
sensors

Article

A Straight Skeleton Based Connectivity Restoration
Strategy in the Presence of Obstacles for WSNs

Xiaoding Wang 1,2, Li Xu 1,* and Shuming Zhou 1

1 School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China;
wangdin1982@fjnu.edu.cn (X.W.); zhoushuming@fjnu.edu.cn (S.Z.)

2 School of Online and Continuing Education, Fujian University of Technology, Fuzhou 350118, China
* Correspondence: xuli@fjnu.edu.cn

Received: 2 September 2017; Accepted: 3 October 2017; Published: 10 October 2017

Abstract: Connectivity has significance in both of data collection and aggregation for Wireless Sensor
Networks (WSNs). Once the connectivity is lost, relay nodes are deployed to build a Steiner Minimal
Tree (SMT) such that the inter-component connection is reestablished. In recent years, there has
been a growing interest in connectivity restoration problems. In previous works, the deployment
area of a WSN is assumed to be flat without obstacles. However, such an assumption is not realistic.
In addition, most of the existing strategies chose the representative of each component, which
serves as the starting point of relay node deployment during the connectivity restoration, either in a
random way or in the shortest-distance based manner. In fact, both ways of representative selection
could potentially increase the length of the SMT such that more relay nodes are required. In this
paper, a novel connectivity restoration strategy is proposed—Obstacle–Avoid connectivity restoration
strategy based on Straight Skeletons (OASS), which employs both the polygon based representative
selection with the presence of obstacles and the straight skeleton based SMT establishment. The
OASS is proved to be a 3-opt approximation algorithm with the complexity of O(n log n), and the
approximation ratio can reduce to 3

√
3

2 while it satisfies a certain condition. The theoretical analysis
and simulations show that the performance of the OASS is better than other strategies in terms of the
relay count and the quality of the established topology (i.e., distances between components, delivery
latency and balanced traffic load) as well.
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1. Introduction

Wireless sensor networks (WSNs) are well-known by their significant advantages in monitoring,
such as battlefield surveillance, environment monitoring and biological detection. To achieve events
surveillance, a large amount of sensors are intentionally placed to monitor a certain geographic area.
All data collected are forwarded toward a base station along at least a multi-hop wireless path. In this
case, the reachability between any pair of sensors implies the importance of the network connectivity.
Due to such special architecture, WSNs are more vulnerable to human sabotages and natural disasters
that can partition a WSN into disjointed components. Once the connectivity is lost, the data will be no
longer sent back to the center that will cause severe consequences.

Due to the significance of network connectivity as mentioned above, the problem of connectivity
restoration has been receiving increasing attention in recent years. All known solutions consider how to
reestablish the connectivity through building a Steiner Minimal Tree (SMT) among all components with
the minimum cost, which includes relay device consumption and energy consumption [1]. According
to the classification of the cost, there exist two major types of restoration strategies. One utilizes
the least number of relay devices (i.e., Relay Nodes (RNs) and Mobile Data Collectors (MDCs)) to
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federate disjointed components [2–18]. However, most strategies of this type choose the representative
either in a random way or in the shortest-distance based manner. In fact, both ways of representative
selection could potentially increase the length of the SMT such that more RNs are required. In addition,
they assume the deployment area of a WSN is flat without obstacles. Note that, if there are no
obstacles between two nodes, then a signal originated from one node could be received by the other
one even with a slight signal degradation caused by a long distance transmission. On the other
hand, another type of connectivity restoration strategy pursues the minimum energy consumption
influenced by a variety of realistic terrains (e.g., mountain, river, forest, swamp, etc.) [19–23]. In this
paper, the connectivity restoration strategy with minimum RN consumption is developed. In addition,
we consider the mountain as the only available terrain factor. If there exist buildings and other
structures along with mountains that are big enough and hard to penetrate, then all of these objects are
considered as impenetrable obstacles.

Our Contribution

This paper presents an Obstacle–Avoid connectivity restoration strategy based on Straight
Skeletons, namely OASS, which consists of an adapted minimum spanning tree construction algorithm
Ad-Prim, an obstacle–avoid algorithm OA and a straight skeleton based SMT construction algorithm
SSIN. The details of our contributions are listed as follows:

1. We modify the well-known Minimum Spanning Tree (MST) construction algorithm Prim to
a circle-tolerant one, namely Ad-Prim, by choosing multiple nodes on the perimeter of each
component as corresponding representatives such that the MST is constructed with the rule that
circles formed by nodes on the same components should be neglected. Compared with other
strategies that choose only one node for each component as its representative, the spanning tree
established by Ad-Prim is much shorter.

2. We develop an obstacle–avoid algorithm, OA, to deal with the case that there exist obstacles lying
on the line-segment between each pair of nodes. Instead of choosing a detour going along the
perimeter of an obstacle, the candidate point on the perimeter of the obstacle is carefully chosen
such that a shortest path around the obstacle consists of at least two line-segments tangent at
such point. In addition, compared with other strategies disregarding the presence of obstacles,
OA can be applied to more realistic scenarios.

3. We devise a straight skeleton based algorithm, SSIN, to build an SMT such that the shortest
inter-component connection is achieved. Each straight skeleton will be placed within the potential
convex hull of MST as the deployment route for RNs. Furthermore, if multiple line-segments
between pairs of nodes have obstacles, then the SSIN is an option to avoid obstacles.

4. We prove that OASS is a 3-opt approximation algorithm with the complexity of O(n log n), and
the approximation ratio can reduce to 3

√
3

2 while the network topology can be decomposed into
a series of convex hulls. The theoretical analysis and simulations show that the performance of
OASS is better than other strategies, especially a series of which deploy RNs toward the center of
the deployment area, not only in the number of RNs required but the quality of the established
topology (i.e., distances between components, delivery latency and balanced traffic load) as well.

The rest of the paper is organized as follows. Related work is covered in Section 2. The notions,
terminologies and the problem description are introduced in Section 3. The strategy is elaborated in
Section 4. Section 5 gives the theoretical analysis on approximation radio and complexity of OASS.
In addition, the validation results are presented in this section as well. We conclude this paper in
Section 6.

