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Abstract: In this paper, we present a novel approach for stereo visual odometry with robust motion
estimation that is faster and more accurate than standard RANSAC (Random Sample Consensus).
Our method makes improvements in RANSAC in three aspects: first, the hypotheses are preferentially
generated by sampling the input feature points on the order of ages and similarities of the features;
second, the evaluation of hypotheses is performed based on the SPRT (Sequential Probability Ratio
Test) that makes bad hypotheses discarded very fast without verifying all the data points; third,
we aggregate the three best hypotheses to get the final estimation instead of only selecting the best
hypothesis. The first two aspects improve the speed of RANSAC by generating good hypotheses and
discarding bad hypotheses in advance, respectively. The last aspect improves the accuracy of motion
estimation. Our method was evaluated in the KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) and the New Tsukuba dataset. Experimental results show that the proposed
method achieves better results for both speed and accuracy than RANSAC.
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1. Introduction

Mobile robot localization is a fundamental challenge for autonomous mobile robots navigation.
A robot needs to know its position to accomplish autonomous navigation. Different sensors and
techniques have been used to achieve robot localization, such as global navigation satellite system
(GNSS), inertial navigation system (INS), and vision-based localization. Each method has its advantages
and disadvantages. GNSS is a very common method for localization by reason of its absolute
position without error accumulation, but its accuracy is highly affected by buildings, trees and
weather situations, and it’s even not available for indoor situations. INS is fast but has highly
accumulated drift, and a highly precise INS is expensive for mobile robots as commercial purposes.
Vision-based localization methods have received an increasing interest in the robot vision community
because vision-based localization methods provide accurate estimation of camera motion along with
information for other vision tasks, such as obstacle and road detection. Visual odometry (VO) and
visual simultaneous localization and mapping (V-SLAM) are two methods of vision-based localization.
V-SLAM obtains a global estimation of camera ego-motion through map tracking and loop-closure
detection, while VO aims to estimate camera ego-motion incrementally and optimize potentially over
a few frames. VO cares about local consistency of the trajectory, whereas V-SLAM is concerned with
the global trajectory consistency. Monocular, stereo, omnidirectional and RGB-D (RGB-depth) cameras
are the main sensors for VO and V-SLAM. Monocular cameras are cheap and easily deployed, but
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suffering from scale uncertainty. Omnidirectional cameras can provide more information with a wide
field of vision (FOV), while they have a complex system with camera calibrating problems. RGB-D
cameras use structured light to estimate depth even in areas with poor visual texture, but they are
range-limited by their projectors. Stereo cameras, which have been widely used in VO systems, capture
a pair of RGB images at the same moment, thus the image scale can be retrieved by a given baseline.

The remainder of this paper is structured as follows. Section 2 introduces the related work on
visual odometry. Proposed methods for robust visual odometry are described in Section 3. Section 4
summarizes the experimental evaluation. Finally, Section 5 concludes the paper.

2. Related Work

Visual odometry uses continuously iteration to estimate the ego-motion of the camera frame by
frame. Methods of existing visual odometry can be generally classified into two classes: feature-based
methods and direct methods. Feature-based methods [1–4] detect a set of salient image features
(e.g., points, lines) in each image and track them in consecutive frames with feature descriptors.
The ego-motion is estimated by using the epipolar geometry, which can be finally refined by minimizing
the reprojection errors. In contrast, direct methods [5–7] estimate the ego-motion directly from the
intensity differences between consecutive images. Using visual sensors input alone for the estimation
of a vehicle’s ego-motion started in the early 1980s and was introduced by Moravec [8]. Most of
the early research in visual odometry was driven by the NASA (National Aeronautics and Space
Administration) Mars exploration program, which aimed to measure the ego-motion of planetary
rovers in Mars with wheel slippage in uneven and rough terrains. Since the work of Nister et al. [1],
visual odometry has received an increasing interest. They proposed a feature-based visual odometry
system that provided real-time ego-motion estimation for navigational purposes with monocular and
stereo cameras. After that, feature-based VO algorithms basically have these steps:

• Detect features in each image.
• Match them in two consecutive frames and remove the wrong matches.
• Estimate the ego-motion of the cameras.

