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Abstract: The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical 
settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the 
measurement volume. Reliable estimates of foot placement locations are required to quantify 
spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the 
sensor, side and step length on estimates of foot placement locations based on Kinect’s ankle body 
points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 
m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for 
five imposed step lengths. Body points’ time series of the lower extremities were recorded with a 
Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration 
system. Foot placement locations, step lengths, and stepping accuracies were compared between 
systems using repeated-measures ANOVAs, agreement statistics and two one-sided t-tests to test 
equivalence. For the right side at the 2 m distance from the sensor we found significant 
between-systems differences in foot placement locations and step lengths, and evidence for 
nonequivalence. This distance by side effect was likely caused by differences in body orientation 
relative to the Kinect sensor. It can be reduced by using Kinect’s higher-dimensional depth data to 
estimate foot placement locations directly from the foot’s point cloud and/or by using smaller 
inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at 
greater distances from the sensor. 

Keywords: Kinect v2 sensor; foot placement locations; gait; validation; orientation; TOST 
procedure 

 

1. Introduction 

Quantitative gait assessments are a major undertaking in clinical settings (e.g., calibration 
procedures, patient-preparation time) and are costly due to expensive equipment [1]. The Microsoft 
Kinect v2 sensor may be a cheaper and easier to use alternative. It entails a RGB-D camera to create a 
depth image of its surrounding. Using machine-learning algorithms, the high-dimensional depth 
data can be reduced to 25 lower-dimensional three-dimensional (3D) body points of up to six people 
simultaneously, thereby eliminating the need for markers and calibration procedures [2]. The Kinect 
v2 sensor, originally developed for the gaming industry [2], has increasingly been studied in terms 
of its usability for quantitative gait assessments [3–10]. These studies collectively revealed that the 
Kinect v2 sensor is a promising tool for measuring spatiotemporal gait parameters [3–10]. 

Spatial gait parameters, such as step length, are quantified from estimates of foot placement 
locations, which are approximated from 3D positional data of Kinect’s ankle body points [3,6–9]. 
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However, Kinect’s estimate of the ankle position seems to gradually change during the gait cycle in 
the anterior-posterior direction when compared to a gold standard, a phenomena that we observed 
in our own studies [6,7] as well as in other studies [9,11]. The influence of this gradual change in the 
anterior-posterior ankle position, as depicted in Figure 1A, on approximated foot placement 
locations has never been systematically examined, which seems essential given that yet unknown 
effects of distance from the Kinect v2 sensor, side and step length may affect outcome measures of 
quantitative gait assessments. 

 
Figure 1. (A) Representative example of the right anterior-posterior ankle position for the Kinect v2 
sensor (dotted black line) and a gold-standard Optotrak system (solid gray line) during two right 
stepping trials (at 2 m and 3 m distance from the sensor with the Kinect v2 sensor positioned at 0 m 
and walking direction towards the sensor). The single-support phase is indicated by the black boxes; 
(B) Schematic overview of the experimental set-up together with a right stepping trial at a 2 m 
distance from the sensor; (C) Schematic overview of the two imposed foot placement locations 
distanced 2 m (top) and 3 m (bottom) from the Kinect v2 sensor for right stepping trials; and,  
(D) Schematic overview of the different imposed step lengths for right stepping trials at a 2 m 
distance from the sensor. 

The objective of this study is to systematically compare foot placement locations, as 
approximated from ankle body point data, and associated estimates of step length and stepping 
accuracy between the Kinect v2 sensor and a gold-standard motion-registration system. To this end, 
the effect of distance to the Kinect v2 sensor, left and right foot placement locations (side) and 
imposed step lengths will be examined. We expect that foot placement locations, step lengths, and 
stepping accuracies will agree well between systems, without systematic between-systems effects of 
distance, side and imposed step length. 

2. Methods 

2.1. Subjects 

A group of 12 healthy subjects (mean [range]: age 28 [21 43] years, height 177 [158 190] cm, 
weight 74 [56 95] kg, 6 males) participated in this experiment. The Ethics Committee of the 
Department of Human Movement Sciences of the Vrije Universiteit Amsterdam (Amsterdam, The 
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Netherlands) approved the study (ECB 2015-55). All of the subjects gave written informed consent 
prior to participation. 

