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Abstract: The performance of Residence Times Difference (RTD)-fluxgate sensors is closely related
to the time difference readout technique. The noise of the induction signal affects the quality of the
output signal of the following circuit and the time difference detection, so the stability of the sensor is
limited. Based on the analysis of the uncertainty of the RTD-fluxgate using the Bidirectional Magnetic
Saturation Time Difference (BMSTD) readout scheme, the relationship between the saturation state
of the magnetic core and the target (DC) magnetic field is studied in this article. It is proposed that
combining the excitation and induction signals can provide the Negative Magnetic Saturation Time
(NMST), which is a detection quantity used to measure the target magnetic field. Also, a mathematical
model of output response between NMST and the target magnetic field is established, which analyzes
the output NMST and sensitivity of the RTD-fluxgate sensor under different excitation conditions and
is compared to the BMSTD readout scheme. The experiment results indicate that this technique can
effectively reduce the noise influence. The fluctuation of time difference is less than±0.1 µs in a target
magnetic field range of ±5 × 104 nT. The accuracy and stability of the sensor are improved, so the
RTD-fluxgate using the readout technique of high stability time difference is suitable for detecting
weak magnetic fields.

Keywords: RTD-fluxgate; negative magnetic saturation time; readout scheme; time difference

1. Introduction

The fluxgate sensor has been widely used in geomagnetic observation, space magnetic field
measurement, and other fields due to its high sensitivity, small size, and low power consumption,
etc. [1–5]. The RTD-fluxgate sensor developed by Bruno Andò, et al., using the hysteresis saturation
phenomenon of soft magnetic material, can detect magnetic fields through the corresponding
relationship between the residence times difference of the induction pulse signal and the target
magnetic field [6–8], and has the advantages of a simple detection procedure, strong anti-interference
ability, easy miniaturization, and digitization, etc. It has attracted more attention in the fields of
national defense military and geomagnetic prospecting [9–11]. However, the noise of the induction
signal makes the time difference read uncertain, seriously affecting the accuracy of RTD-fluxgate
sensor measurements [12,13].

The quality of the induction signal is closely related to variations in the dynamic permeability of
the magnetic core [14,15]. To reduce the effects of noise, an effective approach is utilized with a 2714A
annealed core with a sharp hysteresis loop and low coercive field [16,17]. Because the induction pulse
signal corresponds to the state of magnetic saturation, Bruno Andò, et al. read the time difference
between the peak points of the induction pulse signal to measure the target magnetic field [18,19].
As a result of the sensitivity of the RTD-fluxgate unit to repetitive magnetization, magnetic core
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noise, electronic circuit noise, and environment interference, it is difficult to locate the peak points
accurately [20–22]. Wang Y.Z., et al. read the time difference by using the threshold which is set
slightly lower than the peak value of the induction signal [23]. Although the error of locating the peak
points can be avoided, the threshold has to be set. Even in this case, the magnetic noise and electrical
noise cause the transverse instability of the induction signal, resulting in the uncertainty of the time
difference readout. Lu S.B., et al. fitted the pulse curve by using the data near the peak value of positive
and negative output pulse, and depending on the time of three adjacent peaks to calculate the residence
time difference which measure the target magnetic field [24]. The method does not need to consider
the influence of the threshold set on the output performance of the sensors, however, the accuracy of
curve fitting is limited due to noise interference existing in the induction signal. In order to reduce the
influence of noise on time difference reading, several approaches for filtering the induction signal are
introduced [25,26]. Although the method can reduce the noise intensity, it is mainly aimed at detecting
the amplitude of the signal. After filtering, there is a certain degree of distortion in the induction signal
which causes the time difference reading error. Therefore, the induction signal filtering is limited to
time difference reading. According to RTD-fluxgate detection theory, the large deviation in the output
time difference can be caused by output signal noise. If the induction signal is used individually to
read time difference, the noise effects cannot be avoided.