2. Related Works

According to the classification of the cost, there exist two major types of restoration strategies [1].
One utilizes the least number of relay devices (i.e., RNs and MDCs) to federate disconnected
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components [2–18], while the other one pursues the minimum energy consumption influenced by
realistic terrains [19–23].

Due to the variety of relay devices, strategies based on relay device consumption can be
subdivided into two categories. One aims to deploy the minimum number of RNs to reestablish
connectivity as follows, the performance of which are always measured by the approximation
ratio [2–10]. In [2], Chen et al. first prove the MST based approach is 3-opt and then they propose
a 4-star based 3-opt algorithm. Similarly, Cheng et al. [5] employ 3-star to connect disjointed
components and then design a 3-hypergraph based algorithm, the approximation ratios of which
are 3 and 2.5, respectively. It is worth mentioning that, although 2.5 is the minimum one among
all approximation ratios, the complexity of the 3-hypergraph based algorithm is O(n3q2

p), where
qp = max{qa,b,c|a, b, c ⊂ P}, qa,b,c denotes the number of RNs required to connect nodes a, b, c and P
represents the set of disconnected nodes. In [4], Lloyd et al. give an improved MST based algorithm
with a approximation ratio 7. Tang et al. [3] map the deployment area into a series of regular cells, by
placing a cluster head node within each cell in charge with inter-cell communications the connectivity is
restored and the approximation ratio of which is 4.5. Efrat et al. [10], Yang et al. [7] and Misra et al. [6,8]
give weight values to different types of connections (i.e., node to node, node to relay and relay to
relay) to build a weighted complete graph. Then, they employ the construction algorithm of the
minimum weight Steiner tree [24] to restore the connectivity in different scenarios, the approximation
ratio of this algorithm for each scenario is 3.11, 6.43, 6.2 and 12.4, respectively, and the complexities for
all scenarios are at least O(|S|k.|V − S|k−2 + k.|S|2k+1 log |S|) < O(n2k−2 + n2k+1 log n), where S ⊂ V
denotes the set of nodes required to be connected, |V| = n and k ≥ 3. Recently, Wang et al. [9] proposes
a 3-opt algorithm based on the center of mass and 3-star. There are some efficient algorithms without
giving approximation ratios [11–18]. Lee et al. propose efficient algorithms in [13,15], respectively, to
deploy RNs toward the center of the deployment area. In [14], Ranga et al. first construct a distance
function, then based on the zero gradient point of which the relay node deployment route is planned.
Joshi et al. [12] employ the straight skeleton as the relay node deployment route. In [11], Senel et al.
design two efficient algorithms. One is an optimal triangle construction algorithm based on the MST,
while the other one is based on Delaunay triangulation, both of which employ Fermat points to
achieve the connectivity restoration. In [16], Uwitonze et al. employ space network coding, Delaunay
triangulation, non-uniform partitioning techniques and linear programming to design a relay node
deployment route. On the other hand, another type of strategy based on relay devices’ consumption
considers the situation that MDCs serve as a channel to offer intermitted connection between disjoint
components while only insufficient RNs are available [17,18]. However, these types of strategies
always evaluate the performances through simulations. Both Joshi et al. [18] and Abbas et al. [17]
partition the set of components into a number of convex hulls and build an MST for inter-partition
connection. Then, they employ convex hulls as routes for MDCs, which are shortened in [18] through
an angle bisector based optimization approach, in order to provide intermitted connections. At last,
the connectivity is restored by deploying RNs along the MST. It is worth mentioning that OASS solves
both of the representative selection problem and the obstacle–avoid problem; although neither of
them are taken into consideration by all of these works above. Furthermore, although the optimal
approximation ratio of OASS is 3

√
3

2 , which is a little higher than 2.5, the complexity of OASS is only
O(n log n). The comparison of some contemporary heuristic algorithms for connectivity restoration in
WSNs through RNs placement is shown in Table 1.

There are many terrain based connectivity restoration strategies. In [20], Senturk et al. quantifies
the influence of realistic terrains through a grid based mapping. Then, they design the ReBAT that
considers realistic terrains such that the least cost paths for connectivity restoration is built. Similarly,
Wang et al. [23] devise a hybrid strategy to achieve the 2-connectivity restoration based on realistic
terrains. Zhou et al. [19] propose an extended Rapidly exploring Random Tree (RRT) based algorithm
to find a least cost path to avoid obstacles and federate components. Truong et al. [21] design a
family of algorithms that consider the impact of obstacles on mobility and communication to restore
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the connectivity with a minimum number of RNs and meanwhile minimizes the mobility cost of
agents. In [22], Mi et al. investigate how to avoid convex obstacles and inter-sensor collisions during
connectivity restoration. Unlike these works, only one terrain factor, the mountain, is considered as
an impenetrable obstacle by OASS.

Table 1. Comparison of some contemporary heuristic algorithms for connectivity restoration in Wireless
Sensor Networks (WSNs) through Relay Nodes (RNs) placement.

Authors Approximation Ratio Complexity

Misra et al. [8] 12.4 O(n2k−2 + n2k+1 log n)

Lloyd et al. [4] 7 O(n log n)

Yang et al. [7] 6.43 O(n2k−2 + n2k+1 log n)

Misra et al. [6] 6.2 O(n2k−2 + n2k+1 log n)

Tang et al. [3] 4.5 Not available

Efrat et al. [10] 3.11 O(n2k−2 + n2k+1 log n)

Cheng et al. [5] 3 O(n4)

Chen et al. [2] 3 O(n3)

Wang et al. [9] 3 O(n3)

OASS (this paper) 3 O(n log n)

OASS satisfying a certain condition (this paper) 3
√

3
2 O(n log n)

Cheng et al. [5] 2.5 O(n3q2
p)

3. Preliminary

3.1. System Model

The disconnected network is mapped to a graph G(V, E). Each node si ∈ V represents a sensor
with a communication rage r, while sisj ∈ E denotes the communication link between a pair of sensors
si and sj. Since the network is partitioned into a number of disjoint components Cis, all sis ∈ Ci remain
connected. Some notations used throughout this paper are given first, and the important symbols with
their definitions are collected in Table 2.