2.2. Experimental Set-Up and Procedure 

Body points’ time series of the lower extremities were recorded with a Kinect v2 sensor and a 
gold-standard Optotrak system (Northern Digital Inc., Waterloo, ON, Canada). For the current 
study, the orientation and position of the Kinect sensor was in agreement with those of the Kinect 
sensors of a validated multi-Kinect v2 set-up for gait assessments (i.e., an angle of 70 degrees relative 
to the movement direction and a perpendicular distance of 0.75 m to the center of the area of interest; 
[6,7]; Figure 1B). Multiple Kinect v2 sensors placed in a frontoparallel orientation (70 degrees) 
alongside a walkway allows for a larger measurement volume for quantitative gait assessments 
[6,7,9]. Two Optotrak cameras were needed to cover the same area as the Kinect sensor (see Figure 
1B for a schematic overview). A spatial calibration grid was used to spatially align the coordinate 
systems of the two motion-registration systems to a common coordinate system, as detailed in [7]. 

As in [6,7], the Kinect for Windows Software Development Kit (SDK 2.0, www.microsoft.com) 
was used to obtain the 3D time series of 25 body points by means of inbuilt and externally validated 
human-pose estimation algorithms [3,6–9,12–14]. Kinect data were sampled at 30 Hz using 
custom-written software utilizing the SDK 2.0. For the Optotrak system, Smart Marker Rigid Bodies 
(Northern Digital Inc., Waterloo, ON, Canada) were attached to the body segments of the lower 
extremities (lower abdomen, upper legs, and lower legs) and virtual markers were assigned to these 
rigid bodies using a 3-marker digitizing probe using First Principles data acquisition software (see 
Supplementary Material S1). The positions of the virtual markers were 14 anatomical landmarks 
chosen to match the body points of the Optotrak system with the body points of the lower body of 
the Kinect system (see Supplementary Material S1). The positions of these virtual markers were 
averaged in all directions for each sample to obtain the positions of seven matched body points (see 
Supplementary Material S1). Optotrak data were sampled at 60 Hz. 

Subjects performed multiple stepping trials with foot placement locations being guided by five 
shoe-size-matched stepping stones (Figure 1B) presented using a projector (Vivitek D7180HD, 
ultra-short-throw Full HD projector), which was spatially aligned to the common coordinate system 
of the two motion-registration systems. The center of the middle stepping stone was positioned at 
two different imposed foot placement locations, distanced at either 2 m or 3 m from the Kinect 
sensor (Figure 1C). These distances ensure a high resolution of the depth data [15], and thus 
minimize the influence of depth resolution on the outcome measures. The middle stepping stone 
was either projected for the left or right foot depending on its mediolateral position. The position of 
the stepping stones indicating the starting and ending positions were determined based on the 
imposed step lengths (50 cm, 60 cm, 70 cm, 80 cm, or 90 cm; Figure 1D). Step width was set at 20 cm 
to ensure that the stepping stones did not overlap. Subjects were asked to stand as accurately as 
possible in the stepping stones indicating the starting position and then step with their left or right 
foot (depending on the imposed stepping pattern) in the middle stepping stone and end with both 
feet in the stepping stones indicating the ending position, thereby making a stepping movement. All 
of the trials were performed twice, yielding a total of 40 trials (i.e., at 2 m and 3 m distances, with the 
left and right side, at five imposed step lengths for two repetitions). Trials were block-randomized 
for distance and side. 