Many improvements have been made in those aspects of visual odometry. Feature detectors for
real-time algorithms including Harris corners [9], FAST (Features from Accelerated Segment Test) [10]
Shi–Tomasi [11] and blob detectors have been widely used for VO. Evaluation of feature detectors and
descriptors has been described for indoor VO in [12] and outdoor environments in [13]. Besides the
point features, line features are also added to estimate the ego-motion in [14]. Because there are
many scenes where the points matching is unreliable while the lines are well matched by multi-pixel
support [15]. In [16], the authors proposed a novel method of adopting the whole history of tracked
feature points. Features tracked over past frames are integrated into one single feature point and the
estimation of ego-motion is improved by reducing the drift error.

Feature matching is an important step for visual odometry, which searches for corresponding
features in other images. Feature descriptors are compared by using a similarity measure. Instead of
comparing all feature descriptors, many VO algorithms perform a constrained matching, which only
searches for features near a given feature. This can be done by applying a motion model or epipolar
matching. Feature tracking is also a method to find correspondences between consecutive frames.
Optical flow methods such as KLT (Kanade–Lucas–Tomasi) [17] and dense scene flow [18] have also
been employed.

The motion estimation can be generally divided into three methods: 2D to 2D, 3D to 3D and 3D to
2D, depending on the feature correspondences. As described in [1], motion estimation using 3D to 2D
is more accurate than 3D to 3D. 3D to 2D computes the motion by minimizing the image reprojection
error, which can avoid the uncertainty in the depth direction.
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The data fusion of visual odometry with other sensors like GPS (Global Positioning System),
lasers, barometric sensors and IMU (Inertial measurement unit) can improve the accuracy of the motion
estimation, which can be used for state estimation of Micro-Aerial Vehicle (MAV) as described in [19].

To improve the robustness of visual odometry, RANSAC has been a standard method for model
estimation in the presence of outliers. In [20], RANSAC is used to reject outliers caused by moving
objects in dynamic environments. To the best of our knowledge, a few improvements have been
made in RANSAC for visual odometry. The most popular ones are Preemptive RANSAC [21] and
PARSAC [22]. Preemptive RANSAC [21] is popular for its advantages in real-time applications.
This method is mainly based on preemptive scoring of hypotheses and a fixed number of iterations.
Preemptive scoring avoids excessive scoring of bad hypotheses contaminated by outliers or noise,
which makes the scoring procedure more efficient on a limited time budget. Most recently, a novel
prior-based adaptive RANSAC (PARSAC) is described in [22], which is efficient to remove outliers
when the inlier ratio is rather low in AR and indoor applications. The authors observed that static
background feature points usually distributed evenly, whereas the dynamic feature points aggregated
in a few small textured areas. Feature points were sampled as even as possible in the whole image.
They used inlier/outlier distribution information from previous frames as prior information to guide
the sampling of the current frame. PARSAC has good performance when facing large amounts of
dynamic feature points, but it is mainly used in AR applications. Preemptive RANSAC only cares a
lot about improving the speed of RANSAC but not the accuracy. Our method is partly inspired by
these two methods. The hypotheses are generated by prior information just like PARSAC, but we
use features’ ages and similarities instead of inlier/outlier distribution. The evaluation of hypotheses
is also very fast by SPRT. With these improvements, our method is very suitable for mobile robot
localization in indoor and outdoor environments.

In this work, we propose a robust visual odometry using an improved RANSAC-based method,
named PASAC (Priori-based Aggregation SAmpling Consensus). A standard feature-based visual
odometry framework is adopted in our method. We concentrate on the generation and the evaluation
of hypotheses, which makes the process much faster than standard RANSAC. To improve the accuracy,
we propose an aggregation strategy to aggregate the best hypotheses. Thus, our method is faster
and more accurate than standard RANSAC, which is very suitable for real time applications like
visual odometry.

