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Abstract: Navigation accuracy is one of the key performance indicators of an inertial navigation 
system (INS). Requirements for an accuracy assessment of an INS in a real work environment are 
exceedingly urgent because of enormous differences between real work and laboratory test 
environments. An attitude accuracy assessment of an INS based on the intensified high dynamic 
star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the 
coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude 
assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the 
above systematic coordinate errors based on the constrained least squares (CLS) method is 
proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with 
that of the INS because their reference frames are completely different. Thereafter, the decoupling 
estimation model of the systematic coordinate errors is established and the CLS-based optimization 
method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy 
of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight 
experiments of aircraft are conducted, and the experimental results demonstrate that the proposed 
method is effective and shows excellent performance for the attitude accuracy assessment of an INS 
in a real work environment. 

Keywords: inertial navigation system; attitude accuracy assessment; intensified high dynamic star 
tracker; installation error; misalignment error; decoupling estimation model; constrained least 
squares 

 

1. Introduction 

An inertial navigation system (INS) can provide the position, velocity, and attitude knowledge 
of a carrier. It is an autonomous navigation system which does not rely on any external information 
or radiate energy to the outside, and thus it has been widely used in the military and civil fields [1–
5]. Navigation accuracy is always one of the key performance indicators of an INS. In order to 
improve navigation accuracy, the error parameters of an INS should be accurately calibrated before 
its official use. The commonly used laboratory calibration methods are the multi-position method 
and its various improved methods [6–8]. However, when an INS works in a real dynamic 
environment, particularly for aircraft or other high maneuverability carriers, there always exist 
enormous differences between the real work and laboratory test environments. This will make the 
credibility of the accuracy assessment of an INS in the laboratory test environment decrease 
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remarkably. Given that, the requirements for an accuracy assessment of an INS in a real complex 
dynamic environment are exceedingly urgent. So far, high-accuracy speed and position benchmarks 
can be provided by global positioning system (GPS) [9,10], and thus an accuracy assessment of the 
speed and position of an INS can be realized by comparing the output information of the INS with 
that of the GPS. However, a high-accuracy attitude benchmark in a real complex dynamic 
environment is still unavailable. 

A star tracker is used to determine the attitude of a carrier by matching observation stars in the 
field of view (FOV) and guide stars in the star catalogue. A star tracker can reach an attitude 
accuracy on the arc-seconds level, and it also has the characteristic of being drift-free [11–13]. Given 
that, a star tracker can be used as a potential benchmark for an attitude accuracy assessment of an 
INS. However, the traditional star tracker is only suitable for approximate static conditions. Under 
dynamic conditions, a star spot continuously moves and forms a smeared star streak because of the 
long exposure time of the traditional star tracker. This will make the star spot energy disperse and 
the signal-to-noise ratio decrease, thus reducing the attitude accuracy and even failing to output the 
attitude information [14,15]. Fortunately, the dynamic performance of star trackers has been 
significantly improved in recent years with the development of photodetectors [16–18] and through 
progress in the dynamic performance-related algorithms of star trackers [19–24]. At present, the 
latest intensified high dynamic star tracker (IHDST) developed by the authors has reached an 
attitude accuracy on the arc-seconds level in a dynamic condition of up to 25°/s [25,26]. The IHDST 
can be used as the benchmark for an attitude accuracy assessment of an INS, which is particularly 
suitable for a real complex dynamic environment. 

However, the systematic coordinate errors of an INS and IHDST, including the installation 
error between the INS and IHDST as well as the misalignment error of the INS, severely decrease the 
accuracy of the above assessment method, and the effects of the above two errors are coupled. In an 
integrated navigation system of an INS and a star tracker, the measurement models of the above two 
are known. Therefore, the existing method tends to utilize the above measurement models to 
establish the equations of the Karman filter or other similar filters and then estimate the systematic 
coordinate errors [27]. However, in this study, an attitude accuracy assessment of an INS based on 
the IHDST is the subject of concern. The INS becomes the assessed object, whose measurement 
model is unknown. At this time, the existing filter estimation methods are no longer applicable. 
Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors 
based on the constrained least squares (CLS) method is proposed in this paper. This method only 
utilizes the attitude data of an INS and IHDST to accurately estimate the above two errors without 
knowledge of the measurement models of the INS and IHDST. Since INSs and IHDSTs have 
completely different reference frames, the reference frame of the IHDST should be firstly converted 
to be consistent with that of the INS. Thereafter, the decoupling estimation model of the above two 
errors is established, and the CLS-based optimization method is then utilized to estimate them 
accurately. After compensating for the above two errors, the attitude accuracy of the INS can be 
ultimately assessed by using the IHDST as the attitude benchmark. Moreover, since the decoupling 
estimation model established and the CLS-based optimization method utilized can estimate the 
installation and misalignment errors accurately, the proposed method is also suitable for improving 
the accuracy of an INS and star tracker integrated navigation system [27–29]. 

