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Abstract: This paper presents a theoretical analysis of mechanical and electrical noise in the
sense channel of micro-electromechanical systems (MEMS) vibratory gyroscopes. Closed-form
expressions for the power spectral density (PSD) of the noise equivalent rate (NER) of gyroscopes in
the open-loop and the force-rebalance operations are derived by using an averaged PSD model and
an equivalent transfer function. The obtained expressions are verified through numerical simulations,
demonstrating close agreements between the analytic and the numerical models. Based on the
derived expressions for the PSD of the NER, the impacts of the modal frequency split, quality factor,
and the gain of the feedback forcer, as well as the gain of the signal conditioning circuit, on the
gyroscope noise characteristics are theoretically analyzed. In addition, the angle random walk (ARW)
and the standard deviation of the NER are also discussed through the PSD models. Finally, the effects
of the loop closing, the mode matching, and the gain of the feedback forcer on the PSD of the NER
were verified via a MEMS vibratory gyroscope with a tunable modal frequency split.

Keywords: angle random walk; force-rebalance; MEMS vibratory gyroscope; mode matching; noise
analysis; noise equivalent rate; power spectral density; open-loop

1. Introduction

Gyroscopes based on micro-electromechanical systems (MEMS) technologies have great
advantages of small size, low power consumption, low cost, and batch fabrication over their traditional
counterparts. MEMS vibratory gyroscopes have been widely adopted in various consumer electronics,
as well as in industrial fields. However, the noise performance is one of the essential limitations of
MEMS vibratory gyroscopes operating on high-precision occasions. Noise analysis of the gyroscope
sense channel is of great importance to system designs. The impacts of different operations and
system parameters on the noise performance can provide constructive guidance on determining
a sufficient quality factor of the resonator, a reasonable modal frequency split, and adopting proper
feedback forcers.

There have been several classic studies focusing on the noise analysis of MEMS vibratory
gyroscopes. A comprehensive review of noise in MEMS devices is given in [1]. Noise in MEMS
vibratory gyroscopes typically contains mechanical-thermal noise and electrical noise. The mechanical
noise has a fundamental intrinsic mechanism, namely Brownian motion, which is due to dynamic
unbalanced forces caused by random impacts of molecules on a structure. Leland investigated
the mechanical-thermal noise in MEMS gyroscopes via the method of stochastic averaging [2].
The expressions for the impacts of the mechanical noise, including the angle random walk (ARW),
the noise equivalent rate (NER), and the spectral density of the rate noise, are derived in [2]. Common
electrical noise sources are summarized in [3], including electrical-thermal noise (Johnson noise),
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flicker noise, demodulation phase noise, and so on. In [4,5], Kim and M’Closkey presented a detailed
noise spectral analysis of force-rebalance mode-matched vibratory gyroscopes. Expressions for the
NER spectrum and the integrated angular rate variance are derived to discuss the impacts of modal
frequency split, closed-loop bandwidth, and the noise sources at the sensor’s input and output.

In our previous work [6], the mechanical noise and the electrical noise in the force-rebalance
operation was studied via numerical simulations. The challenge of the theoretical analysis in the
force-rebalance operation is the nonlinear modulation–demodulation process in the feedback loop,
making the linear analysis methods infeasible in this situation. In [2], the high- and low-frequency
variables are isolated by using a coordinate transform. Then, stochastic averaging is applied to the
transformed system to yield a system with slow variables. By this approach, an approximate linear
system model, which is easy for the noise analysis, is obtained. However, the author only dealt with
the mechanical-thermal noise. Since the electrical noise and the mechanical noise influence the system
from different positions in the loop, the expressions derived in [2] cannot be directly applied to the
electrical noise. Although the noise model in [5] includes both the mechanical noise and the electrical
noise, the feedback architecture of the force-rebalance operation in the study is not a typical one.
In a typical feedback scheme, as presented in [2], the output of the sense axis is firstly demodulated
to extract the amplitude of Coriolis vibration, then fed to a controller, then modulated with a signal
in-phase with the Coriolis force, and finally applied to the feedback forcer. In [5], the output signal of
the sense axis is multiplied by a constant gain, and then directly fed back to the forcer, leaving in-phase
and quadrature components indistinguishable. The only demodulation process in this scheme is
at the output stage, where the Coriolis information is extracted. Considering there is no nonlinear
process in the feedback loop, the closed-form expressions derived in [5] are inapplicable to the typical
force-rebalance architecture.

In this paper, we obtain closed-form expressions for the power spectral density (PSD) of the
mechanical and the electrical NER in a typical force-rebalance architecture by using an averaged PSD
model and an equivalent transfer function of the modulated–demodulated sense axis. The PSD of
the NER in gyroscope outputs can reflect the noise performance of the gyroscopes in great detail [7]
and the relationship between the PSD and the Allan Variance is studied in [8]. In the open-loop noise
model, the features of the noise after the demodulation process, which is nonlinear and will yield
a non-stationary random signal, are investigated by the averaged PSD model. In the force-rebalance
noise model, the noise sources are separated from the closed-loop, and the modulation–demodulation
process in the closed-loop is linearized by the equivalent transfer function. By this approach,
the closed-loop noise model can be transformed into an open-loop one and, hence, the analysis
method used in the open-loop model can be applied. The analytic models are in close agreement
with the numerical models, verifying the validity of the closed-form expressions. The analyses and
simulations in this paper can reveal the noise propagation in the sense channel of MEMS vibratory
gyroscopes and give important guidance on the system design.

