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Abstract: In this paper, we consider multiuser simultaneous wireless information and power transfer
(SWIPT) for cognitive radio systems where a secondary transmitter (ST) with an antenna array
provides information and energy to multiple single-antenna secondary receivers (SRs) equipped with
a power splitting (PS) receiving scheme when multiple primary users (PUs) exist. The main objective
of the paper is to maximize weighted sum harvested energy for SRs while satisfying their minimum
required signal-to-interference-plus-noise ratio (SINR), the limited transmission power at the ST, and
the interference threshold of each PU. For the perfect channel state information (CSI), the optimal
beamforming vectors and PS ratios are achieved by the proposed PSO-SDR in which semidefinite
relaxation (SDR) and particle swarm optimization (PSO) methods are jointly combined. We prove
that SDR always has a rank-1 solution, and is indeed tight. For the imperfect CSI with bounded
channel vector errors, the upper bound of weighted sum harvested energy (WSHE) is also obtained
through the S-Procedure. Finally, simulation results demonstrate that the proposed PSO-SDR has fast
convergence and better performance as compared to the other baseline schemes.

Keywords: cognitive radio networks (CRNs); simultaneous wireless information and power transfer
(SWIPT); power-splitting, semidefinite relaxation (SDR); particle swarm optimization (PSO)

1. Introduction

Radio frequency energy harvesting is emerging as an active research area in the fields of both
academics and industry, due to the fact that it can solve the bottle-neck of battery-powered wireless
devices. It is especially important and useful in wireless sensor networks since sensor nodes have
a limited amount of energy. In this new paradigm, the RF can bring both data and power from
transmitters to receivers [1–8], referred to as “simultaneous wireless information and power transfer
(SWIPT)”. Thus, new pre-coding techniques for transmitters and optimizing design techniques for
receivers need to be investigated. The receiver operates in two modes where it switches between
information decoding (ID) and energy harvesting (EH), i.e., time-switching (TS) mode, or shares the
incoming signal into EH and ID parts, i.e., power-splitting (PS) [1]. Joint power-splitting SWIPT and
beamforming are applied to some conventional networks such as multiuser multi-input single-output
(MISO) systems [3,4] where transmission energy and energy efficiency are optimized, respectively.
These research issues are also considered in systems with multi-antenna transmitters and receivers [5],
cooperative networks [6], and interference channels [7], as well as robust secure transmission [8].
In addition, the authors in [9–11] studied the transmit power minimization problem in multiuser
SWIPT MISO systems under the imperfect channel side information (CSI) with bounded channel
vector errors and stochastic channel vector errors. As an important criterion, the sum harvested
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energy maximization in multiuser power-splitting SWIPT MISO system is investigated under the
perfect channel side information of channels from transmitters to receivers [12]. However, the solution
of [12] based on successive second-order cone programming cannot be applied to cognitive radio
networks where interference threshold constraints of primary users should be considered with the
case of imperfect CSI.

Similar to the works introduced by Goldsmith et al. [13], the applications of RF-powered
techniques to harvest energy and transfer data in cognitive radio networks (CRNs) were summarized
by Mohjazi et al. [14]. Other researchers studied SWIPT for different scenarios in order to provide
energy to receivers while ensuring quality of service. In [15], the secondary network exploited
both spectrum and energy in primary networks while assisting primary data transmission. In [16],
Ng et al. studied one secondary data link in the presence of multiple energy harvesting receivers
and primary users. Yang et al. in [17] and Lee et al. in [18] also investigated SWIPT in cognitive
relay and cognitive wirelessly powered networks, respectively. However, CRNs with power-splitting
SWIPT and beamforming designs in multiuser scenarios have not been well studied so far. The
studies on power-splitting SWIPT in CRNs have many potential applications, such as wirelessly
powered cognitive sensor networks and cognitive cellular networks, where users need to both receive
information and obtain energy. In the our prior work [19], we considered the SWIPT cognitive radio
network scenarios, and designed the system by considering the following important two criteria: one
is “max–min harvested energy of cognitive users” and the other is “the worst-user trade-off between
harvested energy of cognitive users and interference power of primary users” under the perfect
CSI. Another important criterion in SWIPT cognitive radio networks is “weighted sum harvested
energy maximization” under both perfect CSI and imperfect CSI cases, which have not been fully
investigated yet.