2.3. Data Pre-Processing and Analysis 

Data pre-processing followed established procedures [6,7] using Matlab R2015a (The 
MathWorks Inc., Natick, MA, USA). Body points of the Kinect system classified as inferred (i.e., 
when Kinect’s human-pose estimation software can only indirectly derive the position of the body 
point due to partial occlusion for instance) were removed from the time series. Body point’s time 
series were linearly interpolated to ensure a constant sampling frequency of 30 Hz, without filling in 
the missing data points. Data points were removed from the time series when they did not meet our 
criteria for valid human pose estimation (e.g., a minimum of 15 out of the 25 possible body points 
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should be labeled as tracked, including the head and at least one foot and ankle, without outliers in 
segment lengths). Optotrak body point’s time series were down-sampled to 30 Hz. These data are 
available as Supplementary Material (Supplementary Material S2). Body point’s time series of the 
spine base and left and right ankle in the anterior-posterior direction were interpolated with a spline 
algorithm and were used for the calculation of the outcome measures. Percentages of missing data 
for these body points’ time series were on average 3.9% for the Kinect system and 0.6% for the 
Optotrak system, with maximum percentages of missing data of 21.4% and 20.1%, respectively. 

The outcome measures were foot placement location, step length, and stepping accuracy. Foot 
placement locations were estimated from the anterior-posterior ankle position during the 
single-support phase (i.e., between foot off and foot contact of the contralateral foot; estimates of foot 
off and foot contact were defined as the minima and maxima of the anterior-posterior time series of 
the ankle relative to that of the spine base; [6,7,16]). Foot placement locations were transformed to 
center of the foot, using the ankle positions of the feet aligned with the stepping stones of the starting 
positions as a reference. To this end, the average distance of the left and right ankle to the center of 
the stepping stones was calculated over the episode of five samples before step initiation with the 
lowest amount of variation for each trial. Subsequently, foot placement locations were normalized to 
imposed foot placement locations (i.e., imposed foot placement location was subtracted from the 
measured foot placement location to correct for arbitrary effects in foot placement location as a 
function of the two imposed distances from the sensor). Step length was defined as the 
anterior-posterior distance between the starting position and the (non-normalized) foot placement 
location (see arrows in Figure 1D). Stepping accuracy was defined as the standard deviation over the 
signed normalized foot placement locations over step lengths and repetitions and was calculated per 
system, distance, and side. 

2.4. Statistical Analysis 

One trial was accidentally not recorded with the Kinect system (experimenter forgot to start the 
recording without noticing it), resulting in missing data for foot placement location and step length 
for one participant (3 m distance, right side, 80 cm and repetition #2). Since missing data in a 
repeated-measures ANOVA will lead to the entire removal of that participant from the analysis, we 
decided to use this single observation for this participant and to average over the two repetitions for 
all other conditions and participants, yielding a single value for each combination of system, 
distance, side, and imposed step length for all of the participants. Two participants had to be 
excluded from further analyses due to displaced cluster markers of the Optotrak system. 

All outcome measures (foot placement location, step length, and stepping accuracy) were 
compared between systems using repeated-measures ANOVAs (IBM SPSS Statistics 24). For foot 
placement locations, and step lengths, a System (Kinect, Optotrak) by Distance (2 m, 3 m) by Side 
(left, right foot placement locations) by Imposed step length (50 cm, 60 cm, 70 cm, 80 cm, 90 cm) 
repeated-measures ANOVA was conducted. For stepping accuracy, a System by Distance by Side 
repeated-measures ANOVA was conducted. The assumption of sphericity was verified according to 
Girden [17]. The Huynh-Feldt correction was applied if the Greenhouse-Geisser’s epsilon exceeded 
0.75; otherwise, the Greenhouse-Geisser correction was used. The main effects were examined with a 
Least Significant Difference post-hoc test for factors with two levels and contrast analyses for factors 
with more than two levels. Paired-samples t-tests were used for significant interactions involving the 
factor System, focusing on between-systems comparisons. Effect sizes were quantified with ηp2. 