MEMS vibratory gyroscopes in the force-rebalance operation, in contrast to those in the
open-loop operation, exhibit better linearity, less sensitivity to environmental temperature variations,
independence between bandwidth and mechanical sensitivity, and a tunable dynamic range [9–11].
However, the open-loop operation is less complicated and shows a sufficient level of performance
in some applications. In consideration of the differences between the open-loop operation and the
force-rebalance operation, in this paper, we will discuss the noise features in both of these two
aspects. In addition, MEMS vibratory gyroscopes can be in mode-matched situations or mode-split
situations depending on the frequency split between the drive axis and the sense axis. Mode-matched
gyroscopes demonstrate higher mechanical sensitivities than mode-split gyroscopes [12–15]. Due to
the difference of the mechanical responses between the mode-split and the mode-matched gyroscopes,
their equivalent transfer functions are also different. Therefore, we will respectively analyze the
mode-split and the mode-matched models.
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Besides noise, bias drift is another important performance of gyroscopes. The bias drift is a result
of the unstable behavior of the zero rate output of the gyroscopes due to environmental changes,
especially to the change of temperature. The zero rate output of MEMS vibratory gyroscopes is studied
in detail in [16]. Different operations and parameters of gyroscopes will change the zero rate output
and, therefore, will certainly change the bias drift. However, considering the bias drift and the noise
have different formation mechanisms, we will not discuss the effects of different operations and
parameters on the bias drift in this paper.

This paper is organized as follows. Section 2 gives a general background of the sense channel
model in MEMS vibratory gyroscopes, including the open-loop operation and the force-rebalance
operation. The expressions for the frequency response of the gyroscope and the scale-factor are
briefly introduced in both operations. The open-loop noise model is analyzed in Section 3. The noise
propagation in the open-loop is demonstrated, and the closed-form expression for the PSD of the NER
are derived. Section 4 presents the noise analysis of the force-rebalance model. The validity of the
obtained closed-form expressions is verified through numerical simulations for both the mode-split
and mode-matched gyroscopes. Through the obtained PSD models, the ARW and the standard
deviation of the NER are discussed in Section 5. Some conclusions in Section 5 were verified via
a MEMS vibratory gyroscope with a tunable frequency split, and the results are shown in Section 6.
Finally, Section 7 concludes this paper with a summary.

2. Model of Sense Channel in MEMS Vibratory Gyroscopes

Typically a MEMS vibratory gyroscope can be modeled as a two-dimensional oscillator

mẍ− 2mηΩẏ + cx ẋ + kxx = Fx, (1)

mÿ + 2mηΩẋ + cyẏ + kyy = Fy, (2)

where m is the mass of the oscillator; x and y are displacements along the two orthogonal dimensions,
that is x- and y- axes; η is an angular gain factor, which is determined by the structural geometry
of the gyroscope; Ω is the input angular rate; cx and cy represent the damping coefficients; kx and
ky are stiffness; and Fx and Fy are external forces exerted on the x- and y- axes. ωx =

√
kx/m

and ωy =
√

ky/m are natural frequencies of the x-axis and the y-axis, respectively. If ωx = ωy,
gyroscopes are in the mode-matched situation; otherwise, gyroscopes are in the mode-split situation.
The damping and the stiffness couplings are ignored in Equations (1) and (2) because these non-ideal
components only introduce output bias and, accordingly, have no significant impacts on the gyroscope
noise performance.

We refer to the x-axis of vibratory gyroscopes as the drive axis and the y-axis as the sense axis.
The drive axis is excited into stable resonance by an external electrostatic force, Fx, whose frequency
and amplitude are respectively regulated by a phase-locked loop (PLL) and an automatic gain control
(AGC) loop. In the open-loop operation, there is no external force applied along the sense axis, which
means Fy = 0, and the sense axis is only driven by the Coriolis force. The vibration amplitude of
the sense axis is proportional to the angular rate input and, therefore, can be used as a measure of
the angular rate. In the force-rebalance operation, namely the closed-loop operation, an electrostatic
force is applied to exactly balance the Coriolis force and to null the vibration of the sense axis. In this
operation, the voltages applied to the feedback electrodes, which generate the electrostatic force, can
be used as an estimation of the angular rate.

We assume the drive axis has a steady vibration under the control of the PLL and the AGC loop

x(t) = Ax sin (ωdt), (3)
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where Ax is the vibration amplitude of the drive axis in meters, and ωd is the drive frequency and
always tracks ωx. Equation (3) indicates that the Coriolis force exerted on the sense axis is

Fc = −2mηAxωdΩ cos (ωdt). (4)

We refer to the sense axis, together with the corresponding readout and control circuits, as the
sense channel. Figure 1 demonstrates the general block diagrams of the sense channel in both the
open-loop operation and the force-rebalance operation. Symbols in Figure 1 are explained as follows.
Gy(s) is the transfer function of the sense axis from applied forces to pickoff voltages

Gy(s) =
Kxv/m

s2 + ωys/Qy + ω2
y

, (5)

where Kxv is the pickoff circuit gain from displacement to voltage in V/m; and Qy = mωy/cy is the
quality factor. Ka is the gain of the signal conditioning circuit in V/V. L(s) is the transfer function
of a low pass filter (LPF) with a cutoff frequency of fl0. αo and αc are scale-factors of the open-loop
operation and the force-rebalance operation, respectively. Module PI in Figure 1b is the feedback
controller, which is commonly implemented by a proportional–integral controller. The gain of the
feedback forcer, K f , in N/V, is given by

K f =
∂C f b

∂y
KDAVD, (6)

where C f b is the capacitance of the forcer electrodes, KDA is the gain of the buffer of the digital-to-analog
converter, and VD is the bias direct current (DC) voltage applied to the forcer electrodes. ϕd is
a demodulation phase, whose optimal value is determined by

ϕod = − tan−1 ωyωd/Qy

ω2
y −ω2

d
. (7)

In practice, ϕd will be set as 0 for mode-split gyroscopes and−π/2 for mode-matched gyroscopes.

( )yG s aK

cos( )d dtω ϕ+

( )L  s1
oα

cos( )dtω

( )tΩ

ˆ( )tΩ

2 x dm Aη ω− ( )yG s aK

cos( )d dtω ϕ+

( )L  s

cos( )dtω

( )tΩ

ˆ( )tΩ PI

cos( )dtω

fK

−

1
cα

Σ2 x dm Aη ω−

(a) (b)

Figure 1. Block diagrams of the sense channel in MEMS vibratory gyroscopes. (a) The open-loop
operation; (b) The force-rebalance operation.