Table 2. Notions.

Symbols Descriptions

PCi the polygon consists of nodes on the perimeter of Ci

CHO the convex hull of an obstacle O

Psi ,sj a path from si to sj

PO
s1s2

a shortest path from si to sj around the obstacle O

dsisj the Euclidean distance of an edge sisj

LG the length of the graph G in Euclidean space, that is LG = ∑e∈G de

NA RNs consumption function of the approach A

Definition 1. [25] A Euler Closed Trail, abbreviated as ect, is a closed trail that visits every edge of graph G
exactly once.
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Definition 2. A potential Convex Hull, abbreviated as pch, is a path s1s2 . . . sk such that s1sk
⋃k−1

i=1 sisi+1 is
a convex hull of the set of nodes {si|1 ≤ i ≤ k}.

Definition 3. [26] The straight skeleton of a polygon is defined by a continuous shrinking process in which the
edges of the polygon are moved inwards parallel to themselves at a constant speed. As the edges move in this way,
the vertices where pairs of edges meet also move, at speeds that depend on the angle of the vertex. If one of these
moving vertices collides with a nonadjacent edge, the polygon is split in two by the collision, and the process
continues in each part. The straight skeleton is the set of curves traced out by the moving vertices in this process.

The shortest SMT considered as the shortest inter-component connection has the following
property [27]. Note that each terminal denotes to a representative of a Ci, while each Steiner point
represents a rendezvous point at which three edges are adjacent to each other.

Property 1.

1. Each terminal is a leave and each Steiner point connects to exactly three terminals.
2. The angle between each pair of adjacent edges at a Steiner point is exactly 120◦.
3. There are totally n− 2 Steiner points for n terminals.

3.2. Problem Statement

This paper is dedicated to the connectivity restoration problem, which is formally stated as follows:
Given a graph G with n disjoint components Cis that consist of sensors with a transmission range

r and obstacles Os, the goal is to provide an efficient solution that ensures that n components will be
1-connected by deploying RNs at an interval r as few as possible. That is,

min NA

st. 1. ∃Os,

2. ∀si ∈ Ci, sj ∈ Cj,

∃Psi ,sj 6= ∅,

(1)

where NA denotes the number of RNs required by employing approach A.

4. The OASS Approach

As a three-phase strategy, OASS is devised to cope with the connectivity restoration problem with
the presence of obstacles. In phase one, an adapted minimum spanning tree construction algorithm
Ad-Prim is designed to deal with the improper representative selection problem. In phase two,
an obstacle–avoid algorithm OA is developed to build the shortest paths around obstacles. In the last
phase, a straight skeleton based algorithm SSIN is conceived to achieve the shortest inter-component
connection and obstacles avoidance.

4.1. Adapted Minimum Spanning Tree Construction Algorithm (Ad-Prim)

Before we employ the straight skeleton based RNs deployment to achieve the establishment of
inter-component connection, the candidate positions for the placement of straight skeletons, which are
potential convex hulls, should be properly chosen along the MST of all disjointed components. The
reason for finding the shortest MST is that, if a longer MST is built, then the area of each potential
convex hull could be enlarged such that the length of each corresponding straight skeleton is increased.
No double that a longer MST will eventually result in more RNs required. In fact, although the MST
construction algorithm Prim [24] helps to locate the tree with minimum length, without properly
chosen representatives, the generated MST is not the shortest one. Therefore, the selection for eligible
representatives are crucial during the MST construction.
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In previous works, there exist two methods of representative selection. The first
one [2,4–8,10–12,17,18] is randomly choosing a node within a component to represent it, while the
second one [9,13,15] chooses a number of nodes, one from each component, closest to each other as
corresponding representatives. If the Prim is used to find an MST, then it is obvious that the latter
one will result in a shorter MST. However, both methods can hardly build the shortest MST, since
choosing multiple nodes as representatives of a Ci can potentially shorten inter-component distances.
Due to the reasons explained above, we adapt the Prim to a circle-tolerant algorithm, namely Ad-Prim.
The Ad-Prim will generate the shortest MST through the following steps.

1. The perimeter of each component Ci is modelled to a polygon PCi . All nodes on the Pi are the
representatives of Ci.

2. All representatives and the shortest paths between them around obstacles found by OA are
prepared for the MST construction in the next step.

3. The Prim is employed to build an MST among all representatives with one rule that each circle
formed by nodes on the same component should be neglected.

According to the description above, the pseudo code of Ad-Prim is given as Algorithm 1.

Algorithm 1 Adapted Minimum Spanning Tree Construction Algorithm Ad-Prim.

Input: all nodes on the perimeter of all components and a set of shortest paths {Psisj |1 ≤ i, j ≤ n}
Output: an MST

choose all nodes on PCi as representatives of Ci

employ Prim to construct an MST among all representatives with one rule that each circle formed by
nodes on the same component should be neglected
return an MST

Although the proper selection of multiple representatives for each component helps to build the
shortest MST, there is a chance that an edge sisj ∈ MST may intersect with an obstacle. This requires
an obstacle–avoid algorithm.

4.2. Obstacle–Avoid Algorithm (OA)

In a real scenario, there are always some obstacles on the deployment area. If an obstacle lies
right on the middle of two disjointed nodes, then the line-segment between such pair of nodes for RNs
deployment is not an option. In this case, although a detour going along the perimeter of the obstacle
could be a solution, yet it is not the best choice. In fact, the shortest detour between a pair of nodes with
an obstacle sitting right on the middle consists of a series of paths with at least two tangents involved.
To be more specific, an obstacle is modelled to a polygon first. Then, the convex hull based on the
polygon of the obstacle is constructed. At last, by carefully choosing the line-segments between two
nodes and the points on the convex hull, the shortest path around the obstacle will be found. Note that
there are two cases that should be considered. One is the shortest path composed of only two tangents
between a specific point on the convex hull and two nodes, respectively (see Figure 1a). The other one
not only includes all paths in the previous case but involves more paths between multiple points on
the convex hull (see Figure 1b) as well. Furthermore, since an MST intersecting with obstacles is built,
it is much easier to deal with each edge sisj ∈ MST intersecting with an obstacle in order to construct
the PO

si ,sj
.
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p4

p2

p3

p1

(a) (b)

Figure 1. The shortest paths around the obstacle w.r.t (a) when there is only one point; (b) when there
are more points sitting in the middle.