In order to improve the accuracy and stability of RTD-fluxgate sensors and reduce the noise
that produces uncertainties in the estimation of the residence times, the relationship between the
state of the magnetic core and the target magnetic field is studied. On the basis of analyzing the
working principle of the RTD-fluxgate sensor, in this paper, a new method of time difference reading
between the excitation signal passing through the zero point as a reference time and the negative
output pulse is proposed, that is, the excitation signal and the output pulse signal are combined to
read the negative magnetic saturation time ∆TNMST as the detection quantity to measure the target
magnetic field. A mathematical model of the sensor output response between the ∆TNMST and (DC)
target magnetic field Hx is established under a triangular excitation signal. It is analyzed that ∆TNMST
and sensitivity SNMST change with the variation of the amplitude and frequency of the excitation
current. The theoretical and experimental comparison between the NMST and the BMSTD readout
strategy is presented and discussed. The results show that this method can reduce the influence of the
output pulse noise effects on the readout technique.

The rest of this paper is organized as follows. Section 2 presents the working principle of
RTD-fluxgate sensor in the case of triangular signal excitation. The influence of the output induction
signal noise on the time difference readout strategy is analyzed. In Section 3, the NMST readout
strategy is introduced and the uncertainty of the method is calculated. By using the NMST readout
strategy, the mathematical model of the sensor output response is established and the variation of
∆TNMST and SNMST with different excitation conditions is analyzed. In Section 4, experiments are
investigated to check the performance of the NMST readout strategy compared to the BMSTD readout
strategy. Section 5 concludes the whole paper and the results are presented.

2. Working Principle of RTD-Fluxgate Sensors and Stability Analysis of Time
Difference Detection

2.1. Working Principle of RTD-Fluxgate Sensors under Triangular Excitation Signal

The magnetic core of the sensor is magnetized by a periodically alternating triangular magnetic
field to the states of two-way over-saturation, as is shown in Figure 1a. The ideal hysteresis loop
of the magnetic core is shown in Figure 1b. The magnetization produced in the induction coil is
shown in Figure 1c. If a target magnetic field Hx exists along the axis of the sensor, the residence
times of the magnetic core in positive and negative saturation states are different. Because the time
interval between the positive and negative pulse of induction signal T+ is not equal to the time interval
between the negative pulse and the next positive pulse T−, a time difference between them exists.
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We may obtain the values of Hx by detecting the bidirectional magnetic saturation time difference
4T = T+ − T− of the output pulse signal which relates to the states [8,27–29], as is shown in Figure 1d.
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In this article, the case of triangular excitation is considered. The triangular excitation is assumed
to have amplitude and period equal to Hm and Te, respectively. The expression is as follows:
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As is shown in Figure 1a, when the excitation field He(t) reaches saturation of magnetic core,
the times are t1, t2 and t3. At period Te of the induction signal, it is straightforward to calculate the
residence times T+ and T−:

T+ = t2 − t1 =
2Hx

α
+
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2
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T− = t3 − t2 = −2Hx

α
+
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2
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The output response of the RTD-fluxgate under the triangular excitation field is expressed as
shown in Equation (4):

∆T = T+ − T− =
4Hx

α
=

4Hx

4Hm fe
=

Hx
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(4)

The sensitivity of the RTD-fluxgate can be estimated:
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∂∆T
∂Hx

=
4
α
=
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(5)
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2.2. Stability Analysis of BMSTD Readout Technology

Adoping the detection method using the induction output signal’s hysteresis shape and timing,
that is, counting the low and high levels formed after the signal is amplified and then made in to
shapes, the RTD-fluxgate can read ∆T. According to the method, when the excitation condition and
the core material are determined, the stability of the time difference measurement is only related to
the readout technology. Generally, the output signal is not smooth, and there is transverse instability
because of electrical noise, magnetic noise, etc. As is shown in Figure 2, the trigger position of the
output signal varies because of the noise, eventually leading to fluctuation of the time difference.
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Figure 2. Noise affects the induction output signal. 