3. Proposed Method

In this section, we describe our proposed method in detail. We follow a standard feature-based VO
pipeline. Our proposed method is illustrated in Figure 1. Firstly, we use a pair of calibrated and rectified
stereo images as our input data. Feature points are detected and descriptors are extracted from both left
and right images. After stereo matching, the 3D position of feature points can be calculated by using
calibration parameters of the stereo cameras. When the next pair of images comes, we perform a circle
matching between left and right images and two consecutive images. Outliers caused by mismatching
between stereo and consecutive images can be rejected through circle matching, after which we use
our robust motion estimation method PASAC. To reduce the impact of outliers, a minimum sample
is not totally randomly generated. We generate the hypotheses on the order of the features’ ages
and similarities. Features with larger ages and higher similarities are selected first, which makes our
process of hypothesis generation faster and more effective than standard RANSAC. Then, we employ
SPRT to perform a faster evaluation process to discard bad hypotheses in advance. After hypothesis
evaluation, we aggregate the three best hypotheses to improve the accuracy of RANSAC. These steps
make our robust motion estimation much faster and more accurate than standard RANSAC. In the
next sections, we describe each step of our robust visual odometry in detail.
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Figure 1. Algorithm architecture, camera images are from the KITTI dataset. The dash rectangle is our
robust motion estimation method PASAC.

3.1. Robust Feature Detection

Feature-based VO starts from feature detection. We detect the corner-like feature points in the left
and right images of the current frame utilizing blob and corner masks as described in [23]. After the
key points are detected, we employ a non-maximum suppression algorithm [24]. The descriptors are
extracted by the 3×3 Sobel operator. Then, the descriptors in the left and right images are matched by
the sum of absolute differences (SAD), during which we also use the epipolar constraint to remove
some outliers. Lastly, a subset of features is chosen by feature bucketing [20]. Figure 2 shows the
feature points detected before and after bucketing. In this way, we use less features to compute the
ego-motion and reduce the computational complexity. At the same time, the features are uniformly
distributed over the whole image, which reduces the drift rates of the feature-based VO. Using the
correspondence between the remaining key points in the left and right images, we can calculate the
disparity of key points and the 3D position of each key point can be obtained.
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Figure 2. Features before and after bucketing: the red points stand for features before bucketing,
the blue points stand for features after bucketing, and the yellow lines depict individual buckets.

3.2. Feature Circle Matching

The circle matching is used to reject outliers caused by mismatching between stereo and
consecutive images. When getting two pairs of images from time step t and t + 1, we start matching
from the previous left image, the previous right image next, then the current right image, and finally
the current left image. Once a feature is matched in all frames, the circle matching is achieved, as shown
in Figure 3. Otherwise, the feature is rejected if the circle is not closed. When the circle is closed,
an additional check is performed with normalized cross correlation (NCC) on a 15×15 pixels patch
around the feature position. NCC is much slower but more reliable than SAD, so we only use NCC as
a double check after SAD.

Figure 3. Circle matching. Matching the features from time t in the left image, the right image next,
then time t + 1 in the right image, and finally the left image. A feature is selected when it is matched in
all four images.

3.3. Feature Tracking

We assign each feature a unique ID in each frame. Then, we record the age of the feature.
A feature’s age is increased by one if it is tracked in the current frame. The reason that we record
the age of the feature is mainly based on [16]. The feature tracking process is repeated between
consecutive images and every tracking step adds a cumulative error to the feature position. In [16],
the authors make a statistical analysis of the feature tracking error. They compute the distribution of
the accumulated projection error function of the survival age of the feature point as shown in Figure 4.
What is shown more specifically in Figure 4 is that features tracked longer have smaller errors and
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are more likely to be inliers. The reason is that possessing some properties makes them easier and
more accurate to be tracked. Those features with larger ages should be chosen first, which is used in
later sections.

Figure 4. RMSE (root-mean-square error) of inter-frame feature position as a function of the survival
age. The RMSE is lower if the feature’s age is bigger.