To the best of our knowledge, this is the first work that investigates a multiuser power-splitting
SWIPT for CRN in which one secondary transmitter (ST) equipped with a multi-antenna will transmit
information and energy to multiple single-antenna secondary receivers (SRs) that have a PS structure,
in the existence of multiple single-antenna primary users (PUs). The primary goal of this paper
is to maximize the weighted sum harvested energy (WSHE) of all SRs by jointly optimizing the
transmit beamforming vectors and the PS ratios while satisfying the minimum requirement of each
SR’s signal-to-interference-plus-noise ratio (SINR), the ST’s limited transmission power, and each PU’s
specified interference. It is noteworthy that the harvested energy received by an SR can be controlled
by adjusting the weighted factors at the ST. The user-centric energy criteria such as max–min fairness
harvested energy or the trade-off between EH and interference are studied in our prior work [19] where
the more energy is transmitted over the poor channel to combat the channel attenuation for the worst
user. Therefore, the worst user is always guaranteed in both information and energy. Unlike [19], in this
paper the system-centric WSHE criterion is investigated where the total harvested energy of system is
maximized regardless of the harvested energy of worst user. Thus, more energy is transmitted over
the better channel, while the information rate is still guaranteed for every cognitive user. In addition,
in [19], we only studied the problems for the ideal case with the perfect CSI. Unlike [19], we in this
paper also study the WSHE maximization problem in the practical scenario under the imperfect CSI
with errors bound. It is noted that this realistic case frequently occurs in wireless cognitive sensor
networks with low complexity sensor nodes.

More specifically, in this paper we solve two completely novel research issues that in prior works
have not been studied. The first one is WSHE maximization in multi-user SWIPT cognitive radio
networks under the perfect CSI. The other issue is consideration of the WSHE problem under the
imperfect CSI. The main contributions of this paper can be summarized as follows.

• For the perfect CSI, we formulate the non-convex optimization problem for the WSHE of all
secondary receivers including constraints to limited transmission power at the ST, minimum
required SINR at each SR, and interference threshold at each PU. The objective function is
non-convex due to the coupled design variables of both the transmit beamforming vectors at the
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ST and the PS ratios at the SRs. Therefore, we solve it in two steps based on two variable groups
of beamforming vectors and PS ratios. In the first step, we fix the PS ratios and obtain the optimal
beamforming vectors by applying a semidefinite relaxation (SDR) technique. Interestingly, we
can show that SDR is tight for our problem. In the second step, we propose an algorithm based
on particle swarm optimization (PSO) to find the approximate optimal PS ratios. The baseline
schemes are considered for performance comparison, in which the zero-forcing beamforming
vectors at the ST and the equal power splitting ratios at the SRs are applied.

• For the imperfect CSI, the S-Procedure and SDR technique are applied to recast the robust
WSHE maximization problem as a semidefinite programming (SDP) problem. Then, the similar
PSO-based method is used to solve the formulated problem. However, we only obtain the upper
bound value of WSHE since the optimal solutions are unlikely to satisfy the rank-1 constraints.

• Finally, simulation results show that the proposed PSO-SDR has fast convergence and better
performance compared to the other baseline schemes. In addition, the the proposed PSO-SDR
converges to the optimal value, achieved by the brute-force search (BFS) method, while obtaining
significantly lower computational complexity.

The remainder of the paper is organized as follows. The system description is presented in
Section 2. The weighted sum harvested energy maximization problem in the perfect CSI case is
solved in Section 3 by the joint SDR technique and PSO method. Section 4 presents the solution of the
robust WSHE maximization problem in the imperfect CSI case. The simulation results are provided in
Section 5, followed by conclusions in Section 6.