It is assumed that in an ideal case, the induction output signal does not have noise interference. 
The time of the first positive pulse appears as t1, the time of the first negative pulse appears as t2, and 
the second positive pulse appears as t3. The presence of magnetic and electrical noise affect the 
estimation of three transition times, so the corresponding actual transition times are t1', t2', t3', 
respectively. As is observed in Figure 3, the solid line represents the ideal output residence times, 
and the dotted line represents the actual output residence times when influenced by noise. The tnoise 
is an uncertainty product due to noise in the estimation of the residence times. ΔT is expressed as 
follows: 
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Figure 2. Noise affects the induction output signal.

It is assumed that in an ideal case, the induction output signal does not have noise interference.
The time of the first positive pulse appears as t1, the time of the first negative pulse appears as t2,
and the second positive pulse appears as t3. The presence of magnetic and electrical noise affect
the estimation of three transition times, so the corresponding actual transition times are t′1, t′2, t′3,
respectively. As is observed in Figure 3, the solid line represents the ideal output residence times,
and the dotted line represents the actual output residence times when influenced by noise. The tnoise is
an uncertainty product due to noise in the estimation of the residence times. ∆T is expressed as follows:

∆T = T+ − T− = (t′2 − t′1)− (t′3 − t′2) = 2t′2 − t′1 − t′3 (6)

The magnetic noise is not related to the electrical noise in the detection system, therefore,
the uncertainty of ∆T is affected by noise, which is described in Equation (7):

γ ≈
√

4(γ2
m2 + γ2

e2) + (γ2
m1 + γ2

e1) + (γ2
m3 + γ2

e3) (7)

In Equation (7), γ represents the total noise of ∆T, γmi represents the magnetic noise of transition
time ti, and γei represents the electrical noise of transition time ti. Assuming the same uncertainty
value for each ti, it is possible to write the following expression:

γ ≈
√

6(γ2
mi + γ2

ei) (8)

By using the BMSTD readout scheme, three transition times need to be estimated. Because each
transition time is affected by noise, the uncertainties of ∆T are fairly large. In view of the situation
above, in order to minimize the influence of noise on the detection and reduce the uncertainty of the
time difference, the readout technology needs to be improved.
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3. The Mathematical Output Response Model of the NMST Readout Technique and
Stability Analysis

3.1. The NMST Readout Technique and the Mathematical Output Response Model

If a target magnetic field Hx exists, the time when the soft magnetic material reaches the positive
and negative saturation states will change. The time when the soft magnetic material reaches two
steady points of the double-well potential are different. The Hx directly affects the time when the
magnetic core reaches the positive and negative saturation states. Therefore, the time of magnetic
core saturation is equivalent to the bidirectional magnetic saturation time difference, ∆T, which can be
considered as the detection quantity to measure Hx.

In this paper, however, we also present a different way to process the excitation and induction
signals to get information on the target field. This readout strategy is quite similar to the BMSTD
scheme except for the use of a reference time. It is known when the excitation signal passes through
the zero point, and so the transition time is used as reference time. The method of reading the time
difference between the reference time and the negative output pulse is proposed, that is, the excitation
signal and induction signal are combined to read the negative magnetic saturation time, ∆TNMST,
to detect the Hx. As is shown in Figure 4, when the magnetic core becomes saturated, an output pulse
signal is generated on the induction coil; the transition time when the excitation signal amplitude is
zero is used as the reference time, tT, and when the applied magnetic field exceeds the coercive field,
−Hc, the induced voltage produces a negative pulse at tP. The relationship between the triangular
excitation field He(t) expressed by Equation (1) and the target field Hx is as follows:

tT : αtT = 0 (9)

tP : Hx − α(tp − Te
2 ) = −Hc (10)

Deduced by Equations (9) and (10):
tT = 0 (11)

tp = (Hc + Hx)

/
α +

Te

2
(12)

The time difference ∆TNMST between tP and tT is defined to negative magnetic saturation time,
which is given by:

∆TNMST = tp − tT (13)
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When using the NMST readout strategy, the output response of the RTD-fluxgate is as follows:

∆TNMST = tp − tT =
(Hc + Hx)

4Hm fe
+

Te

2
(14)

The sensitivity expression for the NMST strategy obtained by using similar calculations is shown
in Equation (15):

SNMST =
∂∆TNMST

∂Hx
=

1
α
=

Te

4Hm
=

1
4Hm fe

(15)

When Hx and the coercive field Hc of the magnetic core are fixed, the relationship between
∆TNMST and He(t) is as shown in Figure 5. When the amplitude Hm and the frequency f of the
excitation magnetic field are smaller, the ∆TNMST is greater.
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According to Equation (15), the variation tendency of the sensitivity of the RTD-fluxgate SNMST,
obtained by using the NMST readout strategy, is shown in Figure 6.
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From the figure above, when using the NMST readout technology, the SNMST of RTD-fluxgate
is inversely proportional to the excitation magnetic field’s amplitude Hm and frequency f. Therefore,
when the excitation circuit structure does not need changing, the sensitivity of the RTD-fluxgate
is improved by reducing the excitation magnetic field amplitude Hm and the frequency f, and at
the same time, the power consumption is cut down. But, according to the working principle of
RTD-fluxgate, the magnetic core of the sensitive unit needs to achieve bidirectional oversaturation,
so the excitation magnitude of Hm should at least saturate the core and the excitation frequency f is
too low, which will lead to a smaller range of the measured magnetic field and a worse effect of the
induction output signal. Therefore, the excitation parameters can be determined according to the
actual measurement conditions.

3.2. Stability Analysis of NMST Readout Technology

When using the NMST readout scheme, the excitation signal is generated by the signal generator.
The reference time tT does not need measuring, therefore tT can be obtained accurately. As is observed
in Figure 7, in the ideal condition, because the output signal does not have noise interference, the time
of the first negative pulse appears at tp and the corresponding actual transition time is tp’. The solid line
represents the ideal output residence times and the dotted line represents the actual output residence
times influenced by noise. An expression about ∆TNMST actually measured is as follows:

∆TNMST = tp
′ − tT (16)

Because of the known tT, the noise affects the ∆TNMST at the transition time tp
′. In this case,

the presence of noise affects only the estimation of one transition time (the reference time being
assumed to be noiseless) instead of three such times in the BMSTD strategy. The uncertainty of ∆TNMST
affected by the noise is as follows:

γNMST ≈
√

γ2
mi + γ2

ei (17)

Based on analysis of theory, the relationship between the NMST and BMSTD readout schemes
affected by noise is shown in the Equation (18). The NMST readout scheme can reduce the influence
of noise on reading the time difference. Therefore, reading ∆TNMST to measure Hx can improve the
stability of the time difference.

γNMST =
1√
6

γ (18)
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4. Experiments and Preliminary Results

The experimental instruments are shown in Figure 8. The RTD-fluxgate sensor is made by the
Key laboratory of geophysical exploration equipment, Ministry of Education (Jilin University) and
included two parts: the sensitive unit and the signal detection circuit. The sensitive unit consists
of an excitation coil, magnetic core, and induction coil. The core adopts a co-based amorphous
ribbon which is 0.8 mm in width, 0.025 mm in thickness, and 100 mm in length. The core is placed
inside the non-magnetic framework. The excitation coil is symmetrically twined on both ends of
the non-magnetic framework with the same number of turns, and the induction coil is twined in the
middle. The excitation coil and induction coil are 100 turns and 1000 turns, respectively, using 0.1 mm
enameled copper wires. The induction signal is amplified and rectified in the signal detection circuit,
and then the rectangular signal is input to the time difference counting and processing part which
is made up of Field Programmable Gate Array (FPGA) and STM32 microcontroller. In the magnetic
shielding room made of multilayer silicon steel, the Helmholtz coil is placed in the middle of the
multilayer electromagnetic shielding cylinder made of permalloy. The RTD-fluxgate is laid in the center
of the loop, which can be considered as a homogeneous magnetic field. Two precision current sources
of KEITHLEY 6221 are utilized in the experiment to excite the Helmholtz coil for generating a DC
target magnetic field and drive the excitation coil of the RTD-fluxgate. The experimental measurement
schematic diagram is shown in Figure 9.