3.4. Robust Motion Estimation

3.4.1. Modeling

Let xd
s,i = [ud

s,i, vd
s,i]

T ∈ R2, d ∈ {l, r} , s ∈ {1, 2, ..., t, t + 1, ...} , i ∈ {1, 2, ..., n} denote the ith feature
point in time step s in left image l or right image r. Let Xd

s,i = [xd
s,i, yd

s,i, zd
s,i]

T denote the 3D position
of the feature points. It can be calculated through the pinhole camera model and stereo matching,
i.e., Equation (1), where f is the focal length, [cu, cv]T is the image principal point, and [R|t] are rotation
and translation between pixel coordinate and physical coordinate:

λ

u
v
1

 =

 f 0 cu

0 f cv

0 0 1

[R|t
]

x
y
z
1

 . (1)

The ego-motion change of the cameras from time t− 1 to time t is given by the rotation matrix
R ∈ SO(3) and 3D translation vector T = [tx, ty, tz]T ∈ R3. The 3D feature points calculated from the
previous view are projected onto the image plane of the current view through:

πl(Xl
t−1; R, t) =

 f 0 cu

0 f cv

0 0 1

[R|t
]

xl
t−1

yl
t−1

zl
t−1
1

 , (2)

where π is the reprojection function, and [R|t] are rotation and translation between two views. Then, the
cost function can be formulated by the image reprojection error through Equation (3), where N is the
total number of the feature points:

N

∑
i=1
||xl

t,i − πl(Xl
t−1; R, t)||2 + ||xr

t,i − πr(Xr
t−1; R, t)||2. (3)

The parameters of ego-motion can be calculated by minimizing the cost function. We use
the LM (Levenberg–Marquard) algorithm [25] to solve this non-linear least squares optimization
problem iteratively.
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3.4.2. Hypothesis Generation

Since feature detection and feature matching are not perfect, the matches can be incorrect or
inaccurate. After circle matching, outliers will always exist and degrade VO accuracy, and sometimes
even make the algorithm fail. Outliers are generally dealt with by using Random Sample Consensus
(RANSAC) [26]. The RANSAC algorithm is simple but powerful, which is very commonly employed
for estimating the parameters of a model with outliers. RANSAC operates in a hypothesize-and-verify
framework. It starts with a randomly minimal sampling and estimates the model parameters from the
subset of sampled points. Then, the model is evaluated on the entire data set, which separates the data
from inliers and outliers with a given threshold. The operation is repeated unless the probability of
finding a model better than the current best model falls below a given threshold. Standard RANSAC
needs to explore k hypothesis in order to find at least one outlier-free consensus set with confidence
η0, through:

k ≥ log(1− η0)

log(1− εm)
, (4)

where ε is the percentage of inliers in the data set, and m is the minimum sample size. This indicates
that the capability of RANSAC dealing with the data contaminated with large outlier ratio degrades.
Thus, it is better to generate good hypotheses first.

The hypotheses are generated by uniformly sampling the input data set in a standard RANSAC
algorithm. This is mainly because no priori information about the input data set is available. However,
in the specific applications, that priori information is always available makes it possible to be used to
generate better hypotheses. According to this, we propose a method to generate hypotheses based on
Progressive Sample Consensus (PROSAC) [27]. The correspondences between stereo and consecutive
images are obtained by a similarity function of feature descriptors. As described in [27], points with
high similarity are more likely to be inliers, and it is better to generate hypotheses by sampling from a
reduced set of points with the highest similarity. In Section 3.3, we point out that the age of the feature
points is related to the cumulative tracking error. Features that die earlier have a larger projection error.
Thus, we also consider the age of features when we generate the hypothesis. The correspondence
points ui, uj are sorted in the descending order of features’ ages A(ui), A(uj) and similarities scores
q(ui), q(uj) if the ages are the same, which is described in Equation (5). Figure 5 shows that a feature’s
age is increased by one if it is tracked in the current frame. For example, the yellow point’s age is
3 when time is t + 2 because it is tracked in three frames. When selecting features in frame t + 2,
we should choose the yellow point first. Then, we use a non-uniform sampling from the sorted
sequence. Correspondences with old ages and high similarities are chosen earlier. Finally, Equation (3)
is minimized by the LM algorithm to generate hypotheses:

ui, uj ∈ UN : i < j⇒
{

A(ui) > A(uj),

q(ui) > q(uj) if A(ui) = A(uj).
(5)

Figure 5. The feature’s age is increased by one if it is tracked in the current frame. The yellow point
should be chosen first in Image t + 2.
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3.4.3. Hypothesis Evaluation