In addition to the ANOVAs testing between-systems differences, we also performed agreement 
statistics to examine the agreement between the systems. The between-systems agreement was 
determined using intraclass correlation for absolute agreement (ICC(A,1)) and consistency (ICC(C,1); 
[18]) using Matlab R2015a, with values above 0.60 and 0.75, representing good and excellent 
agreement, respectively [19]. Both types of ICCs were used in order to determine the influence of a 
potential systematic between-systems bias in the agreement. The ICCs were complemented by mean 
differences and precision values obtained with a Bland–Altman analysis (i.e., the bias 
[Kinect-Optotrak] and the limits of agreement [LoA], respectively; [20]). 
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In view of the low between-subject variation due to the imposed foot placement locations and 
step lengths, which may hinder the reliability of the ICCs [21], the outcome measures were also 
analyzed for between-systems equivalence using two one-sided t-tests (TOST; utilizing the TOSTER 
module in jamovi 0.7.3.2; [22]). For this analysis, the 90% confidence interval of the between-systems 
difference should be within pre-determined equivalence bounds for which the systems can be 
deemed equivalent. These bounds were conservatively set based on the LoA intervals found in [7]. 
That is, for foot placement locations and step lengths, the equivalence bounds were set at ± 2.145 cm 
(i.e., the smallest LoA interval of the obstacle-avoidance margins, which were similarly based on 
estimates of a single foot placement location; [7]). For stepping accuracies, the smallest LoA interval 
was used of the stepping accuracies obtained for precision-stepping trials to a sequence of regularly 
spaced stepping stones with imposed step lengths of 50 cm, 60 cm, 70 cm, 80 cm, and 90 cm ([7]; 
same step lengths as in the current study), resulting in equivalence bounds of ± 0.685 cm. 

3. Results 

Table 1 shows the data of all outcome measures together with the agreement statistics (bias, 
95% LoA, ICC(A,1) and ICC(C,1)) and TOST statistics. 

Table 1. Mean values, between-subjects standard deviations (SD), agreement statistics (bias, limits of 
agreement [95% LoA] and intraclass correlation coefficients for absolute agreement [ICC(A,1)] and 
consistency [ICC(C,1)]) and results of the two one-sided t-tests (TOST) for the foot placement locations, 
step lengths and stepping accuracies for all combinations of the independent variables Distance (2 m, 
3 m), Side (left, right) and Imposed Step Length (50 cm, 60 cm, 70 cm, 80 cm, 90 cm). 

    Kinect v2 Optotrak  TOST
    Mean ± SD Mean ± SD Bias [95% LoA] ICC(A,1) ICC(C,1) p-value

Foot 
placement 

location 
(cm) 

2 m Left 50 cm −0.02 ± 0.87 −0.48 ± 1.33 0.46 [−1.93 2.85] 0.403 0.413 <0.001 
  60 cm −0.04 ± 1.24 −0.51 ± 1.67 0.47 [−2.06 3.00] 0.608 0.615 <0.001 
  70 cm 0.02 ± 0.84 −0.61 ± 1.30 0.62 [−2.10 3.35] 0.178 0.193 0.004 
  80 cm 0.47 ± 0.96 −0.29 ± 1.10 0.76 [−1.84 3.36] 0.147 0.174 0.005 

   90 cm 0.01 ± 1.06 −0.73 ± 1.03 0.75 [−1.95 3.45] 0.115 0.135 0.005 
  Right 50 cm 0.34 ± 1.35 −0.95 ± 1.03 1.28 * [−0.46 3.03] 0.471 0.727 0.007 
   60 cm 0.68 ± 1.77 −0.77 ± 1.18 1.45 * [−0.79 3.70] 0.493 0.709 0.045 
   70 cm 1.32 ± 1.17 −0.22 ± 0.79 1.54 * [−0.33 3.41] 0.254 0.544 0.038 
   80 cm 0.57 ± 1.21 −1.04 ± 0.68 1.61 * [−0.48 3.69] 0.182 0.414 0.072 ** 
   90 cm 0.65 ± 1.52 −0.94 ± 1.04 1.59* [−1.02 4.20] 0.282 0.478 0.110 ** 
 3 m Left 50 cm −0.22 ± 1.16 −0.80 ± 1.13 0.58 [−1.69 2.85] 0.458 0.493 0.001 
   60 cm −0.10 ± 1.09 −0.44 ± 1.30 0.34 [−2.38 3.07] 0.334 0.325 0.001 
   70 cm −0.55 ± 1.57 −1.25 ± 1.50 0.70 [−2.89 4.29] 0.275 0.284 0.017 
   80 cm −0.00 ± 1.96 −0.79 ± 1.91 0.79 [−3.02 4.60] 0.480 0.495 0.027 
   90 cm −0.62 ± 1.51 −1.07 ± 1.82 0.45 [−2.92 3.83] 0.477 0.469 0.006 
  Right 50 cm −0.49 ± 1.48 −0.63 ± 1.64 0.14 [−2.84 3.11] 0.550 0.526 0.001 
   60 cm 0.28 ± 1.59 0.02 ± 1.85 0.26 [−1.71 2.22] 0.836 0.831 <0.001 
   70 cm 0.54 ± 1.34 0.04 ± 1.62 0.51 [−1.47 2.48] 0.744 0.770 <0.001 
   80 cm 0.25 ± 1.42 −0.00 ± 2.13 0.25 [−2.39 2.89] 0.736 0.723 <0.001 
   90 cm 0.04 ± 1.32 −0.57 ± 1.33 0.61 [−1.13 2.35] 0.717 0.777 <0.001 