The excitation coil of the sensitive unit generates a triangular excitation magnetic field. The induced
voltage generated by the induction coil passes through the instrumentation amplifier circuit, the second
level amplifier circuit, the addition circuit, and the shaping circuit, obtaining a rectangular signal
which carries the information of the Hx. The signal is input to the CH1 channel of FPGA logic signal
processor. Regulating the excitation current source generates a synchronous triggering pulse. When the
excitation voltage amplitude is zero, the trigger point is set. The synchronous trigger pulse is input to
the CH2 channel of FPGA. FPGA uses two channel signals to count the number of time points when
the counting frequency f c is 100 MHz. The time points N is transmitted into ∆TNMST which is sent to
STM32 for storage.
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(1) Relationship between the Hx and ∆TNMST

(a) The experiments are performed in the following conditions of different triangular excitation
magnetic fields (excitation current from 40 mA to 80 mA with a 20 mA interval and excitation
frequency at 30 Hz) and a range of Hx from −5 × 104 nT to 5 × 104 nT with a 5 × 103 nT
interval. Figure 10 shows the output time difference, ∆TNMST, of the RTD-fluxgate which are
actually measured with different excitation currents.

From the figure above, the measured ∆TNMST and Hx are linear. The linear regression technique
(least square method) is used to fit the ∆TNMST curve. Assuming the linear fitting polynomial is
y = ax + b (a 6= 0) by using n data (xi, yi) (I = 1, 2, . . . n), the sum of the deviation square between data
points and the fitted curve is shown in below:

d2 =
n

∑
i=1

[yi − (axi + b)]2 (19)

One of the curves in Figure 10 is taken to illustrate the concept. When d2 = min(d2), the fitting
curves between ∆TNMST1 and Hx with excitation current I1 = 80 mA and excitation frequency f = 30 Hz
are presented Equation (20). The fitting linear deviations are shown in Figure 11, which shows that
the linear deviations are mainly concentrated at both ends and center, so it is in accordance with the
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regulation of the linear sensor. The sum of the relative deviations square is 0.0573 and the RTD-fluxgate
possesses good linearity in the whole range of measurement.

∆TNMST1 = 0.0144 × Hx + 1.67 × 104 (20)
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Figure 11. Fitting linearity deviations of ∆TNMST1 with I1 = 80 mA and f = 30 Hz. (a) Fitting curve of
∆TNMST1 ; (b) Deviations of ∆TNMST1.

By using the same method, the fitting curves between ∆TNMST and Hx with different excitation
currents I2 = 60 mA and I3 = 40 mA are as follows:

∆TNMST2 = 0.0191 × Hx + 1.67 × 104 (21)

∆TNMST3 = 0.0289 × Hx + 1.67 × 104 (22)
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From the Equations above, the sensitivities of different excitation currents are
SNMST1 = 0.0144 µs/nT, SNMST2 = 0.0191 µs/nT and SNMST3 = 0.0289 µs/nT. When the excitation
amplitude Hm is smaller, the sensitivity SNMST is greater.

(b) When the excitation current is 80 mA, the excitation frequency changes from 20 Hz to 60 Hz
with a 20 Hz interval. Hx is the same as mentioned above. Figure 12 shows the output
time difference ∆TNMST of the RTD-fluxgate which is actually measured with different
excitation frequencies.
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Figure 12. The curve between Hx and ∆TNMST with different excitation frequencies.