The remainder of this paper is organized as follows. The unified principle of reference frames of 
the IHDST and an INS is deduced in Section 2. Section 3 details the decoupling estimation model 
and the CLS-based optimization method, which are utilized to estimate installation and 
misalignment errors accurately. Both simulated experiments and real flight experiments of an 
attitude accuracy assessment of an INS based on the IHDST are conducted in Section 4, and the 
experimental results demonstrate the feasibility and effectiveness of the proposed method. Finally, 
conclusions are drawn in Section 5. 
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2. Unified Principle of Reference Frame 

The reference frame of the IHDST is entirely different from that of an INS due to their different 
measurement principles. Therefore, the reference frame of the IHDST should be converted to be 
consistent with that of an INS before the attitude accuracy assessment of the INS. The relevant 
coordinate frames are firstly defined for convenience, and then the conversion principle of a 
reference frame is deduced based on them. 

2.1. Coordinate Frame Definition 

The coordinate frames involved in this paper are shown in Figure 1, and they are defined as 
follows: 

(1) The inertial frame OeXiYiZi (i-frame). The J2000.0 celestial coordinate frame, which is 
established at 12 terrestrial dynamical time on 1 January 2000, is selected as the inertial frame in this 
paper. The origin Oe is set at the center of the earth; the Zi-axis is normal to the equatorial plane and 
points towards the north celestial pole; the Xi-axis lies in the equatorial plane and points towards the 
vernal equinox at the establishment time; and the Yi-axis completes a right-handed orthogonal 
frame. The inertial frame is the reference frame of the IHDST. 

(2) The earth fixed frame OeXeYeZe (e-frame). This frame is fixed with the earth and thus remains 
stationary relative to the earth. The origin Oe is set at the center of the earth; the Ze-axis is normal to 
the equatorial plane and points towards the north celestial pole; the Xe-axis lies in the equatorial 
plane and points towards the prime meridian at the observation time; and the Ye-axis completes a 
right-handed orthogonal frame. 

(3) The navigation frame OnXnYnZn (n-frame). This frame is a local vertical frame and it is related 
to the local geographic latitude and longitude. The origin On is set at the location of the carrier. The 
Xn-axis points towards the north, the Yn-axis points towards the east, and the Zn-axis points 
downwards. The navigation frame is the reference frame of an INS. 

(4) The IHDST frame OsXsYsZs (s-frame). The Xs- and Ys-axes are parallel to the two vertical edges 
of the detector plane, respectively, the Zs-axis is along the boresight of the IHDST and points 
outwards, and the three axes satisfy the right-hand rule. 

(5) The INS frame OgXgYgZg (g-frame). The three axes are in accordance with the sensitive 
directions of the gyro triad and the accelerometer triad of the INS, and they complete the 
right-handed frame. 

 

Figure 1. Relative position relations of the coordinate frames. INS: inertial navigation system. 
IHDST: intensified high dynamic star tracker. 
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2.2. Reference Frame Conversion 

As previously described, the inertial and navigation frames are the reference frames of the 
IHDST and INS, respectively. Therefore, the reference frame of the IHDST should be converted from 
the i-frame to the n-frame before an attitude accuracy assessment of the INS. The reference frame 
conversion can be divided into two steps, namely, the first step from the i-frame to the e-frame and the 
second step from the e-frame to the n-frame. 

2.2.1. Conversion from the i-frame to the e-frame 

In theory, the conversion from the i-frame to the e-frame can be realized merely depending on the 
earth’s rotation from the epoch of J2000.0 to the observation time t. However, besides the rotation 
movement of the earth, its rotation axis is also moving constantly in the i-frame due to the influence 
of other celestial bodies (e.g., the sun and the moon) as well as the irregularity of the earth itself [30]. 
Figure 2 shows the motion of the earth’s axis. Firstly, the north celestial pole revolves around the 
north ecliptic pole clockwise with a radius of the obliquity ε due to the mutual motion of the 
equatorial plane and the ecliptic plane, and the rotation period is about 25,770 years. Given that, a 
small west movement about 50.290˝ of the vernal equinox is generated every year. This movement is 
referred to as the precession. Besides that, the north celestial pole also has a small periodic elliptical 
swinging mainly because of the gravitation of the sun, the moon, and other celestial bodies to the 
earth. This movement is referred to as the nutation, and its period is about 18.6 years. Lastly, the 
polar motion of the earth also exists, but this kind of motion is quite small and thus can be ignored in 
this paper. 

 

Figure 2. Motion of the earth’s axis. 

In summary, the earth’s rotation as well as the precession and nutation should be considered 
and compensated for, thus accurately realizing the conversion from the i-frame at the epoch of 
J2000.0 to the e-frame at the observation time t. Firstly, the mean celestial coordinate frame 
OeXimYimZim (im-frame) is obtained when the precession is compensated to the i-frame. The celestial 
pole, the celestial equator, and the vernal equinox corresponding to the im-frame are referred to as the 
mean celestial pole, the mean celestial equator, and the mean vernal equinox, respectively. 
Subsequently, the instantaneous celestial coordinate frame OeXitYitZit (it-frame) at the observation 
time t can be obtained when the nutation is compensated to the im-frame. The it-frame is established by 
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using the instantaneous north celestial pole as the base point, the instantaneous celestial equator as 
the base circle, and the instantaneous vernal equinox as the principal point, respectively. Lastly, the 
e-frame at the observation time t can be obtained when the earth’s rotation is compensated to the 
it-frame. 