Considering the modulation–demodulation process shown in Figure 2, the equivalent transfer
function can be expressed as [17]

H(s) ≈ Kxv

m
(ω2

y −ω2
d) cos ϕd/2− (ωds + ωyωd/2Qy) sin ϕd

(ωd + ωy)2[s2 + ωys/Qy + (ωy −ωd)2 + ωyωd/4Q2
y]

, (8)

where the approximation is taken when Qy >> 1/2 and ωy,d >> 2π fl0.
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( )yG s

cos( )d dtω ϕ+

( )L  s

cos( )dtω

( )u t ( )v t

( )H s≈

( )u t ( )v t( )L  s( )H s
Equivalent transfer function

Linearize

Figure 2. Equivalent transfer function of the modulation–demodulation process in the gyroscope
sense channels.

By applying this linearization method to Figure 1a, we obtain the equivalent transfer function of
the open-loop sense channel as

Ω̂(s)
Ω(s)

= −2ηmAxωd
αo

Ka H(s)L(s), (9)

and the open-loop scale-factor as

αo = −2ηmAxωdKaH(s)L(s)|s=0

= −2ηAxωdKaKxv

(ωd + ωy)2

(ω2
y −ω2

d) cos ϕd/2−ωdωy sin ϕd/2Qy

∆ω2 + ωyωd/4Q2
y

,
(10)

where ∆ω , ωy −ωd.
Similarly, the block diagram of the force-rebalance operation in Figure 1b can be equivalent to the

one shown in Figure 3. For convenience, we denote

C(s) = L(s)
(

Kp +
Ki
s

)
, (11)

where Kp and Ki are parameters of the PI controller. Considering

TΩ(s) =
Ka H(s)C(s)

1 + KaK f H(s)C(s)
, (12)

the overall transfer function of the force-rebalance sense channel is

Ω̂(s)
Ω(s)

= −2ηmAxωd
αc

TΩ(s), (13)

and the force-rebalance scale-factor is

αc = −
2ηmAxωd

K f
. (14)

Equations (9) and (13) respectively give the gyroscope frequency responses in the open-loop
operation and the force-rebalance operation to the applied angular rate.
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aK ( )L  s( )tΩ ˆ( )tΩPI

fK

−

1
cαΣ2 x dm Aη ω− ( )H  s

( )T sΩ

( )C s

Figure 3. The equivalent block diagram of the force-rebalance sense channel.

3. Open-Loop Noise Model

To evaluate the noise characteristics in the open-loop sense channel, we ignore the angular
rate input and introduce the mechanical and the electrical noise, as depicted in Figure 4. Nm(t) is
mechanical-thermal noise in Newton. Nep(t) is the electrical noise brought in by the pickoff and the
signal conditioning circuits, including the flicker noise and the Johnson noise. ΩN (t) is the measured
NER in the gyroscope output.

( )m t

( )ep t

( )yG s aK

cos( )d dtω ϕ+

( )L  s 1
oα ( )tΩΣ

( )t ( )c t

Figure 4. The block diagram of the open-loop noise model.

Several assumptions are made in this model for the noise analysis.

(1) The vibration of the drive axis under the electrostatic force excitation is sufficiently greater than
the mechanical-thermal disturbance. Therefore, the NER coupling from the amplitude noise of
the drive axis through Coriolis effect is insignificant and can be ignored.

(2) Considering the drift of ωx is extremely slow, the control parameters of the PLL in the drive axis
can be set to achieve a very low phase noise for the frequency tracking. Consequently, the phase
noise in the demodulation process is neglected in this paper.

(3) Generally, there are multiple electrical noise sources in the system. However, in linear systems,
multi stage noise sources can be equivalently converted into the one at the first stage [18]. In analog
systems, the noise sources after the demodulation, typically introduced by the LPF, are trivial and
thus can be neglected. In digital systems, no additional electrical noise will be presented after the
analog-to-digital conversion. Taking these facts into account, we only model one electrical noise
source at the pickoff node.

(4) In addition, digitally-based noise, namely spurious, which is usually introduced by clocks and
power supplies, is also ignored in this paper.

The PSD of the mechanical noise and the electrical noise can be respectively described by

SNm( f ) = 2kBTcy, −∞ < f < +∞, (15)

SN ep( f ) = 2kBTRp + k1/| f |, −∞ < f < +∞, (16)

where f is the frequency in Hertz, kB is the Boltzmann constant, T is the temperature in Kelvin, Rp

represents an equivalent resistance for the Johnson noise, and k1 is a constant for the flicker noise.
Double-side spectral models are adopted in Equations (15) and (16) for the convenience of theoretical
analysis. It should be noted that the equivalent resistance Rp is not the resistance of a real resistor but
a variable representing the Johnson noise equivalently. The noise performance of the pickoff circuit

can be evaluated by the ratio of
√

SN ep( f )/Kxv, which is always preferred as low as possible.

The PSD of N (t) in Figure 4 can be readily obtained as

SN ( f ) = K2
a |Gy( f )|2SNm( f ) + K2

aSN ep( f ), (17)
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where

|Gy( f )|2 =
∣∣∣Gy(s)|s=j2π f

∣∣∣2
=

K2
xv/m2

[ω2
y − (2π f )2]2 + (2π f ωy/Qy)2 .