The OA will find shortest paths through the following steps.
1. For two nodes s1, s2 and an obstacle O, find two points x, y on CHO, such that there exist two

tangents s1x and s2y.
2. If x = y, then s1xs2 is the PO

s1s2
. Otherwise, let the set of points S = {xi|0 ≤ i ≤ k − 1}

denote the least number of points from x to y on CHO where x0 = x and xk = y. Then,
PO

s1s2
= s1x

⋃
ys2

⋃k−1
i=0 xixi+1.

According to the description above, the pseudo code of OA is given as Algorithm 2.

Algorithm 2 Obstacle–Avoid Algorithm OA.

Input: the set of edges {sisj|i 6= j, 1 ≤ i, j ≤ n}
Output: each a set of shortest paths around obstacles {PO

sisj
|1 ≤ i, j ≤ n}

for each pair of nodes si and sj do
if there is an obstacle O on the line-segment sisj then

find two points x and y on CHO such that there exist two tangents s1x and s2y
using the least number of points {xi|x0 = x, xk = y, 0 ≤ i ≤ k − 1} on CHO to construct

PO
s1s2

= s1x
⋃

ys2
⋃k

i=0 xixi+1

end if
end for
return a set of shortest paths around obstacles {PO

sisj
|1 ≤ i, j ≤ n}

4.3. Straight Skeleton Based SMT Construction Algorithm (SSIC)

Although deploying RNs along the MST can accomplish the connectivity restoration, yet it
consumes a large number of RNs. In order to reduce the consumption of RNs, a better way is required
that can offer a connection structure simpler and shorter than the MST. In fact, a straight skeleton is a
tree such that all terminals are leaves and each pair of adjacent edges at a Steiner node has an angle of
exactly 120◦ [28]. Such characteristics satisfy property 1. Therefore, the straight skeleton can reduce
the length of the inter-component connection, which implies the RNs required are less than that of
the MST. Before we apply the straight skeleton to connectivity restoration, we need to know where
a straight skeleton should be placed. More importantly, using a convex hull to generate a straight
skeleton only costs O(n log n) [28]. There is no doubt that each convex hull should be found to place
a straight skeleton. In fact, when the MST is built, every convex hull will be located along the MST.
Furthermore, if there exist obstacles between pairs of nodes, then the straight skeleton is an option to
avoid obstacles (see Figure 2).
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Case 1

Case 2

Case 3

Case 4

Figure 2. The obstacle avoidance by straight skeletons.

Next, we will show how SSIC achieves the construction of the straight skeleton based
inter-component connection through the following steps.

1. A leave node s1 on the MST is randomly chosen as the starting node to draw a Euler closed
trail ect = s1s2 . . . sns1 of the MST, where n denotes the number of representatives.

2. Starting from s1, we try to locate every potential convex hull pchi along ect. If there
exists an edge sisi+1 ∈ pchi such that sisi+1 = si pi

⋃
pi pi+1 . . .

⋃
pi+k−1 pi+k

⋃
pi+ksi+1, then let

pchi =
⋃

pi pi+1
⋃

pchi. It is worth mentioning that, if there is a pchi = sisi+1 · · · si+k such that the
set S = {si+j|1 ≤ j ≤ k} of nodes are on the Ci, then let pchi = sisi+1 . . . si+j and choose si+k to proceed.
Otherwise, we start from si+k+1 and repeat the pch localization process until all representatives are
looped over.

3. For each pchi, if there are no obstacles intersecting with the straight skeleton within the pchi,
then this straight skeleton serves as the deployment route for RNs. Otherwise, according to the number
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k of obstacles, we split the pchi into k + 1 parts such that pchi =
⋃k+1

i=1 pchj
i and there exists at least one

part, say pchj
i , the straight skeleton of which is not intersecting with obstacles. Then, we place RNs

along the straight skeleton inside the pchj
i . If there exists a k such that k 6= j, then each edge e ∈ pchk

i is
a relay node deployment route. It is worth mentioning that all straight skeletons can be built at pchis
once and for all.

According to the description above, the pseudo code of SSIN is given as Algorithm 3.

Algorithm 3 Straight Skeleton based SMT Construction Algorithm (SSIC).

Input: an MST that consists of n representatives
Output: a straight skeleton based tree

randomly choose a leave node s1 ∈ MST to draw an euler closed trail ect = s1s2 . . . sns1

for all si ∈ ect do
if there exists an edge sisi+1 ∈ pchi such that sisi+1 = si pi

⋃
pi pi+1 . . .

⋃
pi+k−1 pi+k

⋃
pi+ksi+1

then pchi =
⋃

pi pi+1
⋃

pchi

end if
if there is a pchi = sisi+1 · · · si+k such that S = {si+j|si+i ∈ Ci, 1 ≤ j ≤ k} then pchi =

sisi+1 . . . si+j and si = si+k

else si = si+k+1

end if
end for
for all pchis do

if there is no obstacles intersecting with the straight skeleton within the pchi then
the straight skeleton of the pchi is a relay node deployment route

else split the pchi into k + 1 parts such that pchi =
⋃k+1

i=1 pchj
i

if there exists a pchj
i , the straight skeleton of which is not intersecting with obstacles then