Step length 
(cm) 

2 m Left 50 cm 49.19 ± 1.38 50.32 ± 1.46 −1.13 * [−3.05 0.80] 0.590 0.761 0.005 
  60 cm 59.32 ± 1.41 60.46 ± 1.50 −1.14 * [−3.36 1.08] 0.546 0.696 0.010 

   70 cm 69.09 ± 0.94 70.20 ± 1.27 −1.12 * [−3.18 0.95] 0.380 0.554 0.006 
   80 cm 79.45 ± 1.09 80.13 ± 1.40 −0.68 [−3.04 1.67] 0.492 0.542 0.002 
   90 cm 90.06 ± 0.98 91.25 ± 1.38 −1.19 * [−3.95 1.58] 0.213 0.304 0.030 
  Right 50 cm 49.02 ± 1.73 51.33 ± 1.37 −2.31 * [−3.59 −1.03] 0.439 0.913 0.773 ** 
   60 cm 58.73 ± 1.44 61.05 ± 1.30 −2.32 * [−3.77 −0.87] 0.353 0.854 0.762 ** 
   70 cm 67.50 ± 1.66 69.98 ± 1.39 −2.49 * [−4.64 −0.33] 0.325 0.744 0.825 ** 
   80 cm 79.52 ± 1.03 81.17 ± 1.25 −1.65 * [−2.97 −0.32] 0.411 0.827 0.022 
   90 cm 89.49 ± 1.61 91.24 ± 1.72 −1.75 * [−3.41 −0.10] 0.566 0.871 0.089 ** 
 3 m Left 50 cm 50.66 ± 1.35 50.73 ± 1.16 −0.06 [−1.92 1.80] 0.737 0.717 <0.001 
   60 cm 60.18 ± 1.50 60.28 ± 1.38 −0.10 [−2.69 2.49] 0.605 0.581 <0.001 
   70 cm 69.92 ± 1.91 70.78 ± 1.82 −0.85 [−5.72 4.02] 0.110 0.112 0.067 ** 
   80 cm 78.81 ± 2.14 80.02 ± 1.78 −1.21 [−5.81 3.38] 0.258 0.289 0.120 ** 
   90 cm 89.64 ± 1.99 90.74 ± 1.78 −1.11 [−5.60 3.38] 0.242 0.266 0.093 ** 
  Right 50 cm 50.79 ± 2.00 50.41 ± 2.10 0.39 [−2.77 3.55] 0.699 0.690 0.004 
   60 cm 59.53 ± 1.97 59.65 ± 2.15 −0.12 [−2.60 2.36] 0.826 0.812 <0.001 
   70 cm 69.60 ± 1.22 69.59 ± 1.54 0.01 [−2.61 2.62] 0.568 0.542 <0.001 
   80 cm 79.44 ± 1.43 79.43 ± 2.29 0.00 [−3.52 3.53] 0.582 0.556 0.002 
   90 cm 89.69 ± 1.32 89.63 ± 1.78 0.06 [−2.72 2.84] 0.615 0.590 <0.001 

Stepping 2 m Left  1.33 ± 0.29 1.28 ± 0.33 0.05 [−0.24 0.33] 0.892 0.892 <0.001 
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accuracy 
(cm) 

 Right  1.30 ± 0.30 1.21 ± 0.26 0.08 [−0.18 0.35] 0.855 0.884 <0.001 
3 m Left  1.52 ± 0.54 1.57 ± 0.61 −0.05 [−0.51 0.41] 0.922 0.917 <0.001 

  Right  1.43 ± 0.47 1.48 ± 0.54 −0.05 [−0.78 0.68] 0.745 0.729 <0.001 

* Significant between-systems difference (p < 0.05); ** Non-significant two one-sided t-tests, indicating nonequivalence (TOST p > 0.05). 

