF, and θg were log normally distributed.

Oilseed yield must be converted to biofuel yield. The oil content of Ida Gold mustard oilseed
was 26% and the extraction efficiency was 64%. Subsequently, for every 1000 kg ha−1 of oilseed
produced then 166.4 kg ha−1 of 100% biofuel resulted, which represented 175.3 L ha−1 of biofuel. It is
of importance to note that transesterified biofuel is generally blended with diesel (1:5 ratio of biofuel
to diesel) and sold as 20% biofuel in California.

3.4. Monte Carlo Simulations Feasibility of Biofuel Production for the SJV

Monte Carlo simulations for the WSJV never produced a simulation that resulted in more than
71.9 ML yr−1 of biofuel produced, which is well below the goal of 115 ML yr−1. Subsequently,
Monte Carlo simulations were performed for the entire SJV. To do this, the regional-scale salinity
model of Scudiero et al. [29] was applied to the entire SJV to identify salt-affected soils, which totaled
9.7 × 105 ha. Monte Carlo simulations resulted in the PDF and associated CDF shown in Figure 8a,b,
respectively. The PDF and CDF are based on Monte Carlo simulations that incorporate the piece-wise
models of salinity and B tolerance. The histogram of Monte Carlo simulations is best fit with the
shifted gamma PDF in Equation (6) (Figure 8a):

Q = 68.986 + gamma(6.134,5.285) (6)

where Q is the biofuel production in ML yr−1. A comparison of the means, medians, standard
deviations, skewness, and kurtosis for the measured Monte Carlo simulation data and for the estimates
from Equation (6) shows excellent agreement, with means of 101.4 and 101.4 ML yr−1, medians of
97.8 and 99.4 ML yr−1, standard deviations of 14.1 and 14.1 ML yr−1, skewness of 0.87 and 0.87,
and kurtosis of 4.17 and 4.14, respectively (Figure 8a). From the CDF (Figure 8b) there is a 17%
probability of meeting the minimum production level when all salt-affected soils in the SJV are utilized
for oilseed production. When the Monte Carlo simulations include quadratic salt and B tolerance
models (i.e., Equations (5) and (6), respectively), there is little difference, with a 15% probability.

Several potential weaknesses in the approach need discussion as well as how the impacts of
these weaknesses were mitigated in the Monte Carlo simulations. First, the oilseed yield model was
developed from a single field with a fine-texture soil that did not vary significantly. Even though
the study site may have been representative of many of the fine-textured soils of the WSJV, it was
not representative of coarse-textured soils found in the east side of the SJV; consequently, the use
of the oilseed yield model for the entire SJV is dubious. Second, the regional-scale salinity model
of Scudiero et al. [29] was developed from a database that did not include tree crops or vineyards,
which makes the input salinities for the oilseed yield model dubious for areas containing vineyards
or tree crops. Scudiero et al. [5] showed that the regional-scale salinity model of Scudiero et al. [29]
over estimates salinity levels for orchards and vineyards, which would render reduced oilseed yield
estimates of Ida Gold mustard when planted between tree rows or would identify these lands as
salt-affected when they are not. Third, applying the oilseed yield model outside the range of data that
was used to develop it is problematic.

To rectify these problems, several precautions were taken. No areas where orchards or vineyards
occurred were included in the Monte Carlo simulations. In fields where the texture was coarse,
the oilseed yield model of Equation (3) was not applied. Rather, the two-piece linear salt tolerance
model of Maas and Hoffman [18] presented in Equation (1) or the three-piece linear B tolerance model
presented in Figure 6 were used, depending on which was most limiting to oilseed yield. Similarly,
in cases where the input data for the oilseed yield model (Equation (3)) fell outside the range of data
used to develop the model, then the two-piece linear salt tolerance model of Maas and Hoffman [18]
or the three-piece linear B tolerance model were used instead.
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Carlo simulations.