After the hypotheses are generated, evaluations are performed over the entire data set in standard
RANSAC, and the best hypothesis with the largest consensus set is returned. The computation time of
RANSAC can be expressed as:

t = k(tH + mEtE), (6)

where k is the number of hypotheses, mE is the number of points needed to be verified in a hypothesis,
and tH and tE denote the time required to compute a hypothesis, and to verify a single point in a
hypothesis, respectively. In standard RANSAC, mE equals N, where N is the number of data points.
That is to say, a hypothesis is verified against all data points. However, most hypotheses are “bad”
and it is often possible to discard bad hypotheses early in the evaluation process. The evaluation
process is sped up by verifying only a few points to discard a bad hypothesis.

We adopt the sequential probability ratio test (SPRT) to discard “bad” hypotheses as described
in [28]. In SPRT, the evaluation step is dealt with as an optimization problem, which aims to figure out
whether a hypothesis is good (Hg) or bad (Hb) and simultaneously minimize the number of verified
points of each hypothesis. SPRT is based on the likelihood ratio:

λj =
j

∏
r=1

p(xr|Hb)

p(xr|Hg)
= λj−1 ·

p(xj|Hb)

p(xj|Hg)
, (7)

where xr is equal to 1 if the rth data point is consistent with the hypothesis, and xr equals 0 otherwise.
p(1|Hg) denotes the probability that a data point is consistent with a good model can be approximated
by the inlier ratio. Instead, p(1|Hb) can be modeled by a Bernoulli distribution if with a bad model.
We separate the data points from outliers and inliers by the reprojection error of the feature points.
The reprojection error is calculated by the symmetric transfer error, which can be expressed as:

e(i) =
∥∥∥xl

t,i − TH(Xl
t−1,i)

∥∥∥2
+
∥∥∥xr

t,i − TH(Xr
t−1,i)

∥∥∥2
+
∥∥∥xl

t−1,i − T−1
H (Xl

t,i)
∥∥∥2

+
∥∥∥xr

t−1,i − T−1
H (Xr

t,i)
∥∥∥2

, (8)

where TH is the ego-motion transformation between time t and t− 1, while T−1
H is between time t− 1

and t. Then, we use a given threshold δd to separate the data points:{
e(i) ≥ δd ith point is outlier,
e(i) < δd ith point is inlier.

(9)

The process of SPRT is shown in Algorithm 1. The method begins by verifying whether a point
is consistent with the hypothesis through Equation (9). Then, the likelihood ratio λ is computed and
compared with A: If λ > A the hypothesis is “bad” (line 3), if not, it is “good” when j is increased to
equal N (the number of correspondences). A is the threshold of SRPT. The procedure of hypothesis
generation is terminated when the probability η of missing a set of inliers, larger than the largest
support found so far, falls under a predefined threshold η0. More details are referred to [28].
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Algorithm 1: The adaptive SPRT
Input: correspondences of feature points,hypothesis parameters
Output: hypothesis accepted/rejected,number of inliers

1 Set j=1
2 for j = 1 to N do
3 Check whether jth data is consistent with the hypothesis, using Equations (8) and (9)
4 Compute the likelihood ratio λj using Equation (7)
5 if λj > A then
6 decide the hypothesis is bad and then reject it
7 break;
8 else
9 increment j

10 end
11 end
12 If j = N decides the hypothesis to be accepted

3.4.4. Hypothesis Aggregation

In the process of hypotheses generation and evaluation, we focus on the improvement of the
speed of RANSAC. In order to improve the accuracy of RANSAC, we proposed an aggregation strategy
inspired by [29]. In standard RANSAC, the best hypothesis with the largest consensus is selected
as the final solution. Most hypotheses are discarded though they have large consensus. However,
these hypotheses can be very useful to obtain a more accurate hypothesis, on which the idea of
hypothesis aggregation is mainly based.