Let P(t), N(t), and R(t) be the precession, nutation, and earth rotation matrices, respectively, and 
then the preceding frame conversions can be expressed as follows [30]: 

           
           = = =           
                      

( ) ,    ( ) ,    ( ) .
im i it im e it

im i it im e it

im i it im e it

X X X X X X
Y P t Y Y N t Y Y R t Y
Z Z Z Z Z Z

 

(1) 

1) Precession Matrix 

The precession matrix in Equation (1) can be entirely determined by the three rotation matrices, 
and its expression is as follows:  

Z( ) ( z ) ( ) ( ),Z A Y A AP t R R Rθ ζ= − ⋅ ⋅ −  (2) 

where ζA, θA, and zA are the precession parameters of the IAU2000 precession model [30], and RZ and 
RY are the matrices rotated around the Z- and Y-axes, respectively. Let δ be the rotation angle, and 
then the matrices rotated around the X-, Y-, and Z-axes can be expressed as follows: 

1 0 0 0
0 0 1 0
0 0

0
0

0 0 1

δ δ
δ δ δ δ

δ δ δ δ
δ δ

δ δ δ

   − 
   = =   
   −   
 
 = − 
  

cos( ) sin( )
( ) cos( ) sin( ) ,  ( ) ,

sin( ) cos( ) sin( ) cos( )

cos( ) sin( )
( ) sin( ) cos( ) .

X Y

Z

R R

R

. 

(3) 

2) Nutation Matrix 

Similarly, the nutation matrix N(t) can also be entirely determined by the three rotation 
matrices, and its expression is as follows [30]:  

ε ε ψ ε= − − Δ ⋅ −Δ ⋅( ) ( ) ( ) ( ),X Z XN t R R R  (4) 

where ε, Δψ, and Δε are the obliquity, the longitude nutation, and the obliquity nutation in the 
IAU2000B nutation model, respectively [30,31]. 

3) Earth Rotation Matrix 

The earth rotation matrix R(t) is entirely determined by the Greenwich hour angle of the 
instantaneous vernal equinox (namely, βG), and its expression is as follows [30]: 

( ) ( ).Z GR t R= β  (5) 

In summary, the conversion from the i-frame at the epoch of J2000.0 to the e-frame at the 
observation time t can be realized in three steps according to Equation (1), and the total conversion 
expression is as follows: 

   
   = =   
      

C ( ) ,     C ( ) ( ) ( ) ( ),
e i

e e
e i i i

e i

X X
Y t Y t R t N t P t
Z Z

 

(6) 
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where C ( )e
i t is the total rotation matrix from the i-frame to the e-frame, and P(t), N(t), and R(t) are 

determined according to Equations (2)–(5). 

2.2.2. Conversion from the e-frame to the n-frame 

As shown in Figure 1, the conversion from the e-frame to the n-frame can be realized merely 
depending on the longitude (λ) and latitude (φ) of the IHDST and INS at the observation time t. The 
corresponding conversion relation can be expressed as 

   
   =   
      

C ( ) ,
n e

n
n e e

n e

X X
Y t Y
Z Z

 

(7) 

where C ( )n
e t is the rotation matrix from the e-frame to the n-frame, and its expression, which is entirely 

determined by the three rotation matrices, can be written as 

180 90

0

ϕ λ
ϕ λ ϕ λ ϕ

λ λ
ϕ λ ϕ λ ϕ

= ° ⋅ ° − ⋅
− − 
 = − 
 − − − 

C ( ) ( ) ( ) ( )
sin cos sin sin cos

        sin cos .
cos cos cos sin sin

n
e Y Y Zt R R R

 

(8) 

According to Equations (6) and (7), the total conversion from the i-frame at the epoch of J2000.0 
to the n-frame at the observation time t can be expressed as 

   
   =   
      

C ( )C ( ) .
n i

n e
n e i i

n i

X X
Y t t Y
Z Z

 

(9) 

Let ( )s
iQ t be the original attitude matrix of the IHDST with respect to the i-frame at the 

observation time t. Then, the conversion attitude matrix ( )s
nQ t of the IHDST with respect to the 

n-frame can be obtained according to Equation (9). At this time, the reference frame of the IHDST has 
been converted to be consistent with that of the INS, and the corresponding conversion can be 
expressed as 

 = = ⋅  
T

( ) ( )C ( )C ( ) ( ) C ( )C ( ) .s s i e s n e
n i e n i e iQ t Q t t t Q t t t

 
(10) 