(18)

To scrutinize the PSD of the modulated noise Nc(t) = N (t) · cos (ωdt + ϕd), we examine its
autocorrelation function (ACF) via

RNc(τ, t) = E[Nc(t)Nc(t + τ)]

= RN (τ)
1
2
[cos (ωdτ) + cos (2ωdt + ωdτ + 2ϕd)],

(19)

where E[·] denotes the expectation operator, and RN (τ) represents the ACF of N (t). Equation (19)
states that Nc(t) is not wide-sense stationary due to its time dependence. However, because RNc(τ, t)
is a fast-changing variable with respect to time, we can find an averaged ACF of Nc(t) as

R̃Nc(τ) =
1
2

cos (ωdτ)RN (τ) (20)

over a period of π/ωd. Accordingly, applying Fourier transform to Equation (20) and denoting
fd , ωd/2π give the averaged PSD of Nc(t)

S̃Nc( f ) =
1
4
[SN ( f + fd) + SN ( f − fd)]

=
K2

a
4

2kBT
[
cy|Gy( f + fd)|2 + cy|Gy( f − fd)|2 + 2Rp

]
+

K2
a

4

(
k1

| f + fd|
+

k1

| f − fd|

)
,

(21)

where

|Gy( f + fd)|2 ≈
K2

xv/m2

4ω2
y(∆ω− 2π f )2 + ω4

y/Q2
y

, (22)

|Gy( f − fd)|2 ≈
K2

xv/m2

4ω2
y(∆ω + 2π f )2 + ω4

y/Q2
y

. (23)

The approximations in Equations (22) and (23) hold under the conditions that ∆ω << ωy and
2π f << ωy.

Figure 5 visualizes the noise PSD described by Equations (15)–(17) and (21). For the mechanical
noise in N (t), the PSD at fy = ωy/2π is larger than those in low frequencies by a factor of Q2

y,
predicted by Equation (18). The flicker noise is pronounced in low frequencies, and the Johnson noise
prevails in high frequencies. The crossover frequency, at which the PSD of the flicker noise equals that
of the Johnson noise, is generally from several Hertz to tens of Hertz. As depicted in Figure 5c, the PSD
feature of N (t) can be utilized to identify the mechanical noise and the electrical noise for situations
where the Johnson noise PSD is below the peak of the mechanical noise PSD. Once the peak magnitude
of the mechanical noise PSD at the resonant frequency is obtained, the overall PSD of the mechanical
noise can be determined via Equation (18). An example of this procedure will be demonstrated in
Section 6.
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f

2 2| ( ) | ( )a y mK G f S f

yfyf−

2 ( )a epK S f

f

Flicker noise

Johnson noise

(a) (b)

f

( )S f

yfyf− fdfdf− f∆f−∆

( ) / 4dS f f+ ( ) / 4dS f f−

( )
c

S f



(c) (d)

Figure 5. Noise propagation in the open-loop sense channel. (a) Noise power spectral density (PSD) in
N (t) attributable to the mechanical noise; (b) Noise PSD in N (t) attributable to the electrical noise;
(c) Noise synthesis of N (t); (d) Noise PSD after the modulation. ∆ f = ∆ω/2π.

Considering the low-pass feature of L(s), the modulated flicker noise can be sufficiently
suppressed in the gyroscope output, yielding the PSD of the NER as

S̃ΩN ( f ) = S̃Nc( f )
|L( f )|2

α2
o

≈ |L( f )|2
4α2

o
K2

a2kBT
[
2Rp + cy|Gy( f + fd)|2 + cy|Gy( f − fd)|2

]
,

(24)

where L( f ) = L(s)|s=j2π f .
For mode-split gyroscopes, provided that ∆ω >> ωy/2Qy, the open-loop scale-factor

(Equation (10)) can be simplified as

αo ≈ −
ηAxKaKxv

2∆ω
, (25)

where the modulation phase ϕd is taken as 0. By combining Equations (24) and (25), we obtain the
expression of the PSD of the NER for open-loop mode-split gyroscopes as

S̃ΩN ( f ) = |L( f )|2 2kBT∆ω2

η2 A2
x

{
2Rp

K2
xv

+
[ 1/mωyQy

4(∆ω− 2π f )2 + ω2
y/Q2

y
+

1/mωyQy

4(∆ω + 2π f )2 + ω2
y/Q2

y

]}
. (26)

Figure 6 shows the influences of the modal frequency split ∆ f and the quality factor Qy on
the NER. The negative frequency parts of the plots are not shown here for the even property of
S̃ΩN ( f ). The default parameter values used in this paper are listed in Table 1 unless some of them
are re-specified in the context or figures. In Figure 6a, the PSD of the mechanical NER is not notably
affected by ∆ f in low frequencies, but its peak shifts with ∆ f ; the PSD of the electrical NER increases
as ∆ f grows. The PSD of the mechanical NER is inversely proportional to Qy at low frequencies but
proportional to Qy at the frequency of ∆ f , Figure 6b. The PSD of the electrical NER will not be affected
by Qy, revealed by Equation (26), and hence their relationship is not presented in Figure 6b for the
sake of clarity.
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Figure 6. The PSD of the noise equivalent rate (NER) for different parameters in open-loop mode-split
gyroscopes. Solid lines for the mechanical noise. Dashed lines for the electrical noise. (a) Comparisons
between different ∆ f ; (b) Comparisons between different Qy.

Table 1. Default values of the parameters used in numerical simulations.

Parameters Values Parameters Values

m 6× 10−7 kg η 1
fd 4000 Hz ∆ f 500 Hz

Qy 200 Ax 10µm
Kxv 5× 105 V/m Ka 20 V/V
K f 5× 10−7 N/V fl0 50 Hz
Kp 0 Ki 500

SNm( f ) 7× 10−25 N2/Hz SN ep( f ) (1× 10−13 + 2× 10−12/| f |)V2/Hz
SN e f ( f ) (1× 10−15 + 2× 10−14/| f |)V2/Hz

For mode-matched gyroscopes, ∆ω = 0, hence ϕd should be set as −π/2, and the open-loop
scale-factor (Equation (10)) can be simplified as

αo ≈ −
ηAxKaKxvQy

ωy
. (27)

Equations (24) and (27) give the PSD of the NER for open-loop mode-matched gyroscopes

S̃ΩN ( f ) = |L( f )|2
kBTω2

y

η2 A2
xQ2

y

[
Rp

K2
xv

+
1

mωyQy(16π2 f 2 + ω2
y/Q2

y)

]
. (28)

The relationships between the NER and Qy are shown in Figure 7, which clearly demonstrates
that the boost of Qy can reduce both the mechanical NER and the electrical NER. High Qy improves the
electrical NER in open-loop mode-matched gyroscopes because the sensitivity of these gyroscopes is
directly proportional to Qy, Equation (27). However, on account of the poor environmental robustness
of Qy, mode-matched gyroscopes seldom work in the open-loop operation.
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Figure 7. The PSD of the NER for different Qy in open-loop mode-matched gyroscopes. Solid lines for
the mechanical noise. Dashed lines for the electrical noise.