Let us consider a feature point xt−1 from image It−1 and its real corresponding point xt from
image It. At the kth iteration of RANSAC, the hypothesis Hk is generated by sampling the matched
feature points as described above. Then, x̂t = π(Xt−1) is the reprojection of the 3D point Xt−1

into the image It according to the hypothesis Hk. If the hypothesis Hk is good enough, x̂t will be
close to the real matching point xt. After many iterations, hypotheses which make x̂t closer to xt

will be found. As illustrated in Figure 6, the ground truth corresponding point xt (dashed yellow
point) is the reprojection of the 3D point Xt−1 (the blue point) into the image It according to the
ground truth transformation Tt−1,t, while other yellow points are calculated according to the estimated
transformations T1 to T5. T1 to T5 means five transformations calculated by hypotheses H1 to H5. It is
obvious that T1 is the closest to the ground truth transformation because the reprojection of Xt−1 is
the closest to the real corresponding point xt , while T5 is the farthest from the real transformation.
The accuracy of these hypotheses is affected by the underlying noise of the model hypothesis and
the measurement noise of the input data. Both of the two noises have zero mean and a symmetric
distribution function, which makes the process of hypothesis aggregation yield a value close to the true
corresponding point xt. In Figure 6, the three best feature points in blue dash rectangles are aggregated,
and the aggregated point xagg is closer to the real matching point xt.

More generally, let {xt−1,i, xt,i}i=1,. . . ,N be a set of corresponding points from consecutive images
It−1 and It. For each iteration k with hypothesis Hk , the estimated reprojection points are denoted as:

x̂t,i = Hk(Xt−1). (10)

In order to reflect the reliability of hypotheses during the process of hypothesis aggregation,
we assign a weight for each generated hypothesis, which will make the aggregated point have a high
probability closer to its real value xt. The weights have already been calculated by the process of
hypotheses evaluation by Equation (8). Thus, the weight of hypothesis k can be expressed as:



Sensors 2017, 17, 2339 10 of 18

ωk =
N

∑
i=1

ρ(e(i)), (11)

where ρ(·) is the cost function of e(i). After K hypotheses are calculated, we aggregate the different
estimated points x̂t,i through weight ωk. In order to aggregate the point x̂t,i, we adopt a weighted
mean strategy through:

x̂t,agg =

K
∑

k=1
ωk x̂k

t,i

K
∑

k=1
ωk

. (12)

Figure 6. Hypothesis aggregation. Three best hypotheses in the blue dashed rectangle are aggregated,
thus the aggregated point xagg is closer to the real matching point xt.

Our final robust motion estimation algorithm is shown in Algorithm 2. The correspondence points
are sorted by Equation (5). We select m data points randomly from the front of the sorted feature points
un. Then, a hypothesis Hk is generated by minimizing Equation (3) and is verified by Algorithm 1.
We record the number of inliers, which is calculated by Equation (9). If the termination criterion of
SRPT reaches, we stop generating a hypothesis and the three best hypotheses H1, H2, H3 are recorded.
If not, the hypothesis will be generated by selecting m data points in the set of un+1. Finally, the inliers
in the best hypothesis will be aggregated by Equation (12) and the motion is refined by all of the
aggregated inliers.
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Algorithm 2: Robust motion estimation PASAC
Input: correspondences of feature points (N pairs of features)
Output: camera motion between consecutive images

1 1.Generate and verify hypotheses
2 for n = m to N do
3 Select m (the minimum sample size) from un (a set of n data points in front of the sorted feature

points) at random
4 Generate hypothesis Hk by minimizing Equation (3)
5 Verify hypothesis through Algorithm 1
6 Record the number of inliers Iin
7 if η < η0 then
8 stop generating hypothesis and get the three best hypotheses H1, H2, H3

9 else
10 increment n
11 end
12 end
13 2.Hypothesis aggregation
14 Aggregate the three best hypotheses and refine the inliers in H1 through Equation (12)
15 Return the final motion T using the aggregated inliers

4. Results

In this section, we show the results of our approach for robust stereo visual odometry.
We implemented our algorithm inside the Lib VISO2 (Library for Visual Odometry 2) [23] vision
library and evaluated in the KITTI dataset [30] and the New Tsukuba dataset [31]. Our algorithm ran
in real time and we carried out all experiments with an Intel Core-i5 (four cores @ 2.30 GHz) and 8 GB
RAM. First, we describe two datasets in Section 4.1. Then, we show experiment results from datasets
in both Sections 4.2 and 4.3, respectively. Finally, the running time is described in Section 4.4.