3. Decoupling Estimation of the Systematic Coordinate Errors of an INS and IHDST 

As mentioned earlier, the reference frame of the IHDST has been converted from the i-frame to 
the n-frame based on Equation (10), and the original attitude matrix ( )s

iQ t of the IHDST has been 

accordingly transformed into the attitude matrix ( )s
nQ t with respect to the n-frame. Meanwhile, the 

reference frame of the INS is the n-frame, and thus its original attitude matrix is ( )g
nQ t . In theory, the 

attitude matrix ( )s
nQ t of the IHDST can be directly used as the benchmark to assess the accuracy of 

the attitude matrix ( )g
nQ t of the INS. However, the actual coordinate frames of the IHDST and INS 

(i.e., the s-frame and the g-frame) cannot be exactly the same, and there always exists an installation 
error between the two. The installation error is the systematic error, and it must be compensated for, 
thus improving the assessment accuracy. Furthermore, according to the characteristics of the INS, its 
attitude error is mainly comprised of a misalignment error and an inertial instrument error. The 
former is the systematic error, and it should be accurately estimated and compensated for. The 
above two systematic coordinate errors severely decrease the accuracy of the assessment method, 
and their effects are coupled. Given that, a high-accuracy decoupling estimation method of the 
above two systematic coordinate errors based on CLS is proposed in this paper. The decoupling 
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estimation model of the above two errors is first established, and then the CLS-based optimization 
method is utilized to estimate them accurately. Finally, the attitude accuracy of the INS can be 
assessed quantitatively after compensating for the above two errors. 

3.1. Decoupling Estimation Model 

Let g
sB be the installation error matrix from the s-frame to the g-frame. Then, the truth matrix 

 ( )g
nQ t of an INS can be derived from the attitude matrix ( )s

nQ t of the IHDST as follows:  

= ( ) ( ).g g s
n s nQ t B Q t  (11) 

Since the calculation of the attitude matrix is relatively complicated, it is necessary to transform 
the attitude matrix into its entirely equivalent attitude quaternion, thus simplifying the related 
intermediate calculation. Given that, the truth matrix  ( )g

nQ t  is transformed into the truth 

quaternion  ( )g
nq t , the original attitude matrix ( )g

nQ t  of the INS is transformed into the original 

attitude quaternion ( )g
nq t , and the installation error matrix g

sB  is transformed into the installation 

error quaternion g
sb , respectively. On this basis, Equation (11) can be converted to its quaternionic 

expression: 

= ⊗ ，( ) ( )g gs
n n sq t q t b  (12) 

where “ ⊗ ” represents quaternionic multiplication. If the measurement moment t is selected as t=ti 
(i=1, 2, 3, …, N), the corresponding loss function La can be expressed as 

2 2

1 1= =

= − = − ⊗ ( ) ( ) ( ) ( ) .
N N

g g g gs
a n i n i n i n i s

i i
L q t q t q t q t b

 
(13) 

In theory, the optimal estimation ˆg
sb  of the installation error quaternion can be obtained when 

La takes its minimum value. However, besides the installation error between the INS and the IHDST, 
there also exists the misalignment error of the INS, and the effects of the above two errors are 
mutually coupled. The optimal estimation ˆg

sb  cannot be obtained any more when merely 
depending on the loss function La in Equation (13). Figure 3 shows the complete transformation 
relations of the coordinate frames. The original attitude quaternion of the INS is not ( )g

nq t , but ′( )g
nq t

, where n and n´ represent the ideal navigation frame (n-frame) and the real navigation frame 
(n´-frame), respectively, and the misalignment error quaternion ′n

nr  (its entirely equivalent matrix is 
′n

nR ) always exists between the two frames. 

( )g g
s sB b

( )n n
n nR r′ ′

( ) [ ( )]s s
n nQ t q t

( ) [ ( )]g g
n nQ t q t′ ′

 

Figure 3. Complete transformation relations of coordinate frames. 
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After compensating for misalignment error, the attitude quaternion of the INS can be expressed 
as 

′
′= ⊗( ) ( ).g gn

n n nq t r q t  (14) 

By substituting Equation (14) into (13), the complete loss function Lb, including the 
misalignment error quaternion ′n

nr and the installation error quaternion g
sb , can be expressed as 

2 2

1 1

′
′

= =

= − = ⊗ − ⊗ ( ) ( ) ( ) ( ) ,
N N

g g g gn s
b n i n i n n i n i s

i i
L q t q t r q t q t b

 
(15) 

where 

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

′

′

=   =     

=   =     

T T

T T

( ) ,   ( ) ,

,   ,   =1, 2, 3, ..., ,

g s
n i i i i i n i i i i i

gn
n s

q t y y y y q t x x x x

r r r r r b b b b b i N
 

(16) 

and 
2 2 2 2 2 2 2 2

0 1 2 3 0 1 2 31 1+ + + = + + + =,    .r r r r b b b b  (17) 

Equations (15)–(17) represent the decoupling estimation model of the installation and 
misalignment errors. 