4. Force-Rebalance Noise Model

In the force-rebalance sense channel, besides the noise sources introduced in the open-loop,
we model another electrical noise source Ne f (t) at the feedback node, as demonstrated in Figure 8.
The reason is that Ne f (t) is separated from Nep(t) by the modulation–demodulation process in the
loop and, as a result, cannot be equivalent to Nep(t). The electrical noise source at the output stage is
still ignored for the same reason discussed in Section 3.

( )ep t

( )yG s aK

cos( )d dtω ϕ+

( )C  s( )m t

cos( )dtω( )ef t

fK

−

1
cαΣ Σ

Σ

( )yf t ( )a t ( )d t ( )v t
( )tΩ

Figure 8. The block diagram of the force-rebalance noise model.

Different from the open-loop operation, noise sources of the force-rebalance operation are in the
closed-loop, making the noise propagate circularly. The basic idea is to isolate the noise sources from
the closed-loop to make the analysis straightforward. Consider the system dynamics of the model
demonstrated in Figure 8

fy(t) = −K f [v(t) cos (ωdt) +Ne f (t)] +Nm(t), (29)

a(t) = Ka[ fy(t) ∗ gy(t) +Nep(t)], (30)

d(t) = a(t) cos (ωdt + ϕd), (31)

v(t) = d(t) ∗ c(t), (32)

ΩN (t) = v(t)/αc, (33)

where ∗ denotes the convolve operation, and gy(t) and c(t) are inverse Laplace transforms of Gy(s)
and C(s), respectively. Through simple algebraic manipulations of above equations, we get
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d(t) = KaNm(t) ∗ gy(t) cos (ωdt + ϕd) + KaNep(t) cos (ωdt + ϕd)

−KaK fNe f (t) ∗ gy(t) cos (ωdt + ϕd)− KaK f d(t) ∗ c(t) cos ωdt ∗ gy(t) cos (ωdt + ϕd),
(34)

which can be translated into the model presented in Figure 9. Via this approach, the noise sources are
all separated from the closed-loop.

( )yG s( )m t

( )ef t fK
−

( )ep t cos( )d dtω ϕ+

( )C s 1
cα

cos( )dtω

( )yG s fKaK

aK

cos( )d dtω ϕ+

( )tΩ

−

Σ Σ

Σ

( )t

( )c t

( )a fK K H s≈

( )T s≈ 

( )v t( )v t

( )d t

Figure 9. The equivalent noise model of the force-rebalance sense channel.

By applying the linearization method presented in Figure 2 to the model presented in Figure 9,
we can easily obtain

TN (s) =
C(s)

1 + KaK f C(s)H(s)
. (35)

In Figure 9, the noise propagation in the force-rebalance operation is close to that in the
open-loop operation

SN ( f ) = K2
a |Gy( f )|2

[
SNm( f ) + K2

f SN e f ( f )
]
+ K2

aSN ep( f ), (36)

S̃Nc( f ) =
1
4
[SN ( f + fd) + SN ( f − fd)], (37)

S̃ΩN ( f ) = S̃Nc( f ) |TN ( f )/αc|2 , (38)

where SN e f ( f ) is the PSD of Ne f (t)

SN e f ( f ) = 2kBTR f + k2/| f |, (39)

and
TN ( f ) = TN (s)|s=j2π f . (40)

Combining Equations (15), (16) and (36)–(39) yields

S̃ΩN ( f ) ≈ |TN ( f )|2
4α2

c
K2

a2kBT
{
(cy + K2

f R f )
[
|Gy( f + fd)|2 + |Gy( f − fd)|2

]
+ 2Rp

}
, (41)

where the modulated flicker noise is ignored in consideration of the low-pass feature of TN (s).
It should be noted that thanks to the modulation and the followed filtering process, the flicker

noise in the loop, either open-loop or closed-loop, does not contribute to the NER in the output of
gyroscopes. In practice, the NER that resulted from the flicker noise is believed to be introduced by the
electrical noise source at the output stage.

Equations (12) and (35) share a common denominator, suggesting that the PSD of the NER and
the frequency response of the gyroscope have magnitude peaks at the same frequencies.
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In mode-split cases, Equation (8) can be further simplified to

H(s) ≈ Kxv

4mωy

∆ω

s2 + ωys/Qy + ∆ω2 . (42)

In Figure 10, the numerically simulated PSD curves are acquired via the noise model in Figure 8,
while the analytic PSD curves are obtained through the closed-form Equation (41), along with
Equations (14), (22), (23), (35) and (42). The consistency between the numerical and analytic curves
manifests that the closed-form expressions can effectively describe the force-rebalance noise model
in Figure 8. The mechanical NER and the feedback electrical NER are both determined by TN (s)
and Gy(s), leading to similar PSD shapes in Figure 10a,c. By contrast, the pickoff electrical NER is
determined by TN (s) only.
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Figure 10. Numerically simulated and analytic PSD of the NER in the mode-split force-rebalance sense
channel. (a) The mechanical NER; (b) The pickoff electrical NER; (c) The feedback electrical NER.