Notation 1. Vectors and matrices are indicated by boldface lower case and capital letters, respectively. X∗ and
X H represent the conjugate and Hermitian transpose of matrix X, respectively. We use Tr (X), and rank (X)

to indicate trace and rank of matrix X, respectively. X � 0 and X � 0 indicate that matrix X is positive
semidefinite or positive definite, respectively. The Euclidean norm of a complex vector and the absolute value of a
complex scalar are represented by ‖ · ‖ and | · |, respectively. The space of m× n matrices with complex entries
is denoted by Cm×n . HN denotes the space of N × N Hermitian matrices. I denotes the identity matrix with
appropriate size. CN

(
µ, σ2) represents the distribution of a circularly symmetric complex Gaussian (CSCG)

random variable with mean µ and variance σ2, and ‘∼’ means “distributed as". Moreover, we summarize the
important abbreviations and explain their meanings in Table 1.

Table 1. Abbreviations and meanings.

Abbre. Full Form Meanings

CRNs Cognitive radio networks [13] The CRNs use licensed bands of primary networks
for communication under overlay or underlay
access modes. In this paper, the underlay access
mode is applied where the interference
from secondary transmitter to primary users is
lower than the prescribed threshold.

SWIPT Simultaneous wireless In this paper, the transmitter simultaneously
information and power transfer sends both information and power to

[1] the receivers which are equipped with an information
decoder and an energy harvester.

WSHE Weighted sum WSHE is the sum of all harvested energy
harvested energy of secondary receivers where each value

has one weight factor.

CSI Channel state information CSI is the complex value of the baseband channel
between the transmitter and the receiver.
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Table 1. Cont.

Abbre. Full Form Meanings

SDR Semidefinite relaxation [20] The fundamental idea of SDR is based on the
properties as follows:
X = xxH ⇔ X � 0 and rank (X) = 1
Thus, we can change the variable from x to X
by adding the constraints of X � 0 and
rank (X) = 1. Then, SDR technique removes
the constraint of rank (X) = 1 to obtain the
semidefinite programming problem solved
by the numerical solver CVX [21]. This optimal
solution needs to to be checked for
satisfying the rank-1 constraint, or not.

PSO Particle swarm PSO is a heuristic evolutional search algorithm
optimization [22] which is based on simulating a swarm of particles

(birds, fish . . . ) which share information of positions
and fitness values with each other. For each iteration,
PSO basically performs three steps, called velocity
update, position update, and evaluation of the fitness
function. Both deterministic and probabilistic rules
are used to search overall design space. Each particle
moves to a new position with likely improvement
of fitness value.

ZFBF Zero-forcing beamforming In the ZFBF case, the transmitter designs the
beamforming vector, bringing the intended message
for one user and being orthogonal to the CSI of
other users. Thus, ZFBF design does not cause
interference to other users.

EPS Equal power splitting The receivers will share half the power of theincoming
signal for information decoder, and half for the
energy harvester.

2. System Description

Figure 1a shows a considered MISO cognitive radio networks with SWIPT capability that includes
one ST, M SRs, and L PUs. M information messages are simultaneously sent by the ST equipped with
N antennas to M SRs equipped with a single antenna at the same frequency as the PU’s communication
when L single-antenna PUs exist. We denote hi ∈ CN×1, i ∈ {1, ..., M} and gl ∈ CN×1, l ∈ {1, ..., L} as
the baseband equivalent channels from the ST to SRi, and PUl , respectively. The ST is supposed to
obtain these channel vectors perfectly with their elements as independent and identically distributed
(i.i.d) circularly symmetric complex Gaussian (CSCG) variables.