3.2. CLS-Based Optimization Method 

Equations (15) and (17), which are the objective function and the equality constraints 
respectively, constitute a typical CLS problem. By means of equivalent transformation, the equality 
constraints in Equation (17) can be rewritten as 

2 2 2 2
1 0 1 2 3

2 2 2 2
2 0 1 2 3

1 0
1 0

= + + + − =
= + + + − =

,   
.

h r r r r
h b b b b  

(18) 

The objective function Lb in Equation (15) is calculated, and the result is equal to the square sum 
of the quaternion deviations at N measurement moments. For the moment ti, the corresponding 
quaternion deviation can be expressed as 

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

1 0 0 1 3 2 2 3 1 0 0 1 3 2 2 3

2 0 3 1 0 2 1 3 2 0 3 1 0 2 1 3

3 0 2 1 1 2 0

′
′Δ = ⊗ − ⊗

− − − − + + +
+ − + − − − +
+ + − − + − −
+ + +

( ) ( )

       =

g gn s
i n n i n i s

i i i i i i i i

i i i i i i i i

i i i i i i i i

i i i i

q r q t q t b
r y r y r y r y b x b x b x b x
r y r y r y r y b x b x b x b x
r y r y r y r y b x b x b x b x
r y r y r y r y 3 3 0 2 1 1 2 0 3

 
 
 
 
 

− − + −  

.

i i i ib x b x b x b x  

(19) 

The above quaternion deviation Δqi contains a total of four components, each of which consists 
of eight cross terms. When calculating the square sum of the 4 components of Δqi, each component 
can generate 8 square terms and 28 cross-product terms, and thus 4 components totally generate 32 
square terms and 112 cross-product terms. The sum Σi,sq of all the 32 square terms can be derived as 
follows:  

2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 3

2 2 2 2 2 2 2 2
0 1 2 3 0 1 2 3

Σ = + + + ⋅ + + +

+ + + + ⋅ + + +
× ×

, ( ) ( )

        ( ) ( )
         =1 1+1 1=2.

i sq i i i i

i i i i

r r r r y y y y

b b b b x x x x

 

(20) 

When calculating the sum Σi,cro of all the 112 cross-product terms and combining the similar 
terms, the expression of the ultimate result can be simplified as 

1 2 3 4Σ = Σ + Σ + Σ + Σ, , , , , ,i cro i cro i cro i cro i cro  (21) 

where  
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1 0 0 00 11 22 33 0 1 01 10 23 32

0 2 02 13 20 31 0 3 03 12 21 30

2 2
2 2

Σ = ⋅ − − − − + ⋅ − + −
+ ⋅ − − + + ⋅ + − −

, ( ) ( )
( ) ( ),

i cro i i i i i i i i

i i i i i i i i

b r d d d d b r d d d d
b r d d d d b r d d d d  

(22) 

2 1 0 10 01 32 23 1 1 11 00 33 22

1 2 12 03 30 21 1 3 13 02 31 20

2 2
2 2

Σ = ⋅ − − + + ⋅ − − + +
+ ⋅ − − − − + ⋅ − + − +

, ( ) ( )
( ) ( ),

i cro i i i i i i i i

i i i i i i i i

b r d d d d b r d d d d
b r d d d d b r d d d d  

(23) 

3 2 0 20 31 02 13 2 1 21 30 03 12

2 2 22 33 00 11 2 3 23 32 01 10

2 2
2 2

Σ = ⋅ + − − + ⋅ − + + −
+ ⋅ − + − + + ⋅ − − − −

, ( ) ( )
( ) ( ),

i cro i i i i i i i i

i i i i i i i i

b r d d d d b r d d d d
b r d d d d b r d d d d  

(24) 

4 3 0 30 21 12 03 3 1 31 20 13 02

3 2 32 23 10 01 3 3 33 22 11 00

2 2
2 2

Σ = ⋅ − + − + ⋅ − − − −
+ ⋅ − − + + + ⋅ − + + −

, ( ) ( )
( ) ( ),

i cro i i i i i i i i

i i i i i i i i

b r d d d d b r d d d d
b r d d d d b r d d d d  

(25) 

and 

0 1 2 3 0 1 2 3= = =,   , , , ,    , , , .ijk ij ikd x y j k
 (26) 

When the above results at moment ti are extended to all the N measurement moments, the 
expression of the objective function Lb in Equation (15) can be derived as follows: 

( )
( )

2

1 1

1 2 3 4
1

2

′
′

= =

=

= ⊗ − ⊗ = Σ + Σ

= + Σ + Σ + Σ + Σ

 



, ,

, , , ,

( ) ( )

    ,

N N
g gn s

b n n i n i s i sq i cro
i i

N

i cro i cro i cro i cro
i

L r q t q t b

N
 

(27) 

where Σi,cro1, Σi,cro2, Σi,cro3, and Σi,cro4 are determined by Equations (22)–(26). 
After the preceding calculations, the optimal estimations ˆg

sb and ′ˆn
nr can be obtained 

simultaneously when Lb in Equation (27) takes its minimum value under the condition of Equation 
(18). Defining the coefficient vector as [λ1 λ2]T, the Lagrange function can be constructed as [32] 