3.1. Foot Placement Locations 

A significant main effect of System (F(1,9) = 5.87, p = 0.038, ηp2 = 0.395) was found on foot 
placement locations. Kinect estimated foot placement locations 0.76 cm posterior as compared to the 
Optotrak system. No other main or interaction effects were found, although there was a trend 
towards significant System×Imposed step length (F(2.6,23.4) = 2.83, p = 0.067, ηp2 = 0.239) and 
System×Distance×Side (F(1,9) = 4.66, p = 0.059, ηp2 = 0.341) interactions. There seemed to be a larger 
between-systems difference for the right foot placement location at 2 m when compared to the other 
conditions (see top panels in Figure 2). Regarding the equivalence tests, right foot placement 
locations at 2 m were found to be nonequivalent for 80 cm (p = 0.072) and 90 cm (p = 0.110), while all 
other foot placement locations were found to be equivalent (p < 0.045). Note that in some cases the 
systems can be considered equivalent, as their 90% confidence intervals do not cross the equivalence 
bounds (i.e., no meaningful effect), and at the same time be statistically different in a t-test because 
the confidence intervals of the between-systems differences do not include zero (e.g., right foot 
placement locations at the 2 m distance for imposed step lengths of 50 cm, 60 cm, and 70 cm; Table 1, 
Figure 2). 

3.2. Step Length 

A main effect of System was found on step length (F(1,9) = 12.24, p = 0.007, ηp2 = 0.576). On 
average, Kinect underestimated step length with 0.94 cm as compared to the Optotrak system, a 
finding in line with abovementioned between-systems difference in foot placement locations. There 
was also a very strong effect of imposed step length on performed step length (F(2.8,25.0) = 8167.28, p 
< 0.001, ηp2 = 0.999; with significant linear [F(1,9) = 23285.32, p < 0.001, ηp2 = 1.000] and quadratic 
[F(1,9) = 11.73, p = 0.008, ηp2 = 0.566] contrasts); step lengths increased with increasing imposed step 
lengths. 

Furthermore, significant System×Distance (F(1,9) = 13.12, p = 0.006, ηp2 = 0.593) and 
System×Distance×Side (F(1,9) = 12.26, p = 0.007, ηp2 = 0.577) interactions were observed. The 
significant between-systems bias was only found at the 2 m distance and more strongly so for right 
step lengths (Figure 3), indicated by the significantly larger between-systems difference for the right 
step length at 2 m (t(9) = 3.51, p = 0.007). In addition, Distance×Imposed step length (F(4,36) = 5.45, p = 
0.002, ηp2 = 0.377; with significant linear by linear [F(1,9) = 18.31, p = 0.002, ηp2 = 0.670] and linear by 
fourth order [F(1,9) = 13.35, p = 0.005, ηp2 = 0.597] contrasts) and System×DistancexImposed step 
length (F(2.8,25.1) = 4.35, p = 0.015, ηp2 = 0.326) interactions were found; significant between-systems 
differences were again only found at the 2 m distance, with the smallest between-systems bias for 80 
cm (Table 1, Figure 4). 

Step lengths were generally found to be equivalent (most p < 0.030) with some exceptions for the 
right step length at 2 m, in agreement with the System×Distance×Imposed step length interaction, 
and the left step length at 3 m due to a relatively large between-subject variation (Figure 2). 
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Figure 2. Results of the two one-sided t-tests, showing the between-systems differences and the 90% 
confidence intervals of all conditions for foot placement location, step length, and stepping accuracy. 
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Figure 3. Visual representation of the interaction effect of System, Distance, and Side. The significant 
between-systems bias in step length was only found at the 2 m distance (indicated by the asterisks) 
and more strongly so for right step lengths (indicated by the significantly larger between-systems 
difference for the right step length). 