the straight skeleton will be the route for placing RNs
end if
for other pchk

i s, k 6= j, do each edge e ∈ pchk
i is a relay node deployment route

end for
end if

end for
return a straight skeleton based tree

Next, we give an example of how to restore the connectivity of a disconnected network. As shown
in step 1 of Figure 3, there are 19 sensor nodes that consist of 10 components. Since these 19 sensor
nodes are on the perimeter of all 10 components, all sensor nodes serve as representatives. Obviously,
there is an obstacle on the line-segment between s16 and s17. In step 2 of Figure 3, the MST of 12
representatives are built using Ad-prim with three circles s14s15s16s14, s2s3s4s5s2 and s13s9s10s11s12s13

neglected. Note that sensor nodes s3, s4, s5, s9, s10, s11 and s12 are no longer useful in the following
process; therefore, we ignore them for simplicity. As shown in step 3 of Figure 3, since there is only
one path s16s17 intersecting with the obstacle, we use OA to locate the PO

s16s17
which consists of two

tangents s16x and xs17. In step 4 of Figure 3, SSIC first randomly chooses a leave node, say s1, as the
beginning to draw the euler closed trail ect = s1s2s6s7s15s16s17s18s19s18s17s16s14s13s8s13s14s15s7s6s2s1.
As shown in step 5 of Figure 3, three potential convex hulls s1s2s6s7s15, s19s18s17s16 and s14s13s8 are
found along the ect. Note that, although s1s2s6s7s15s16s1, s19s18s17s16s14s19 and s14s13s8s15s14 can form
tree convex hulls respectively, edges s15s16, s16s14 and s14s15 belong to a component, for which such
three edges should be removed form three pchs. At last three straight skeletons are placed within three
pchs since there are no obstacles intersecting with straight skeletons as shown in step 6 of Figure 3.
Eventually, RNs are deployed along the straight skeleton based tree to restore the connectivity.
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Figure 3. An example of Obstacle–Avoid connectivity restoration strategy based on Straight
Skeletons (OASS).

5. Performance Analysis

5.1. Theoretical Analysis

In this section, we give the theoretical analysis on OASS about the approximation ratio,
the advantage over a series of connectivity restoration strategies in terms of RNs required and
the complexity.

We call all approaches Arc, if they either randomly choose a node from each component as the
corresponding representative or select a number of nodes, each from a component, closest to each other
as representatives [2,4–13,15,17,18]. Let LMSTrc denote the length of an MST built by Arc. For a graph
G, we have the following theorem holding true.

Theorem 1. For a graph G, if t is a tree constructed by Ad-Prim, then we have following two results:

1. t is the MST of G.
2. Lt ≤ LMSTrc .

Proof. First, we prove result 1 by contradiction.
We are going to take Figure 4 as an example to complete the proof. Supposing that t is not the

MST of graph G with s1s2, s1s3 ∈ t, let t∗ denote the MST of graph G with s1s2, s2s3 ∈ t∗. It is obvious
that t

⋃
t∗ has at least a circle s1s2s3s1. Next, we try to distinguish three cases to prove the first result.

Case 1: Ls2s3 < Ls1s3 .
If Ls2s3 < Ls1s3 , then s2s3 should be chosen first, we can get a shorter t = t\s1s3

⋃
s2s3,

this contradicts the structure of t.
Case 2: Ls1s3 = Ls2s3 .
If Ls1s3 = Ls2s3 , then we have t = t∗.
Case 3: Ls2s3 > Ls1s3 .
If Ls2s3 > Ls1s3 , then we can get a shorter t∗ = t∗\s2s3

⋃
s1s3. This contradicts the assumption that

t∗ is the MST of G.
Then, we prove result 2.
We are going to take Figure 5 as an example to complete the proof. Let three components C1, C2

and C3 consist of s1s2 . . . s6, s7s8s9 and s10s11 . . . s14, respectively, and then the closest nodes be chosen
as representative based on Arc are s5, s8 and s14 for C1, C2 and C3, respectively. The line-segment s4s5
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extends to the left and right until it reaches the s7 and s10, respectively. By adjusting the positions
of C2 and C3, we have Ls5s7 = Ls5s8 and Ls4s10 = Ls4s14 and both of ∠s8s5s4 and ∠s5s4s14 are obtuse.
This implies that Ls5s14 > Ls4s14 = Ls4s10 . Since Ad-Prim could choose multiple nodes, say s4 and
s5, as representatives of C1, the tree t built by Ad-Prim could consist of s5s7 and s4s10. This implies
Lt ≤ LMSTrc .

s1

s2

s3

s4

s5

si sj

s1

s2

s3

s4

s5

si sj

(a) The original MST . (b) The MST with a cricle .

Figure 4. Adding a circle to a MST.

s1 s2

s3

s4s5

s6

s7

s8s9

s10 s11

s12

s13

s14

s4s5s7

s8

s10

s14

(a) Six candidates for three components . (b) The shorest connection among six candidates .

s1

s2
s3

c d

s1

s2
s3

p1

p3

p2

p4

p5

p6

p1

p3

p4

p6

Figure 5. The representative selection.

We call all approaches Atc, if they deploy RNs toward the center of either the deployment area or
the polygon of all representatives to build a center-toward tree for connectivity restoration [9,13–15],
while a series of MST based approaches [2,4,17,18] are called AMST .

Theorem 2. For a graph G, relay node consumption function with respect to the number n of representatives of
G and the length Lt of a tree t constructed by AMST , OASS and Atc, respectively, are given as follows:

1. NAMST = Lt−2r(n−2)−2r
r ,

2. NOASS = Lt−3r(n−2)−nr
r + n− 2,

3. NAtc =
Lt−2rn

r + 1.