1 1 2 2 0 1 2 3λ λ λ= + ⋅ + ⋅ =( , , ) ,    , , , ,   =1,2.j j k bl b r L h h j k
 (28) 

Therefore, ˆg
sb and ′ˆn

nr should satisfy the following Lagrange condition [32]: 

0 0 0 0 1 2 3
λ

∂ ∂ ∂= = = =
∂ ∂ ∂

,  ,  ,    , , , ,   =1,2.
j j k

l l l j k
b r

 
(29) 

Equation (29) contains a total of 10 sub equations. The last two are obtained by solving the 
partial derivatives of a Lagrange function l relative to λk (k=1, 2), and they are exactly the same as 
Equation (18). The other eight are the partial derivatives relative to bj and rj (j=0, 1, 2, 3), and they can 
be reorganized as follows: 

1λ⋅ = − ⋅ ,V R B  (30) 

2λ⋅ = − ⋅T ,V B R  (31) 

whose matrix component forms are expressed as 

11 12 13 14 0 0

21 22 23 24 1 1
1

1 31 32 33 34 2 2

41 42 43 44 3 3

λ
=

     
     
     ⋅ = −
     
     
          

 ,

i i i i
N

i i i i

i i i i i

i i i i

v v v v r b
v v v v r b
v v v v r b
v v v v r b  

(32) 
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11 12 13 14 0 0

21 22 23 24 1 1
2

1 31 32 33 34 2 2

41 42 43 44 3 3

λ
=

     
     
     ⋅ = −
     
     
          



T

,

i i i i
N

i i i i

i i i i i

i i i i

v v v v b r
v v v v b r
v v v v b r
v v v v b r  

(33) 

where 

11 00 11 22 33 12 01 10 23 32

13 02 13 20 31 14 03 12 21 30

21 10 01 32 23 22 11 00 33 22

23 12 03 30 21 24 13

= − − − − = − + −
= − − + = + − −
= − − + = − − + +
= − − − − = −

,    ,
,    ,
,    ,

,    

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i

v d d d d v d d d d
v d d d d v d d d d
v d d d d v d d d d
v d d d d v d 02 31 20

31 20 31 02 13 32 21 30 03 12

33 22 33 00 11 34 23 32 01 10

41 30 21 12 03 42 31 20 13 02

43 32 23 10

+ − +
= + − − = − + + −
= − + − + = − − − −
= − + − = − − − −
= − − + +

,
,    ,

,    ,
,    ,

i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i

d d d
v d d d d v d d d d
v d d d d v d d d d
v d d d d v d d d d
v d d d 01 44 33 22 11 00= − + + −,    .i i i i i id v d d d d  

(34) 

In theory, ˆg
sb and ′ˆn

nr , as well as [λ1 λ2]T, can be entirely determined by combining Equations (18), 
(30), and (31). However, the above equations are nonlinear, thus resulting in the solution process 
being quite complicated. Given that, proper equivalent transformations are conducted on Equations 
(30) and (31) for a calculation simplification. By multiplying the coefficient λ2 on both sides of 
Equation (30) and then substituting Equation (31) into it, the result can be derived as 

1 2 2λ λ λ− ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅（ ） （ ） ，T T= = =B V R V V B V V B  (35) 

namely,  

1 2λ λ⋅ = ⋅ = ⋅ T( ) ,    .P B B P V V  (36) 

Similarly, when multiplying the coefficient λ1 on both sides of Equation (31) and then 
substituting Equation (30) into it, the result can be derived as 

1 2λ λ⋅ = ⋅ = ⋅T( ) ,    .Q R R Q V V  (37) 

The norms of B and R are equal to 1, and thus they are both four-dimensional nonzero vectors. 
According to Equations (36) and (37), B and R can be considered as the eigenvectors, which belong 
to the eigenvalue λ1λ2 of the matrices P and Q, respectively. Since the Lagrange condition described 
in Equation (29) is only necessary, not sufficient, all of the four eigenvectors of P and Q should be 
solved and then used to calculate the objective function Lb in Equation (27). The optimal estimations
ˆg

sb and ′ˆn
nr can be obtained by the eigenvectors B* and R*, which make Lb take its minimum value. The 

expressions are as follows: 

0 1 2 3 0 1 2 3
′   = = = =   

T T* * * * * * * * * *ˆ ˆ,    .g n
s nb B b b b b r R r r r r

 
(38) 

As previously described, ˆg
sb and ′ˆn

nr can be transformed into their entirely equivalent attitude 

matrices ˆ g
sB and ′ˆ n

nR , respectively. After compensating for the installation error, the truth matrix
 ( )g

nQ t of the INS with respect to the n-frame can be derived from the attitude matrix ( )s
nQ t of the 

IHDST, which is shown in Equation (11). Meanwhile, after compensating for the misalignment error, 
the measurement attitude matrix ( )g

nQ t of the INS can also be expressed as 

′
′= ⋅ ˆ( ) ( ) ,g g n

n n nQ t Q t R  (39) 

where ′ ( )g
nQ t is the original attitude matrix of the INS. 
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Although the attitude matrix or quaternion can clearly represent the rotation relation, they do 
not have any dimension, and each component does not have any independent physical meaning 
either. Given that, the ultimate output attitude parameters are transformed into the three-axis Euler 
angles in degrees (°), which are entirely equivalent to the attitude matrix or quaternion. In this study, 
the three-rotation order is defined as Z-Y-X (i.e., 3-2-1), and the corresponding Euler angles are 
referred to as yaw (φ), pitch (θ), and roll (γ), respectively. 