Figure 11 illustrates the impacts of ∆ f , Qy, Ka, and K f on the NER. Similar to the relationships
exhibited in Figure 6, in low frequencies, the PSD of the mechanical NER is not influenced by the modal
frequency split, and the PSD of the pickoff electrical NER increases as the split increases, Figure 11a.
The PSD of the mechanical NER is inversely proportional to Qy while the PSD of the pickoff electrical
NER is not affected by Qy, Figure 11b. The PSD shapes of the feedback electrical NER and those of the
mechanical NER are very close except that (1) the PSD of the feedback electrical NER does not depend
on Qy in low frequencies whereas that of the mechanical NER does, Figure 11b, and (2) the PSD of
the feedback electrical NER will be changed by K f whereas that of the mechanical NER is relatively
irrelevant to K f in low frequencies, Figure 11d. Here, we pay more attention to the PSD values in low
frequencies because those values are directly related to the ARW of gyroscopes, which we will discuss
in Section 5.

In mode-matched cases, Equation (8) will degenerate to

H(s) ≈ Kxv

4mωy

1
s + ωy/2Qy

. (43)

Equations (14), (22), (23), (35), (41) and (43) give the closed-form expressions of the PSD of the
NER in force-rebalance mode-matched gyroscopes. Figure 12 presents the corresponding analytic and
numerically simulated PSD curves. In this operation, the controller parameters are set as Kp = 1 and
Ki = 120. The analytic curves are in close agreement with the numerical ones, indicating the validity
of the equivalent noise model.
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Figure 11. The PSD of the NER for different parameters in force-rebalance mode-split gyroscopes. Solid
lines for the mechanical NER. Dashed lines for the pickoff electrical NER. Dot-dashed lines for the
feedback electrical NER. (a) Comparisons between different modal frequency splits; (b) Comparisons
between different Qy; (c) Comparisons between different gains of the signal conditioning circuit;
(d) Comparisons between different gains of the feedback forcer.
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Figure 12. Numerically simulated and analytic PSD of the NER in the mode-matched force-rebalance
sense channel. (a) The mechanical NER; (b) The pickoff electrical NER; (c) The feedback electrical NER.

Comparisons of the PSD of the NER between different Qy, Ka, and K f are demonstrated in
Figure 13. For mode-matched gyroscopes working in the force-rebalance operation, the enhancement
of Qy can significantly improve the mechanical and the pickoff electrical noise. Similar to mode-split
gyroscopes in the force-rebalance operation, in low frequencies, K f only affects the PSD of the feedback



Sensors 2017, 17, 2306 14 of 21

electrical NER. From Figures 11c and 13b, the gain of the signal conditioning circuit will not influence
the PSD of the NER in low frequencies for both the mode-split and the mode-matched cases.
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Figure 13. The PSD of the NER for different parameters in force-rebalance mode-matched gyroscopes.
Solid lines for the mechanical NER. Dashed lines for the pickoff electrical NER. Dot-dashed lines for
the feedback electrical NER. (a) Comparisons between different Qy; (b) Comparisons between different
gains of the signal conditioning circuit; (c) Comparisons between different gains of the feedback forcer.

5. Angle Random Walk and Standard Deviation of Noise Equivalent Rate

The random noise of gyroscopes is typically characterized by ARW, which can be derived from
the Allan Variance of the gyroscope output data, at an integration time of 1 s. The ARW is related to
the PSD of the NER via [2,8]

ΩARW ≈
√

S̃ΩN (0). (44)

According to the PSD of the NER discussed in Sections 3 and 4, the values of S̃ΩN (0) for gyroscopes in
different operations are summarized in Table 2.

Table 2. Comparison of S̃ΩN (0) between different operations of vibratory gyroscopes.

S̃ΩN (0) Attributable toNm Attributable toNep Attributable toNe f

Open-loop, mode-split kBT/η2 A2
xmωyQy 4kBTRp∆ω2/η2 A2

xK2
xv −

Open-loop, mode-matched kBT/η2 A2
xmωyQy kBTRpω2

y/η2 A2
xK2

xvQ2
y −

Force-rebalance, mode-split kBT/η2 A2
xmωyQy 4kBTRp∆ω2/η2 A2

xK2
xv kBTR f K2

f /η2 A2
xm2ω2

y

Force-rebalance, mode-matched kBT/η2 A2
xmωyQy kBTRpω2

y/η2 A2
xK2

xvQ2
y kBTR f K2

f /η2 A2
xm2ω2

y
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Table 2 reveals several interesting conclusions.

(1) The increase in Ax can improve the ARW attributable to all noise components, which suggests an
effective approach to improve the noise performance.

(2) The boost of Qy can reduce the ARW resulted from the mechanical noise in all of the
operation cases but only decreases the ARW, to which the pickoff electrical noise contributes, in
mode-matched cases.

(3) Mode matching will not influence the ARW from the mechanical noise but will affect the ARW
from the pickoff electrical noise by a factor of ∆ω/(ωy/2Qy).

(4) The enhancement of the pickoff circuit, namely a decrease in the ratio of
√

SN ep( f )/Kxv, can
reduce the ARW introduced by the pickoff electrical noise but does not affect the mechanically
induced ARW.

(5) The gain of the feedback forcer only affects the ARW from the feedback electrical noise. In other
words, in a well-designed system, if the feedback electrical noise is insignificant, the design value
of K f is non-essential for the noise consideration.

(6) For a given gyroscope, loop closing of the sense channel, namely changing the sense channel from
open-loop to force-rebalance, will not change the ARW from the mechanical noise and the pickoff
electrical noise, neither in the mode-split case nor the mode-matched case.

In some applications, the standard deviation of the gyroscope output, σΩ, in a specified frequency
band, is utilized to specify random drift [7]. The standard deviation of the NER,

σΩN =

√∫ B

−B
S̃ΩN ( f )d f , (45)

gives the lower limit of σΩ, assuming that the output bias does not drift. B in Equation (45) is
the frequency band of interest and is generally comparable to the gyroscope bandwidth. Signals
with frequencies far beyond the gyroscope bandwidth do not contain effective rate information and,
consequently, can be smoothed or averaged.