Proof. According to the variety of structures of trees established by different approaches, besides
RNs being deployed along a planned route at an interval r to restore the connectivity, we can infer
each unique relay node consumption function with respect to the number of representatives n and the
length Lt of a tree t constructed by OASS, Atc and AMST , respectively. In addition, we consider the
situation that the topology of a graph G can be decomposed to a number of convex hulls, which implies
MST =

⋃
pchi. Based on each subtree pchi ∈ MST, we distinguish three cases to prove this theorem.
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Case 1: Since each pchi is on the perimeter of a convex hull and RNs are placed on each edge
sisj ∈ pchi starting from si and sj at the interval r, relay node consumption function NAMST is given
as follows:

NAMST =
Lt − 2r(n− 2)− 2r

r
. (2)

Case 2: If there exist two potential convex hulls pchi and pchj such that pchi
⋂

pchj = sk, then
both of pchi and pchj remain the same. The tree t built by OASS consists of a number of straight
skeletons. Since a straight skeleton has property 1 described in Section 3, each Steiner point requires
an RN that implies totally n− 2 RNs needed. In addition, these Steiner nodes serve as the starting
point to deploy RNs toward all n leave nodes. Therefore, relay node consumption function N is given
as follows:

NOASS =
Lt − 3r(n− 2)− nr

r
+ n− 2. (3)

Case 3: For a center-toward tree t, if there exist two potential convex hulls pchi, pchj ∈ t such that
pchi

⋂
pchj = sk, then let pchj = pchj\sk. By doing so, all pchis can be separated from each other such

that each leave node si ∈ pchi can deploy RNs toward the center. Since Atc always have a center, at
least a RN is required at the position of the center as the beginning in order to deploy RNs towards all
n leave nodes. Therefore, relay node consumption function NAtc is given as follows:

NAtc =
Lt − 2rn

r
+ 1. (4)

Then, we prove the relationships between three relay node consumption functionsNOASS, NAtc

and NAMST .

Theorem 3. NOASS ≤ NAtc ≤ NAMST .

Proof. For simplicity, we let r = 1. According to Equations (2)–(4), we have the following results:

Lt − 3n + 4 = NOASS, (5)

Lt − 2n + 2 = NAMST , (6)

Lt − 2n + 1 = NAtc . (7)

Since each pch consists of at least three nodes, we have n ≥ 3. Therefore, the following inequations
hold true:

NOASS = Lt − 3n + 4,

< Lt − 2n + 1 = NAtc ,

< Lt − 2n + 2 = NAMST .

(8)

In addition, for all r, r > 1, it is easy to verify the correctness of this theorem.

Theorem 4. [2]The approximation ratio of AMST is 3.

According to Theorem 3, it is easy to deduce that, if RNs are equally employed, then we have
Lss < Ltc < LMST , where Lss, Ltc and LMST denote the tree constructed by OASS, Atc and
AMST , respectively.
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Theorem 5. The approximation ratio of OASS is 3.

Proof. The OASS builds an obstacle–avoid MST first, then subdivides the MST into a number of
subtrees. If a subtree t ∈ MST is a pch, then a straight skeleton is placed within as a relay node
deployment route. Otherwise, RNs are deployed along t. We distinguish the following two cases to
prove this theorem.

Case 1: the topology of graph G can be decomposed to a series of convex hulls.
In this case, we have MST =

⋃
pchi. If the MSTi is the MST of all nodes sis ∈ pchi, then

MSTi = pchi due to the characteristics of a convex hull. It is obvious that LMST ≥ ∑ LMSTi . Let ssi
denote the straight skeleton built within pchi. Theorem 3 ensures Lssi < LMSTi , which implies
∑ Lssi < ∑ LMSTi ≤ LMST and NOASS < NMST . According to Theorem 4, AMST is a 3-opt; therefore,
the approximation ratio of OASS is 3.

Case 2: the topology of graph G can’t be decomposed to a series of convex hulls.
In this case, there exists at least a subtree t ∈ MST, which is not a pch, such that MST =

⋃
pchi

⋃
t.

Similar to the previous case, we can get ∑ Lssi + Lt < ∑ LMSTi + Lt ≤ LMST and NOASS < NMST .
According to Theorem 4, OASS is a 3-opt approximation algorithm.

We call an approach At, if At deploys RNs along a tree t for connectivity restoration.

Theorem 6. If a tree t has property 1, then NAt <
√

3
2 NAMST .

Proof. According to literature [27] and Theorem 3, if a shortest tree t has property 1, then we have√
3

2 LMST ≤ Lt ≤ LMST .

According to Equations (5) and (6), if
√

3
2 LMST = Lt, then we have

NAMST ×
√

3
2

= (LMST − 2n + 2)×
√

3
2

=

√
3

2
LMST −

√
3n +

√
3

>

√
3

2
LMST − 3n + 4 = NAt .

(9)

Therefore, this theorem holds.

It is apparent that a straight skeleton has property 1 as described in Section 3. More importantly,
we give the comparison between the length of the SMT and that of a straight skeleton in Table 3.
It is obvious that each straight skeleton is almost as long as an SMT in every scenario that implies
the fact that a straight skeleton is closely approximating the SMT. In addition, if the topology of
the disconnected network can be decomposed into a series of convex hulls, then, according to
Equations (2), (4) and Theorem 6, one can deduce that the approximation ratio of OASS can be reduced
to 3

√
3

2 with the value of r properly chosen.
It is worth mentioning that OASS can offer the optimum solution even in the special case that

all representatives line up. In this case, OASS will deploy RNs between each pair of representatives
sequentially. Although Theorem 5 ensures that, at most three times, the minimum number of RNs are
required to restore the connectivity; in fact, OASS can achieve the optimum RNs deployment.

Theorem 7. The complexity of OASS is O(n log n).

Proof. The OASS consists of three-phase processes, which are Ad-Prim, OA and SSIC, respectively.
We give individual complexity analysis to prove that the complexity of OASS is O(n log n).
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In phase one, since Ad-Prim is an adapted construction algorithm for the MST with one rule that
circles formed by nodes on the same Ci should be ignored, and the complexity for Ad-Prim should be
no more than that of Prim, which is O(n log n) [25].

In phase two, OA discovers all obstacle–avoid paths in O(ε) while there are obstacles on MST,
where ε is an constant.