 
Figure 4. Visual representation of the interaction effect of System, Distance and Imposed step length. 
Significant between-systems differences in step length were only found at 2 m, with larger biases for 
larger imposed step lengths. 
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3.3. Stepping Accuracy 

For stepping accuracy, no significant main or interaction effects were found (all p > 0.089, all  
ηp2 < 0.287). There was a trend towards significance for the System×Distance (F(1,9) = 3.62, p = 0.089, 
ηp2 = 0.287) interaction. Kinect seemed to slightly underestimate stepping accuracy at the 2 m 
distance, and to slightly overestimate stepping accuracy at the 3 m distance (i.e., see the 
non-significant positive and negative biases in Table 1, respectively). Nevertheless, stepping 
accuracy was found to be equivalent between the systems (p < 0.001; Figure 2). 

4. Discussion 

The objective of this study was to systematically compare foot placement locations, as 
approximated from ankle body point data, and associated estimates of step length and stepping 
accuracy between the Kinect v2 sensor and a gold-standard Optotrak system. We expected that foot 
placement locations, step lengths, and stepping accuracies all agreed well between systems, without 
systematic between-systems effects of distance from the sensor, side and imposed step length. 
However, our results revealed a small but significant between-systems difference in foot placement 
locations and step lengths; Kinect estimated foot placement locations on average 0.76 cm posterior 
and consequently underestimated step length by 0.94 cm when compared to the Optotrak system. 
Note that these biases were predominantly found for the 2 m distance and were more pronounced 
for the right side. Nevertheless, stepping accuracies and estimates of foot placement locations and 
step lengths were generally statistically equivalent (i.e., no statistically meaningful between-systems 
bias, as evidenced by a statistically significant TOST), with a few nonequivalent exceptions in foot 
placement locations and step lengths mostly for the right side at the 2 m distance (Table 1, Figure 2). 

Two factors may have mediated the larger between-systems differences for the right side at the 
2 m distance: (1) depth occlusion and (2) body orientation relative to the Kinect sensor. Since the 
Kinect sensor was positioned frontoparallelly on the left side of the participant, the right leg could be 
partially occluded by the swinging left leg during the stepping movement, and more strongly so 
nearby the sensor, which may have affected the outcomes. In the Supplementary Material 
(Supplementary Material S3) we describe an additional analysis aimed at examining the role of 
occlusion (and associated interpolation of the missing data) as a factor mediating the larger 
between-systems differences found for the foot placement locations of the right side at the 2 m 
distance. Based on the results we can conclude that depth occlusion did not cause the larger 
between-systems bias. 

Could the second factor, body orientation relative to the Kinect sensor, then explain the 
between-systems differences for the right side at 2 m distance from the sensor? As can be seen in 
Figure 5, the orientation relative to the Kinect sensor changes with distance from the sensor and 
body side: from quite frontally for the left side at the 3 m distance to a more frontoparallel 
orientation for the right side at the 2 m distance. Orientation relative to the sensor likely affects the 
depth image of shank and foot segments due to orientation-based differences in self-occlusion of 
those body segments, which might influence the estimation of the position of the ankles from the 
point clouds by the machine-learning algorithm (cf. Figure 5B in [9]), and as such estimates of foot 
placement locations. Indeed, Wang et al. [23] showed that the positional error in body point 
estimates increases with deviations from a frontal orientation relative to the Kinect v2 sensor, 
especially so for body points of the body side that was turned away from the sensor. The 
turned-away body side was the right side in the current study, with the greatest deviations from a 
frontal orientation at the 2 m distance. This was also the condition with a meaningful 
between-systems bias in estimated foot placement locations, making body orientation relative to the 
sensor a very likely cause for the observed between-systems differences. 
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Figure 5. An overview of the influence of distance from the sensor and body side on body orientation 
relative to the Kinect sensor. 