Based on Equation (45), the calculation of the standard deviation of the NER is very
straightforward in open-loop sense channels. In mode-split cases,

σ2
ΩN =

2kBT∆ω2

η2 A2
x

{
4RpB
K2

xv
+

tan−1[2(∆ω + 2πB)Qy/ωy]− tan−1[2(∆ω− 2πB)Qy/ωy]

2πmω2
y

}
, (46)

and in mode-matched cases,

σ2
ΩN =

2kBTω2
y

η2 A2
x4Q2

y

[
4RpB
K2

xv
+

tan−1(4πBQy/ωy)

πmω2
y

]
, (47)

where the LPF is assumed as

|L( f )| =
{

1, if | f | < B

0, otherwise.
(48)

Considering the complexity of the expressions in force-rebalance channels, the corresponding
σΩN can be discretely estimated via

σ2
ΩN ≈ 2 fres

B/ fres

∑
n=1

S̃ΩN (n · fres), (49)

where fres is the frequency resolution.
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6. Experiments and Results

The noise characteristics of MEMS vibratory gyroscopes were evaluated by a silicon tuning folk
micro-gyroscope with a tunable modal frequency split, previously reported in [15]. Due to the negative
stiffness effect, the resonant frequency of the sense axis can be lowered by DC voltages over the
frequency tuning electrodes shown in Figure 14, which presents the schematic of the gyroscope design.
For the gyroscope under the test, the natural frequency of the drive axis was 3563 Hz with Qx = 2284,
and the natural frequency of the sense axis was 3629 Hz with Qy = 187, indicating a modal frequency
split of 66 Hz. The modal frequency split could be tuned to 0 with a DC voltage of 8.2 V. The control
system of the gyroscope was implemented by a field-programmable gate array (FPGA).
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Figure 14. The silicon micro-gyroscope evaluated in the experiments [15].

Firstly, the method to identify the mechanical noise and the electrical noise mentioned in
Section 3 was verified through the primary resonator (drive axis) of the gyroscope. The output
of the pickoff circuit was recorded by a dynamic signal analyzer at a sampling frequency of 102.4 kHz
for 100 s when the resonator was kept stationary. The resultant frequency resolution was 0.01 Hz.
Figure 15 demonstrates the PSD of the acquired signal, which is similar to the right half PSD shown in
Figure 5c. The crossover frequency of the electrical noise was measured as 12 Hz, and the PSD of the
electrical-thermal noise was 7.793× 10−13 V2/Hz. A magnitude peak at the natural frequency of the
resonator could be clearly observed, suggesting the mechanical noise PSD at the natural frequency was
6.968× 10−12 V2/Hz. According to Equation (18), the PSD of the mechanical noise in low frequencies
could be estimated as 1.336× 10−18 V2/Hz, which was much smaller than that of the electrical-thermal
noise. By this approach, we can separate the mechanical noise from the very noisy electrical noise,
as long as the magnitude peak of the mechanical noise PSD can be notably observed.

Then, the gyroscope was configured to operate in the open-loop mode-split case. Figure 16a
shows the corresponding spectral density of the NER, along with the measured frequency response
of the gyroscope. The output rate of the gyroscope was 1 kHz and the recording time was 100 s.
The frequency response of the gyroscope was measured by an angular vibration table from 5 Hz to
80 Hz. The spectral density of the NER and the gyroscope frequency response had magnitude peaks

at the same frequency, as explained in Section 4. In Figure 16a,
√

S̃ΩN (0) ≈ 1.307× 10−3(◦/s)/
√

Hz,
which was an average value between 0.01 Hz to 1 Hz. The approximated ARW was consistent with the
Allan Variance in Figure 16b. To calculate the Allan Variance, the gyroscope output rate was averaged
to 1 Hz, and the data was recorded for 5400 s.
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Figure 16. The NER spectral density of the gyroscope in the open-loop mode-split case. (a) The NER
spectral density and the measured frequency response of the gyroscope; (b) The Allan Variance of the
gyroscope output.(Insert: the time series of the recorded data.)

Next, a DC voltage of 5 V was applied to the frequency tuning electrodes, resulting in a decrease in
∆ f from 66 Hz to 43 Hz. Figure 17 demonstrates the NER spectral density of the open-loop gyroscope
and the measured gyroscope frequency response. By comparing Figures 16a and 17, it can be found
that the open-loop scale-factor increased by 1.546 times as the frequency split decreased by a factor of
1.535, in agreement with Equation (25). However, the ARW only improved by 1.19 times, suggesting
that for the gyroscope under test, the ARW was significantly affected by both the mechanical noise
and the electrical noise.
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Figure 17. The NER spectral density of the open-loop gyroscope tuned by a DC voltage of 5 V and the
corresponding gyroscope frequency response.

Finally, Figure 18 presents the NER spectral density of the gyroscopes in the force-rebalance
operation. Revealed from Figures 16a and 18a, the loop closing of the sense channel did not improve
the ARW, as predicted in Table 2. Figure 18a,b manifest that the mode matching did not change the
scale-factor in the force-rebalance operation but improved the ARW by 1.52 times. The unremarkable
improvement of the ARW was due to the considerable mechanical noise. Figure 18c was obtained by
reducing VD in Equation (6) from 5 V to 2.5 V, resulting in a half K f . The corresponding scale-factor was
increased by a factor of 2, which was in agreement with Equation (14). The ARW was not significantly
affected by the change of K f . From the discussion in Section 5, K f would not influence the ARW
attributable to the mechanical noise or the pickoff electrical noise. If the impact of the feedback
electrical noise is negligible, the design of the feedback forcer is irrelevant to the noise performance.
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Figure 18. The NER spectral density of the gyroscope in force-rebalance operation. (a) In the
mode-split case. (∆ f = 66 Hz); (b) In the mode-matched case (The tuning voltage was 8.2 V). (c) In the
mode-matched case with a half K f .