In phase three, SSIC employs straight skeletons within pchs as relay node deployment routes.
Suppose the number of pchis ∈ MST is k such that pchi

⋂
pchj = sl , where j = i + 1. Therefore, we

have ∑ |pchi| = n + k− 1 that implies there are n+k−1
k nodes for each pch on average. The construction

of a convex hull, which is a pch in our case, costs no more than O( n+k−1
k log n+k−1

k ) [29]. Thus, k convex
hulls will cost no more than O(k × n+k−1

k log n+k−1
k ) = O(n log n), where 2 ≤ k < n. In addition,

each straight skeleton is built with a cost no more than O(n log n) [28]. Since each straight skeletons
can be built when a pchi is established, all straight skeletons will be established with the complexity
of O(n log n).

To sum up, each phase of OASS costs no more than O(n log n); therefore, the complexity of OASS
is O(n log n).

5.2. Validation Experiment

We first give the comparison between the SMT and the straight skeleton in terms of the Euclidean
distance. Then, performance metrics and baseline approaches are introduced. At last, simulation
results and comparison of the generated topology quality are presented.

5.2.1. Comparison between the SMT and the Straight Skeleton

Our tests were built in Euclidean space on some of Soukup examples [26]. In Table 3, we compare
straight skeletons with Steiner Minimal Trees (SMTs). As illustrated in Table 3, the length of a straight
skeleton is infinitely approximating to that of an SMT in all cases.

Table 3. Steiner Minimal Tree (SMT) vs. Straight Skeleton.

Number of Soukup Example Number of Nodes SMT Straight Skeleton

EX.1 5 165.43 166.57

EX.2 6 155.06 156.04

EX.3 6 158.60 159.05

EX.4 6 130.15 131.03

EX.5 9 163.20 163.85

EX.6 9 128.50 129.10

EX.7 12 221.20 222.06

EX.8 14 122.02 122.64

EX.9 3 115.54 116.32

EX.10 10 164.26 165.20

EX.11 62 382.56 383.62

EX.12 14 172.30 173.23

EX.13 3 104.15 105.10

EX.14 5 182.92 183.05

EX.15 4 50.30 51.22



Sensors 2017, 17, 2299 15 of 19

5.2.2. Experiment Setup, Performance Metrics and Baseline Approaches

A simulation environment is implemented and validated in C++ environment on NS2.34.
The experiments are conducted in 2000 m × 2000 m square area. Over 200 sensor nodes are deployed
in this area. Overall, 30 random topologies in the given area are taken. For each topology, obstacles are
randomly scattered over the deployment area. It is observed that, with 95% confidence level, the results
are within 5–10% of the sample mean. The parameters and baseline approaches are introduced to
evaluate the performance of the proposed solution are listed as follows.

Communication range of relays (r): The performance of OASS is affected by r, basically longer
distances between components require more RNs.

Number of components (Nc): Intuitively, a large number of components require a larger
RN count.

Number of RNs (Nrn): A better approximation algorithm for the optimization of RN placement
require less RNs than other strategies.

We compare the performance of OASS with the following four baseline approaches. The first one
is ORNP [9] that employs the center of mass and 3-star to establish a relay node deployment route. The
second one is RLC-GBP [14],which is short for Restore Relay Lost Connectivity using zero Gradient
Based Point solution, deploys RNs toward a certain point of the deployment area. The third one is a
straight skeleton based approach, named GSR [12]. IO-DT [11], the fourth one, is based on Delaunay
triangulation.

ORNP: It is a two-phase algorithm. In phase one, 3-stars are constructed as many as possible.
In phase two, the center of mass (CoM) of all remaining components is calculated. Then, each 3-star
deploys RNs toward the CoM such that the connectivity is restored.

RRLC-GBP: It is one of Atc. Similar to OASS, RRLC-GBP uses an MST based algorithm to find all
representatives. Then, a distance function F with respect to the coordinates of each representative is
constructed in order to find a specific point zero gradient point p such that the total distance from all
representatives to p is minimized. At last, each representative deploys RNs toward the point p.

GSR: It is a straight skeleton based algorithm. According to the convex hull of all representatives,
only one straight skeleton is constructed. Then, based on the position of each representative, RNs are
populated along the straight skeleton until the connectivity is restored.

IO-DT: It is a three-phase algorithm. In phase one, the MST is built among all disjointed
components. In phase two, along the MST, the Delaunay triangulation is employed based on which
the Fermat weight of each triangle is calculated. In the last phase, according to the Fermat weight of
each triangle the corresponding edges of which are used for inter-triangle connections or inner-triangle
connections. Once the tree t that consists of triangles is built, RNs will deployed along t.

It is worth mentioning that ORNP, GSR and IO-DT don’t find the optimal solution to the
representative selection problem. According to Theorem 1, the tree t built by OASS is shorter than
that of ORNP, GSR and IO-DT. Furthermore, ORNP, RRLC-GBP, GSR and IO-DT assume that the
deployment area is flat without obstacles, which is not realistic. In summary, OASS is developed in
real scenarios with the presence of obstacles, the RNs required by which is less than ORNP, RRLC-GBP,
GSR and IO-DT due to the tree built by OASS is shorter and the proper selection on representatives as
well. Furthermore, compared with baseline approaches, OASS populates RNs around the obstacles in
the shortest way. In order to show the advantage in the number of RNs consumed of OASS, we use
OA to help all baseline approaches to avoid obstacles in our simulations.

5.2.3. Simulation Results and Comparison of the Generated Topology Quality

Several configurations with different combinations of Nc and r are simulated. We change the
value of Nc from 4 to 8, while r varies from 50 to 190 with increment of 20. The results of individual
experiments for 30 topologies are then averaged.

Figures 6 and 7 give the performance comparison between OASS and all baseline approaches,
and OA is employed by all approaches to avoid obstacles.
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Figure 6. The effect of varying r on the performance of OASS compared with all baseline approaches
w.r.t. (a) when Nc = 4; (b) when Nc = 6.
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Figure 7. The effect of varying Nc on the performance of OASS compared with all baseline approaches
w.r.t. (a) when r = 50 m; (b) when r = 190 m.