Let the truth Euler angles of an INS according to Equation (11) and the measurement Euler 
angles of the INS according to Equation (39) be γ θ ϕ ( , , )s s s and θ ϕ( , , )g g gr , respectively. Then, the 

absolute measurement errors (AMEs) of the attitude parameters of the INS based on Euler angles 
can be expressed as follows: 

γ γ θ θ θ ϕ ϕ ϕΔ = − Δ = − Δ = − ,  ,  .g g s g g s g g sr  (40) 

4. Experiments and Discussion 

Both simulated and real experiments are conducted in this section to verify the feasibility and 
effectiveness of the proposed method. 

4.1. Simulated Experiments 

In order to verify the accuracy performance of the decoupling estimation method for 
systematic coordinate errors proposed in this paper, simulated experiments are conducted in this 
section. Firstly, the truth Euler angles of the installation error (γB, θB, φB) and the misalignment error 
(γR, θR, φR) are randomly generated as (0.4572, −0.0146, 0.3003) and (−0.0782, 0.4157, 0.2922) in 
degrees (°), respectively. Then, the initial attitude 0( )s

nq t  of the IHDST is randomly generated, and 

the subsequent attitude ( )s
nq t  of the IHDST can be derived according to the preset motion 

condition. The sampling frequency of the IHDST is set as 25 Hz, and the total simulated time is set 
as 300 s. Subsequently, According to Equations (12) and (14), the attitude ( )g

nq t′  of the INS can be 

determined on the basis of ( )s
nq t , (γB, θB, φB) and (γR, θR, φR). Lastly, Gaussian noises are added to the 

attitude data of the IHDST and the INS, respectively, to simulate the random error. The Gaussian 
noise of the IHDST is set to zero mean and 5×N arc-seconds (‘’) standard deviation in 1σ, while the 
Gaussian noise of the INS is set to zero mean and 0.01×N ° standard deviation in 1σ, where N is the 
Noise size factor, and it is set as 1, 2, 3, 4, 5, respectively. At this time, the proposed decoupling 
estimation method can be utilized to estimate the installation and misalignment errors. Each set of 
simulations is repeated five times, and the mean values of the five times are outputted as the 
ultimate estimation results. Figure 4 and Figure 5 show the absolute values of the estimation errors 
of the installation and misalignment errors, respectively, which are all less than 2×10-3 ° regardless 
of the size of the Gaussian noise. 

 
Figure 4. The absolute values of the estimation errors (|δγB|, |δθB|, |δφB|) of the installation error. 
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2×10-3 |δγR||δθR||δφR|
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(|δγ R|, 

|δθ R|,|δ
φ
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Noise size factor N  

Figure 5. The absolute values of the estimation errors (|δγR|, |δθR|, |δφR|) of the misalignment error. 

4.2. Real Experiments 

In order to further validate the feasibility and effectiveness of the proposed method, real 
assessment experiments of attitude accuracy of an INS based on the IHDST, which is self-developed 
in this study, are conducted under an actual flight environment of an aircraft. Figure 6 shows the 
self-developed IHDST, and Table 1 lists its main performance specifications. 

Table 1. Main performance specifications of the IHDST. 

Parameter Value
Accuracy (´´) <1 (pointing), <10 (rolling) (1σ) 

Sensitivity (Mv) 9.0 
Maximum angular rate (°/s) 25 

FOV (°) 20×20 
Update rate (Hz) 25 

Power consumption (W) 5 
Weight including baffle (kg) 1.4 

Dimensions including baffle (mm) 130×130×285 
FOV: field of view. 

 

Figure 6. Self-developed IHDST. 
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Figure 7 shows all of the experimental equipment. The selected test aircraft is shown in Figure 
7a, and the Xb-, Yb-, and Zb-axes of its body frame (b-frame) are along the fuselage, wing, and vertical 
upward directions, respectively. The assessment setup, including the INS and IHDST, is stably 
mounted in the test aircraft, ensuring that the s-frame and g-frame are consistent with the b-frame as 
much as possible, which is shown in Figure 7b. The assessment experiments were conducted on a 
clear night without moonlight interference. After taking off, the test aircraft climbed up to a height of 
about 3000 meters (m) and then completed the flight of figure “8”, thus making the INS sufficiently 
convergent. Subsequently, the test aircraft climbed up to a height of about 4000 m and then 
completed various operations (i.e., level flight, sideward flight, and flight of figure “8”) according to 
the preset flight plan. Finally, the test aircraft fell back to the height of about 3000 m and maintained 
level flight for some time. The flight velocity of the test aircraft was about 250–320 kilometers per 
hour (km/h). These flight operations can make the assessment setup, including the INS and IHDST, 
experience a variety of maneuvering conditions, thus fully verifying the accuracy performance of the 
INS under real maneuvering environments. 