4.1. Datasets

The KITTI odometry dataset provides 20 sequences recorded from cars driven in urban and rural
areas and on highways. As illustrated in Figure 7, these cars are equipped with two stereo cameras,
GPS and a Velodyne laser scanner. The first 11 sequences with ground truth ego-motion are used
for training, without which the rest ones are used to evaluate. These cars speed up to 80 km/h and
travel about 20, 000 m. The dataset contains 23, 201 image frames, taken at 10 fps with a resolution of
1241× 376 pixels. The images are rectified and the calibration parameters of the cameras are provided.
In order to evaluate different methods, translation and rotation errors are normalized with respect to
path length and speed.

Figure 7. KITTI car. Equipped with two stereo cameras, GPS and a Velodyne laser scanner.
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The New Tsukuba dataset is a dataset for stereo matching and camera tracking evaluation.
The dataset is a virtual sequence generated by the software Autodesk Maya 2012 (Autodesk, San Rafael,
CA, USA). This dataset contains four different versions of the illumination conditions: daylight,
fluorescent lighting, flashlight and desk lamps (seen in Figure 8). The virtual cameras navigate into an
indoor laboratory and capture images with a resolution of 640× 480 pixels at 30 fps.

Figure 8. Four illumination conditions: upper-left: lamps; upper-right: fluorescent; lower-left: daylight;
lower-right: flashlight.

4.2. Evaluation on the KITTI Dataset

It can be seen in Figure 9 that the inaccurate camera calibration affects the distribution of the
reprojection error, as described in [32]. For the sake of adding some robustness against calibration
errors, we use a feature weighting scheme when calculating the ego-motion parameters, which can be
expressed as:

ωi = (|uL − u0|/u0 + 0.05)−1, (13)

where u0 is the camera horizontal principal point. Feature points closer to the principal point have
higher weights in the optimization, whereas those closer to the image boundaries have lower weights.

Figure 9. Distribution of reprojection error. Lower values correspond to darker colors. The error
increases in all directions from the minimum, which is close to the image center.
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In order to get a better understanding of the procedure of hypothesis aggregation, Figure 10 shows
the results of the distribution of feature points before and after we use hypothesis aggregation. Standard
RANSAC always chooses the hypothesis with the largest support and discards other estimation.
In Figure 10, the yellow feature points are the inliers selected by standard RANSAC, while the blue
feature points are refined by our method. Using the ground truth ego-motion and disparity, we
compute the ground truth position denoted by the red points so as to compare the accuracy of the
position of the feature points. As we can see, the refined position of feature points is closer to the ground
truth. When wielding the refined position of feature points, we get a more accurate motion estimation.

(a) (b)

(c) (d)

Figure 10. Feature points reprojection before and after hypothesis aggregation in four KITTI dataset
sequences. Red points are reprojection from the ground truth motion, yellow and blue points are before
and after hypotheses’ aggregation, respectively. (a) KITTI 01; (b) KITTI 03; (c) KITTI 05; (d) KITTI 08.

In Figure 11, we present a qualitative comparison of our trajectories, VISO2 and the ground truth.
It is obvious that our method gets better results than VISO2 in sequences 01, 03, 05, 08.

Figure 11. Trajectories on the sequences 01, 03, 05 and 08 of the KITTI dataset.
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Figure 12 indicates the average translation and rotation error, for increasing path length and
speed, of our method and VISO2, referring to the 00 to 10 sequences of the KITTI training dataset.
It is easy to see that our method gets better performance than VISO2 and also the bundle adjustment
or loop closure detection is not used.

(a) (b)

(c) (d)

Figure 12. Average error on the KITTI dataset. Plots (a,b) refer to the average translation error for
increasing path length and speed, respectively, while plots (c,d) refer to average rotation error.

4.3. Evaluation on the New Tsukuba Dataset

In order to show the robustness of our method, we tested our method on the New Tsukuba
dataset. Figure 13 shows the trajectories of both VISO2 and our method for the daylight sequence.
Similar results are also obtained for the other three sequences. Our method achieves better results but
not much. This is mainly because the camera moves very slowly in the Tsukuba dataset and fewer
outliers appear even in standard RANSAC.
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Figure 13. Trajectories on the daylight sequences of the New Tsukuba dataset.