According to the least square fitting method, the fitting curves between ∆TNMST and Hx with
different excitation frequencies, f 1 = 20 Hz, f 2 = 40 Hz, and f 3 = 60 Hz, are as follows:

∆TNMST1 = 0.0218 × Hx + 2.50 × 104 (23)

∆TNMST2 = 0.0109 × Hx + 1.25 × 104 (24)

∆TNMST3 = 0.0074 × Hx + 8.34 × 103 (25)

From the Equations above, the sensitivities of different excitation frequencies are
SNMST1 = 0.0218 µs/nT, SNMST2 = 0.0109 µs/nT, and SNMST3 = 0.0074 µs/nT. When the excitation
frequency f is smaller, the sensitivity SNMST is greater. In Figures 10 and 12, the experimental results
validate that the sensitivity SNMST is inversely proportional to the amplitude Hm and frequency f of
the excitation magnetic field.

(2) Stability Analysis

Analysis was performed under the conditions of an excitation magnetic field with parameters
I = 80 mA, f = 60 Hz, and Hx = 25,000 nT. To compare the stability of the two readout methods
effectively, the time of observation is 60 s. The fluctuations in time difference by using the NMST and
BMSTD readout methods are shown in Figures 13 and 14, respectively. Because the observation time is
longer, the data of time difference fluctuations are larger. We only present the data of 3 s among 60 s in
Table 1.



Sensors 2017, 17, 2325 12 of 15

Sensors 2017, 17, 2325 11 of 15 

(b) When the excitation current is 80 mA, the excitation frequency changes from 20 Hz to 60 
Hz with a 20 Hz interval. Hx is the same as mentioned above. Figure 12 shows the output 
time difference ΔTNMST of the RTD-fluxgate which is actually measured with different 
excitation frequencies. 

 
Figure 12. The curve between Hx and ΔTNMST with different excitation frequencies. 

According to the least square fitting method, the fitting curves between ΔTNMST and Hx with 
different excitation frequencies, f1 = 20 Hz, f2 = 40 Hz, and f3 = 60 Hz, are as follows: 

ΔTNMST1 = 0.0218 × Hx + 2.50 × 104 (23) 

ΔTNMST2 = 0.0109 × Hx + 1.25 × 104 (24) 

ΔTNMST3 = 0.0074 × Hx + 8.34 × 103 (25) 

From the Equations above, the sensitivities of different excitation frequencies are SNMST1 = 0.0218 
μs/nT, SNMST2 = 0.0109 μs/nT, and SNMST3 = 0.0074 μs/nT. When the excitation frequency f is smaller, the 
sensitivity SNMST is greater. In Figures 10 and 12, the experimental results validate that the sensitivity 
SNMST is inversely proportional to the amplitude Hm and frequency f of the excitation magnetic field. 

(2) Stability Analysis 

Analysis was performed under the conditions of an excitation magnetic field with parameters I 
= 80 mA, f = 60 Hz, and Hx = 25,000 nT. To compare the stability of the two readout methods 
effectively, the time of observation is 60 s. The fluctuations in time difference by using the NMST and 
BMSTD readout methods are shown in Figures 13 and 14, respectively. Because the observation time 
is longer, the data of time difference fluctuations are larger. We only present the data of 3 s among 60 
s in Table 1. 

 
Figure 13. The fluctuation of ΔTNMST by using the NMST readout scheme. 

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
4

5000

10000

15000

20000

25000

30000

Hx (nT)

△
T N

M
ST

 (u
s)

 

 

80mA 20Hz
80mA 40Hz
80mA 60Hz

0 10 20 30 40 50 60
-3

-2

-1

0

1

2

3

Observation Time (s)

△
Fl

uc
tu

at
io

n 
of

 
T N

M
ST

 (u
s)

Figure 13. The fluctuation of ∆TNMST by using the NMST readout scheme.

Table 1. Time difference fluctuations of 3 s by using two readout methods.