Even though the feasibility of meeting desired oilseed production levels is dubious, there are
circumstances that could improve the likelihood of meeting the 115 ML lower limit of production.
Water in terms of water content and water available for leaching are two impactful properties
pertaining to oilseed yield in the model. Maintaining the root zone water content at high levels
with adequate leaching could drive up yields sufficiently high to make oilseed a viable biofuel in the
SJV. In particular, high frequency irrigation to maintain root zone water contents near field capacity
would have significant impact. However, this is only feasible when the SJV has sufficient irrigation
water supplies, which may be the exception rather than the rule as shown by the recent 6-year
California drought (2011–2016).
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Orchards, whether in salt-affected (ECe > 4 dS m−1) or non-salt-affected (ECe ≤ 4 dS m−1)
soils, could play a major role in enhancing the feasibility of biofuel production in the SJV. Planting
mustard oilseed between rows in orchards, sometimes referred to as intercropping or alley cropping,
provides tremendous acreage for crop growth on lands that are otherwise left fallow in many
instances. Intercropping has several additional advantages, including weed control, wind and water
erosion control, dust management, improved percolation, more effective use of land and resources,
and additional crop revenue. There are roughly 130,000 ha of orchards in the SJV. By planting an
oilseed crop between rows as a secondary crop, biofuel production could increase roughly 15–30%,
which would increase the probability of meeting the 115 ML yr−1 target from 15–17% to 60–80% for the
entire SJV. Even though intercropping with oilseed may make biofuel production feasible, it certainly
does not necessarily make it economically viable. Furthermore, secondary crops from intercropping
are a management challenge for producers filled with additional management problems.

Aside from meeting the 115 ML yr−1 target, economic viability is a concern. Growing oilseed
on marginally productive soil is not the only means of lowering cost. Another resource that can
lower biofuel production cost is the reuse of degraded water for irrigation. Corwin [31] showed
in a long-term (12 years) study that the reuse of 3–5 dS m−1 drainage water was a viable means of
reclaiming saline-sodic soil on the WSJV, supporting a salt-tolerant crop during the reclamation process,
and providing financial return to the producer on otherwise non-productive farmland. In addition,
drainage water is a particularly valuable alternative water resource during drought years in the SJV,
provided drainage water is in sufficient supply.

Even though biofuel feasibility evaluation is a valuable application of sensor technology,
the unique aspect of this study is that it presents an innovative regional-scale approach for modeling
the interaction of edaphic properties on crop yield by characterizing the spatial variability of soil
properties influencing yield using proximal and satellite sensors. In essence, each sampling location
identified from an ECa survey serves as an independent crop yield study looking at the interaction
of edaphic properties on yield, thereby rendering a more robust model with lower long-term labor
requirements than plant salt (or B) tolerance studies provided in the past. Furthermore, past plant salt
tolerance studies did not evaluate the interaction of edaphic properties on crop yield.

The same approach can be used to predict drought impacts on crop productivity within an
agricultural region, to identify reclamation needs to optimize crop productivity, and to manage
resources (e.g., irrigation water, land, crop selection) and edaphic properties (e.g., salinity, B, etc.)
to optimize crop yield. Because of its regional-scale application and quantitative probability
assessment, the approach provides land and water resource specialists with a tool to make regional-
and landscape-scale resource decisions with a clear understanding of the likelihood of impact on
agricultural productivity.

4. Conclusions

This study exemplifies the combined use of proximal and satellite sensors to answer a practical
agricultural question of national significance with strategic military implications concerning the
feasibility of biofuel production in California’s San Joaquin Valley to help meet the aviation fuel
needs of the U.S. military. A quantitative assessment of the probability of attaining a minimum of
115 ML yr−1 of biofuel from oilseed indicates that there is a 15–17% probability of meeting the minimum
production level when all salt-affected soils in the SJV are utilized for oilseed production (Figure 8).
The low probability of meeting the minimum production level and the fact that all salt-affected soils
throughout the SJV, not just WSJV salt-affected soils, would need to be cropped with Ida Gold mustard
to produce sufficient oilseed biofuel to support a 115 ML conversion plants makes the idea untenable.
Furthermore, a significant portion of the 115 ML of biofuel would be produced on soils of moderate
salinity (i.e., 4–6 dS m−1), moderate B levels (i.e., 4–8 mg L−1), high LF, and high available water
content, which are soils that can either be easily reclaimed to produce higher cash crops or used to
grow salt and B tolerant crops of higher cash return than oilseed, such as pistachio.
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