4.4. Running Time

For the purpose of comparing the efficiency of our method with standard RANSAC and
PROSAC [27] (our method based on PROSAC), in each frame, we record the ratio of inliers (Iin),
the total generated hypotheses (KH), the verified points in each hypothesis (VH), and the total time
cost of the process of motion estimation (T). By using LibVISO2 with standard RANSAC, the total
hypotheses needed to be generated are fixed to 200. The results are shown in Table 1. We tested six
datasets in KITTI datasets and, in each sequence, the average Iin, KH ∗VH , and T were calculated. Our
methods have a larger inlier ratio than RANSAC and PROSAC [27], which is confirmed in the fourth
column of Table 1. The main reason is that more inliers can be found by our priori-based hypothesis
generation strategy even when the circle matching is not good enough. Standard RANSAC needs to
explore more hypotheses to find more inliers. Our methods, on average, have the smallest number of
KH ∗VH , which means that our methods only need to generate less hypotheses and verify less points to
achieve more accurate motion estimation. As seen in the last column, our method is seven times faster
than RANSAC and two times faster than PROSAC, even after the procedure of hypothesis aggregation.

Table 1. Comparison of efficiency of the estimation algorithm. Average computational time for a single
frame on an Intel-i5 2.30GHz CPU, four cores are used.

KITTI
Dataset

Iin (%) KH∗VH T (ms)

RANSAC PROSAC Our Method RANSAC PROSAC Our Method RANSAC PROSAC Our Method

00 75.6 85.2 89.8 41520 1520 845 72.5 15.3 8.5
01 76.4 88.6 92.2 34508 1400 950 70.3 17.5 10.5
02 80.4 86.5 95.5 25004 750 788 65.2 12.3 15.2
03 78.8 84.4 90.3 32075 1004 850 67.5 21.2 9.5
04 82.7 82.1 89.2 30258 950 787 62.3 20.1 6.5
05 85.5 89.3 93.1 33382 1045 920 51.5 16.5 5.7

Avg. 79.9 86.0 91.7 32791 1112 857 64.9 17.2 9.3
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5. Conclusions

In this paper, we present a robust stereo visual odometry using an improved RANSAC-based
method PASAC that makes the procedure of motion estimation much faster and more accurate
than standard RANSAC. The main purpose is to strengthen RANSAC’s capability to deal with low
calculating speed and accuracy when the inlier ratio is too low. It turns out that a robust stereo visual
odometry can calculate ego-motion of the mobile robot very fast and accurately. The proposed method
is evaluated in the KITTI and the New Tsukuba dataset. The experimental results demonstrate that the
proposed method is more accurate and faster than RANSAC.

Our method follows a traditional feature-based visual odometry pipeline. Feature points are
detected and matched by the circle matching. The ego-motion of the mobile robot can be calculated by
the LM algorithm on the basis of minimizing the reprojection error. The main contribution is the robust
motion estimation methods for visual odometry. In the process of robust motion estimation, we made
an improvement in RANSAC by three steps, which are hypotheses generation, hypotheses evaluation
and hypothesis aggregation: (1) the feature points are selected to generate hypotheses on the order
of ages and similarities; (2) hypotheses are evaluated by SRPT without verifying all of the input data
points; and (3) the three best hypotheses are aggregated to generate a better hypothesis. Thus, the
proposed method calculates very quickly and accurately. For this reason, our robust visual odometry
is very suitable to be used for mobile robot localization in outdoor and indoor environments.

In our future work, we would like to use some other robust features (e.g., line features) and add
additional sensors (IMU) to improve the accuracy of the localization. In addition, we would like to
extend our VO system to the VSLAM system with loop closure detection.
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The following abbreviations are used in this manuscript:

VO Visual Odometry
VSLAM Visual Simultaneous Localization and Mapping
RANSAC Random Sample Consensus
SPRT Sequential Probability Ratio Test
KLT Kanade–Lucas–Tomasi Feature Tracker
SAD Sum of Absolute Differences
LM Levenberg–Marquardt
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