Time (s) Fluctuations of
∆TNMST (µs)

Fluctuations of
∆T (µs) Time (s) Fluctuations of

∆TNMST (µs)
Fluctuations of

∆T (µs)

36.1 0.884 0.719 37.6 0.882 −0.158
36.2 −0.755 −1.221 37.7 1.215 0.219
36.3 0.913 0.180 37.8 0.283 3.219
36.4 2.364 −1.642 37.9 0.784 0.678
36.5 0.136 −2.061 38.0 1.251 0.459
36.6 1.765 −1.275 38.1 0.403 −1.949
36.7 1.443 −0.239 38.2 0.672 −0.648
36.8 −0.992 −0.334 38.3 −2.198 0.197
36.9 0.748 1.552 38.4 −1.016 −1.426
37.0 −0.095 −0.367 38.5 1.474 −0.968
37.1 0.334 2.292 38.6 −0.228 −2.057
37.2 −0.455 0.788 38.7 1.563 −3.038
37.3 −1.107 0.199 38.8 0.486 −1.587
37.4 0.895 −1.476 38.9 1.040 −1.955
37.5 0.483 0.177 39.0 0.335 −3.651
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Figure 14. The fluctuation of ∆T by using the BMSTD readout scheme.

As is illustrated in Figures 13 and 14, by using the NMST readout scheme, the standard deviation
of ∆TNMST is 1.086 µs and the fluctuation of ∆TNMST is 5.780 µs. By using the BMSTD readout scheme,
the standard deviation of ∆T is 1.465 µs and the fluctuation of ∆T is 7.559 µs. The comparison between
the two readout methods indicates that the standard deviation and the fluctuation of the time difference
are reduced by 36% and 32%, respectively, by adopting the NMST readout scheme.

In order to process the time difference dynamically in real time, in this paper, the variable
coefficient Pauta criterion and equal-weight endpoint smoothing are combined to form a hybrid time
difference processing algorithm. The specific procedure is as follows:
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a Every n ∆TNMST forms an array Ni, and then the mean Ni and variance σi of each array need
calculating in turn.

b The amount of effective data after processing is more than 3/4 times of the amount of data
before processing. When |∆TNMST(i−1)n+j − Ni| > kσi, ∆TNMST(i−1)n+j is considered as gross error,
therefore, the value is replaced by the mean of the array; when |∆TNMST(i−1)n+j − Ni| < kσi,
this value is reserved. A new time difference array N’ = N’1 + N’2 + . . . N’i is formed.

c At the initial point of the new data sequence N’, 50 consecutive data points are processed with

equal weight endpoints at a time through the equation ∆TNMSTk =
1
l

l−1
∑

i=0
∆TNMST(k+i), k = 1, 2, 3,

. . . , n × I − l + 1. In this paper, the sequence N’ is processed twice.

After hybrid algorithm processing, the standard deviation of ∆TNMST is reduced to 0.044 µs and
the fluctuation is reduced to 0.170 µs, as is shown in Figure 15.
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Figure 15. The ∆TNMST and fluctuation after processing by the hybrid algorithm. (a) ∆TNMST after
hybrid algorithm processing; (b) The fluctuation of ∆TNMST after hybrid algorithm processing.

5. Conclusions

On the basis of the working principle of RTD-fluxgate sensors, the influence of the induction signal
noise on the time difference reading is analyzed. A readout method is proposed in which the excitation
and induction signals are combined to read the negative magnetic saturation time. A mathematical
model of the RTD-fluxgate sensor output response between ∆TNMST and Hx is established. The NMST
readout scheme, which is proposed in this paper, is compared with the BMSTD readout scheme.
The experimental results validate the effectiveness of the readout method. The standard deviation
and the fluctuation of the time difference are reduced by 36% and 32%, respectively. This technique of
RTD-fluxgate sensor usage can reduce the noise influence and improve the stability of time difference
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measurement. After ∆TNMST is processed by the time difference hybrid algorithm, the fluctuation
can be stabilized within ±0.1 µs, so the accuracy of RTD-fluxgate measurement is improved further.
The NMST readout method is suitable for RTD-fluxgate detection of weak magnetic fields.
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