Knowing that body orientation relative to the sensor affects body point estimation, we will now 
discuss ways to minimize orientation biases in (multi-)Kinect set-ups for measuring gait with (a) 
sensor(s) placed alongside a walkway. A first recommendation could be to use sensors on both sides 
of a walkway in order to average out side-dependent orientation biases. Müller et al. [9] recently 
compared one-sided and two-sided multi-Kinect v2 set-ups to a gold-standard motion-registration 
system. They found superior between-systems agreement in step widths for the two-sided set-up, 
suggesting that mediolateral orientation biases, which are opposite in direction for the two sides, can 
indeed be successfully averaged out. Unfortunately, a two-sided set-up will not help to solve 
anterior-posterior orientation biases because these biases are similar in direction for both sides, with 
greater biases closer to the sensor. A second recommendation could be to use Kinect’s 
higher-dimensional depth data to estimate foot placement locations directly from the foot’s point 
cloud instead of approximating it from the lower-dimensional ankle body points’ time series. Point 
clouds are robust, richer in information, and are likely less prone to orientation errors. Previous 
studies indeed found superior results for outcome measures (i.e., stride durations, stride lengths, 
and step asymmetries) derived from Kinect’s higher-dimensional point clouds than for their 
counterparts derived from Kinect’s lower-dimensional body points’ time series [24–26]. As point 
clouds contain more information about the foot, they may additionally allow for finer-grained 
foot-related gait parameters, which seem particularly useful in clinical populations with gait 
deviations and foot deformations. Although point clouds may thus be a very useful alternative for 
determining foot placement locations, the higher dimensionality of the point clouds place greater 
demands on data handling. This is not much of a concern for post-processing, but will be a burden 
for real-time processing of gait data from multiple Kinect sensors for gait-dependent event control 
(e.g., suddenly projecting an obstacle at the location where one will step next; [7]). A more 
parsimonious solution, therefore, seems to be to collect body point data at greater distances from the 
sensor, for which we have shown that they are less prone to orientation biases. In the case of a 
multi-Kinect v2 set-up, this implies smaller inter-sensor distances to create more overlap between 
the measurement volumes of the sensors. Consequently, body point data nearby the sensor, which 
suffers from orientation biases, can be ignored because the same body points are already detected by 
the more distant sensor whose data is minimally affected by orientation biases. 

A limitation of this study was that the effect of distance to the sensor was assessed in a rather 
coarse-grained manner (i.e., 2 levels, at 2 m and 3 m from the sensor). As a consequence, the precise 
cut-off for ignoring nearby data to circumvent orientation biases remains unknown. Another 
limitation is that two participants had to be excluded due to displaced cluster markers of the 
Optotrak system during the experiment, resulting in a relatively small sample size. The sample 
consisted of healthy adults without gait deviations, whose gait may not be representative for the gait 
of various patient groups. Nevertheless, there is no reason to expect inferior depth images or body 
point estimation of the lower extremities for persons with gait deviations [4], so the same 
recommendations apply for negating orientation biases when the Kinect v2 sensor is used for 
quantitative gait assessments in clinical populations. 
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5. Conclusions 

There is a meaningful between-systems difference in foot placement locations, albeit only 
nearby the sensor and exclusively for the body side turned away from the sensor (in our study the 
right side at a 2 m distance). This distance by side between-systems effect is not mediated by depth 
occlusion through the contralateral swinging leg, but is likely caused by body orientation differences 
relative to the sensor. Such orientation effects might be reduced by using the higher-dimensional 
depth data to estimate foot placement locations directly from the foot’s point cloud and/or by using 
smaller inter-sensor distances in the case of a multi-Kinect v2 set-up, allowing for foot placement 
estimations at greater distances from the sensor. 

Supplementary Materials: The following are available online at 
http://www.mdpi.com/1424-8220/17/10/2301/s1, Supplementary Material S1: Marker set-up of the Optotrak 
system, Supplementary Material S2: Body points’ time series in the anterior-posterior, mediolateral and vertical 
direction for the Kinect v2 sensor and the Optotrak system, Supplementary Material S3: Examination of the 
effect of occlusion in Kinect v2 ankle data. 
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