 

Figure 7. Experimental equipment. (a) Test aircraft; (b) Assessment setup mounted in the test 
aircraft. 

After the experiments, the test aircraft landed at the airport, and then the experimental attitude 
data of the INS and IHDST recorded in the memory was read out and analyzed. Figure 8 shows the 
raw three-axis Euler angles obtained by the INS and IHDST, respectively. (γs, θs, φs) are the raw data 
of the IHDST with respect to the i-frame, while (γg, θg, φg) are the raw data of the INS with respect to 
the n-frame. The correlation characteristic between the above two groups of data cannot be directly 
analyzed from Figure 8. Given that, the reference frame of the IHDST should be converted from the 
i-frame to the n-frame according to the preceding principle in this study. The converted data of the 
IHDST and the raw data of the INS can be plotted in the same figure, which is shown in Figure 9. 
After the conversion, the above two groups of data have a significant correlation characteristic in 
attitude variation. 
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Figure 8. Raw three-axis Euler angles of the INS and IHDST. 

 

Figure 9. Converted data of the IHDST and raw data of the INS. 

As previously described, the IHDST can be used as the benchmark for an attitude accuracy 
assessment of the INS. The AMEs of Euler angles of the INS before and after the proposed 
decoupling estimation of and compensation for the systematic coordinate errors are shown in Figure 
10a,b, respectively. In Figure 10a, the AMEs of roll (γ) and pitch (θ) of the INS show significant 
regular fluctuation characteristics. The fluctuation amplitude is relatively large, and it is about 1°. 
This makes it difficult to assess the attitude errors of the INS accurately. After the proposed 
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decoupling estimation of and compensation for the systematic coordinate errors, the regular 
fluctuation has been eliminated effectively, and the AMEs of roll (γ) and pitch (θ) of the INS are 
reduced by about one order of magnitude, which is shown in Figure 10b. 

 

Figure 10. Absolute measurement errors (AMEs) of the Euler angles of the INS. (a) Before error 
estimation and compensation; (b) After error estimation and compensation. 

The mean value and standard deviation of the AMEs of the INS in Figure 10 are shown in 
Figure 11 and Figure 12, respectively. After the estimation of and compensation for the above two 
errors, the mean value and standard deviation of the AMEs of the INS have been reduced 
significantly. For the roll (γ) and pitch (θ), the standard deviations are reduced about 30 times after 
error compensation, which means the errors are more concentrated. For the yaw (φ), the mean value 
is reduced about 15 times after error compensation, which means the error distribution is closer to 
the ideal zero. The corresponding optimal estimations of the installation and misalignment errors 
are listed in Table 2. 

 
Figure 11. Absolute value of mean value (|m|) of the AMEs of the Euler angles of the INS. 
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σ/
 (°

)

 

Figure 12. Standard deviation (σ) of the AMEs of the Euler angles of the INS. 

Table 2. Optimal estimations of the installation and misalignment errors. 

Euler Angles of the Installation Error
(γB, θB, φB) (°) 

Euler Angles of the Misalignment Error 
(γR, θR, φR) (°) 

(−0.0579, −0.4665, 0.7979) (−0.6590, −0.0815, 0.4441) 

5. Conclusions 

The attitude accuracy assessment of an INS based on the IHDST is particularly suitable for a 
real complex dynamic environment. The coupled systematic coordinate errors severely decrease the 
assessment accuracy. Given that, a high-accuracy decoupling estimation method for the above 
systematic coordinate errors based on CLS is proposed in this paper. This method only utilizes the 
attitude data of the INS and the IHDST to accurately estimate the above two errors without 
knowledge of the measurement models of the INS and IHDST. Both simulated and real experiments 
were conducted to verify the feasibility and effectiveness of the proposed method. The simulated 
results show that the absolute values of the estimation errors of the installation and misalignment 
errors are all less than 2×10−3 ° regardless of the size of the Gaussian noise. Furthermore, the real 
assessment experiments of the attitude accuracy of an INS are conducted under the actual flight 
environment of an aircraft. The IHDST is used as the benchmark for the attitude accuracy 
assessment of the INS. Before error compensation, the AMEs of the roll (γ) and pitch (θ) of the INS 
show significant regular fluctuation characteristics and the amplitude is about 1°. By contrast, after 
error compensation, the regular fluctuation has been eliminated effectively, and the standard 
deviations of the roll (γ) and pitch (θ) are reduced about 30 times, which means the errors are more 
concentrated. For the yaw (φ), the mean value is reduced about 15 times after error compensation, 
which means the error distribution is closer to the ideal zero. Moreover, the proposed method is also 
suitable for improving the accuracy of an INS and star tracker integrated navigation system. 
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