Figure 6a,b show the required number of RNs while varying node communication range with
Nc = 4 and Nc = 6, respectively. It is obvious that, as the communication range increases, RNs
required for each approach decrease. It is clear that RRLC-GBP consumes less RNs than ORNP due to
the fact that, compared with CoM, the zero gradient point is the point such that sum distance from all
representatives to which is minimized. This is also confirmed in the simulation results, as shown in
Figure 6a,b. Furthermore, the GSR shows better performance than ORNP, RRLC-GBP and IO-DT. The
reason for that is: (1) ORNP and RRLC-GBP, as Atcs, will repair the connectivity with a tree longer
than the straight skeleton built by GSR as proved earlier; (2) the structure established by IO-DT that
consists of 3-stars is similar to a straight skeleton; however, the RNs required are more than that of a
straight skeleton. The OASS shows an excellent result compared with ORNP, RRLC-GBP, GSR and
IO-DT as the communication range intensively increases. The reason is that a small count of RNs
is deployed from all representatives along the tree that consists of straight skeletons along with the
proper representative selection, as proved earlier.

Figure 7a,b show the required number of RNs while varying the number of representatives range
with r = 100 and r = 200, respectively. It is obvious that, as the number of representative increases,
the number of RNs required for each approach grows when r = 100 as shown in Figure 7a. However,
when r reach 200 m and Nc = 7, the RN count drops for all approaches as the Nc grows as shown in
Figure 7b. The reason for that is the dense population of components shortens the inter-component
distances, which implies that the RNs required are less. Again, Figure 7a,b confirm the advantage of
OASS over ORNP, RRLC-GBP, GSR and IO-DT in RN count as the number of components increases.

It is obvious that, in the best case (e.g., the topology consists of convex hulls, all straight skeletons
are not intersecting with obstacles), the OASS requires the minimum RN count. However, in the
worst case (i.e., the topology not only consists of convex hulls, some straight skeletons are inevitable
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intersecting with obstacles), Theorem 5 guarantees that the RN count required by OASS is only three
times that of the optimum.

We then give a comparison to show the topological advantages of OASS over RRLC-GBP in terms
of distance (i.e., hops between every pair of representatives), delivery latency and balanced traffic load
of the repaired network.

Distance (hops): Figure 8 shows the comparison on the resulting topologies obtained by OASS
and RRLC-GBP with the same setup. Accordingly, Table 4 presents the number of hops between every
two segments in both topologies. We assume bidirectional data delivery between two representatives
use the same path, where A denotes OASS as B denotes RRLC-GBP. Obviously, OASS deploys less
RNs to forward data than RRLC-GBP. Overall, OASS requires 152 hops for delivery between all pairs
of representatives, which is 22 hops less than that of RRLC-GBP. Therefore, OASS results in a shorter
topology, which implies that data delivery requires less overall latency than that of RRLC-GBP.

s1

s2

s3

s4

s5

s1

s2

s3

s4

s5

(a) (b)

r1

r2

r3 r4

obstacle

relay node

representative

Figure 8. The comparison of the resulting topologies obtained by (a) OASS and (b) Restore Relay Lost
Connectivity using zero Gradient Based Point solution (RRLC-GBP).

Table 4. OASS vs. Restore Relay Lost Connectivity using zero Gradient Based Point solution
(RRLC-GBP) in distance (hops).

Hops
s1 s2 s3 s4 s5

A B A B A B A B A B

s1 0 0 7 9 8 9 8 8 7 8

s2 7 9 0 0 5 10 9 9 8 9

s3 8 9 5 10 0 0 10 9 9 9

s4 8 8 9 9 10 9 0 0 5 7

s5 7 8 8 9 9 9 5 7 0 0

Sum 30 34 29 37 32 37 32 33 29 33

Ave. 6 6.8 5.8 7.4 6.4 7.4 6.4 6.6 5.8 6.6

Delivery latency: Since the delivery latency mostly results from data delivery via multi-hop links,
the more hops a link processes, the more delivery latency will be generated. According to Table 4, it is
obvious that the delivery latency of OASS is much less than that of RRLC-GBP.
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Balanced Traffic Load: As shown in Figure 8a, it is clear that each pair of representatives should
communicate with each other via relay nodes r1, r2 and r3, which serve as rendezvous points of each
communication path, while relay node r4 is responsible for all communications between each pair
of representatives as shown in Figure 8b. Statistically, about 32% of total traffic load are transferred
via relay nodes r1 and r3, respectively, while relay node r2 transfers 36% of which. However, 100%
traffic load are transferred via relay node r4. It is no doubt that r1, r2 and r3 scatter the traffic load of r4.
In addition, the advantage of OASS over RRLC-GBP is quite obvious because the relay node as r4 will
die much earlier than other newly deployed ones that require another time of relay node deployment
at the position where r4 is located sooner or later.

6. Conclusions

The connectivity has significance in WSNs. Once the connectivity is lost, relay nodes are deployed
to build an SMT such that the inter-component connection is reestablished. Most of the previous works
assumed that the deployment area is flat without obstacles. However, it is not realistic. A lot of existing
strategies chose the representative of each component in a random way or in the shortest-distance
based manner. Both ways of representative selection could potentially increase the length of the SMT
such that more RNs are required. In this paper, we propose a novel connectivity restoration strategy
OASS, which employs both the polygon based representative selection with the presence of obstacles
and the straight skeleton based SMT establishment. The OASS is proved to be a 3-opt approximation
algorithm with the complexity of O(n log n), and the approximation ratio can reduce to 3

√
3

2 while it
satisfies a certain condition. The theoretical analysis and simulations show that the performance of
the OASS is better than other strategies in terms of the relay count and the quality of the established
topology (i.e., distances between components, delivery latency and balanced traffic load) as well.

Although the OASS is a highly efficient algorithm, it is designed only for connectivity restoration
problems in two-dimensional scenarios. In addition, if the deployment area is full of obstacles, then the
OASS may not place the least number of relay nodes to restore the connectivity. In the future, we should
address the three-dimensional connectivity restoration problem with the presence of massive obstacles.
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