In summary, in both the open-loop operation and the force-rebalance operation, the decrease of
the modal frequency split improved the ARW due to the decrease of the electrical noise, as presented
in Table 2. However, the mechanical noise was not affected by the modal frequency split, resulting in
a moderate improvement of the ARW through mode matching. To further improve the ARW of the
gyroscopes under the mode-matched situations, the boost of quality factor is essential. The closing
of the sense loop did not significantly change the ARW according to the experimental data, showing
an agreement with the models demonstrated in previous sections. The gain of the feedback forcer did
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not distinctly affect the overall ARW of the gyroscopes, as discussed in Section 5. This result can give
very important guidance on the structural design of the feedback forcers, implying that the gain of the
forcers is irrelevant to the noise consideration.

7. Conclusions

In this paper, we have presented a theoretical analysis of mechanical and electrical noise in the
sense channel of MEMS vibratory gyroscopes. The closed-form expressions for the PSD of the NER of
gyroscopes in the open-loop and the force-rebalance operations have been obtained. In the open-loop
noise model, the features of the noise after the demodulation are investigated by the averaged PSD
model. In the force-rebalance noise model, the noise sources are separated from the closed-loop,
and the modulation–demodulation process in the closed-loop is linearized by the equivalent transfer
function. Via this approach, the closed-loop noise model can be equivalent to an open-loop one and,
hence, the analysis method used in the open-loop model can be applied. The analytic models are
in close agreement with the numerical models, verifying the validity of the closed-form expressions.
The influences of the structure parameters, such as modal frequency split, quality factor, and the gain of
the feedback forcer, as well as the gain of the signal conditioning circuit, on the gyroscope noise features
have been theoretically analyzed by using the PSD model. In addition, the ARW and the standard
deviation of the NER also have been discussed. The impacts of the modal frequency split, the loop
closing, the mode matching, and the gain of the feedback forcer on the gyroscope noise characteristics
were verified through a MEMS vibratory gyroscope with a tunable modal frequency split.

In both the open-loop and the force-rebalance operations, the decrease of the modal frequency
split improved the ARW due to the decrease of the electrical noise. However, the mechanical noise
was not affected by the modal frequency split. To further improve the ARW of the gyroscopes under
the mode-matched situations, it is important to boost the quality factor. The loop closing did not
significantly change the ARW according to the experimental data, which is in agreement with the
models proposed in this paper. The gain of the feedback forcer will not distinctly affect the ARW as
long as the electrical noise at the feedback node is negligible.
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Abbreviations

The following abbreviations are used in this manuscript:

ACF autocorrelation function
AGC automatic gain control
ARW angle random walk
DC direct current
FPGA field-programmable gate array
LPF low pass filter
MEMS micro-electro-mechanical systems
NER noise equivalent rate
PLL phase-locked loop
PSD power spectral density
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Nomenclature

Ax vibration amplitude of the x-axis, m B frequency band of interest, Hz
c(t) inverse Laplace transform of C(s) cy damping coefficient of the sense axis, N/(m/s)
C f b capacitance of the feedback electrodes, F C(s) transfer function of the PI controller and

the LPF
fd vibration frequency of the x-axis, Hz fl0 cutoff frequency of the LPF, Hz
fres frequency resolution in estimation of σΩN , Hz fx natural frequency of the x-axis, Hz
fy natural frequency of the y-axis, Hz Fc Coriolis force, N
Fx force exerted along the x-axis, N Fy force exerted along the y-axis, N
gy(t) inverse Laplace transform of Gy(s) Gy(s) transfer function of the sense axis
H(s) equivalent transfer function of

modulated–demodulated Gy(s)
j imaginary unit,

√
−1

k1 a constant for the flicker noise at the pickoff
circuit, V2

k2 a constant for the flicker noise at the feedback
circuit, V2

kB Boltzmann constant, 1.38× 10−23 J/K kx stiffness of the x-axis, N/m
ky stiffness of the y-axis, N/m Ka gain of the signal conditioning circuit, V/V
KDA gain of the digital-to-analog converter buffer,

V/V
K f gain of the feedback forcer, N/V

Ki integral parameter of the PI controller Kp proportional parameter of the PI controller
Kxv gain of the pickoff circuit (displacement to

voltage), V/m
L(s) transfer function of the LPF

m mass of the sensor resonator, kg N (t) noise in the sense channel before modulation, V
Nc(t) noise in the sense channel after modulation, V Ne f (t) electrical noise introduced by feedback circuits, V
Nep(t) electrical noise introduced by pickoff circuits, V Nm(t) mechanical-thermal noise, N
Qy quality factor of the y-axis R f equivalent resistance of the Johnson noise at

the feedback circuit, Ω
Rp equivalent resistance of the Johnson noise at the

pickoff circuit, Ω
RN (τ) ACF of N (t)

RNc (τ) ACF of Nc(t) SN ( f ) PSD of N (t), V2/Hz
SNc ( f ) PSD of Nc(t), V2/Hz SN e f ( f ) PSD of Ne f (t), V2/Hz
SN ep( f ) PSD of Nep(t), V2/Hz SNm( f ) PSD of Nm(t), N2/Hz
SΩN ( f ) PSD of the NER, (rad/s)2/Hz T temperature, K
Ta time for averaging, s TΩ(s) equivalent transfer function in force-rebalance

sense channel
TN (s) equivalent transfer function in force-rebalance

noise model
VD bias DC voltage applied to the forcer electrodes,

V
x displacement along the x-axis, m y displacement along the y-axis, m
αo open-loop scale-factor, V/(rad/s) αc closed-loop scale-factor, V/(rad/s)
∆ f modal frequency split, Hz ∆ω modal frequency split, rad/s
η angular gain factor σΩ standard deviation of the gyroscope output, rad/s
σΩN standard deviation of NER, rad/s ϕd demodulation phase, rad
ϕod optimal demodulation phase, rad ωd vibration frequency of the x-axis, rad/s
ωx natural frequency of the x-axis, rad/s ωy natural frequency of the y-axis, rad/s
Ω(s) Laplace transform of Ω(t) Ω̂(s) Laplace transform of Ω̂(t)
Ω(t) input angular rate, rad/s Ω̂(t) measured angular rate, rad/s
ΩARW angle random walk, (rad/s)/

√
Hz
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