The secondary transmitter can practically achieve channel side information (CSI) vectors from the
ST to the SRs by utilizing the conventional channel estimation methods. First, the pilots are transmitted
by the ST, and then the ST obtains feedback on the results of channel estimation from the SRs. In
addition, when there is cooperation between licensed and cognitive systems, the channel estimation
can be sent from the PUs directly to the ST via the pilot signals from the cognitive network or indirectly
through a frequency manager [23]. In an other way, the ST can achieve link information by periodically
detecting the signal sent by the PUs since the licensed network utilizes time division duplex (TDD)
for communication. However, it is difficult for the ST to obtain perfect instantaneous CSI for both
cross and direct links. Thus, we also consider the harvested energy of the SRs for imperfect CSI case in
the paper.
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Figure 1. (a) The multi-input single-output (MISO) cognitive radio network being considered in the
paper, and (b) the power-splitting receive model at SRi. PU: primary user; SR: secondary receiver;
PS: power splitting; ID: information decoding; EH: energy harvesting.

The ST sends the communication signal, which can be represented as follows

x =
M

∑
i=1

wisi, (1)

where si ∈ C is the symbol which carries information addressed to SRi with E
{
|si|2

}
= 1, and

the corresponding the precoding beamforming vector wi ∈ CN×1. The average transmission

power is calculated as P =
M
∑

i=1
‖wi‖2. The over-the-air transmit power is limited by the maximum

transmit power Pmax [24,25]. Although the power amplifier efficiency and the constant circuit power
consumption of the secondary transmitter accounting for antenna circuits, transmit filter, mixer,
frequency synthesizer, and digital-to-analog converter, etc., [24,25] are important parameters in
considering energy system consumption, these factors will not affect our main objective maximizing
the harvested energy at secondary users under the limited transmit power. Therefore, we neglect these
parameters when evaluating the sum harvested energy problem. The baseband signal received at SRi
is represented as follows

ri = hH
i wisi + hH

i

M

∑
j=1,j 6=i

wjsj + ni, ∀i, (2)

where ni ∼ CN
(
0, σ2

n
)

is is the antenna noise added at SRi.
In the system, the SRs equipped with the PS receive structure shown in Figure 1b can

simultaneously decode information and harvest energy from incoming signals. Under this PS scheme,
SRi splits the incoming signal into two streams, where one stream with power ratio θi ∈ (0, 1) is
utilized for ID, and the other with power ratio (1− θi) is utilized for EH. Figure 1b shows that the
incoming signal for ID is ri,ID =

√
θi ri + vi where vi ∼ CN

(
0, σ2

v
)

is the circuit noise appended by
the ID of SRi. Thus, the SINR at SRi is calculated as

SINRi =
θi

∣∣∣hH
i wi

∣∣∣2
θi

(
M
∑

j=1,j 6=i

∣∣∣hH
i wj

∣∣∣2 + σ2
n

)
+ σ2

v

, ∀i. (3)
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Moreover, the incoming signal for EH of SRi is ri,EH =
√

1− θi ri. The initial energy can exist
at the beginning of each time block and we assume that the size of battery is large enough to store
both initial energy and harvested energy. We here focus on jointly optimizing precoding beamforming
vectors at the transmitter and power splitting ratios at the secondary receivers so that the SRs can
harvest maximum energy.

Then, the energy harvested by the EH of SRi is computed as follows

EHi = ηi (1− θi)

(
M

∑
j=1

∣∣∣hH
i wj

∣∣∣2 + σ2
n

)
, ∀i, (4)

where the efficiency of SRi’s energy harvester is denoted by ηi ∈ (0, 1]. Furthermore, the power of
interference at PUl caused by the ST is computed as

ITl=
M

∑
i=1

∣∣∣gH
l wi

∣∣∣2, ∀l. (5)

3. Problem Formulation and Solution

In this paper, the main objective is to maximize the WSHE of all SRs by jointly finding the received
PS ratios {θi} and the beamforming vectors {wi} subject to the required SINR at each SR, the maximum
transmit power at the ST, and the interference threshold for each PU. Therefore, the WSHE problem
can be expressed as follows

max
{wi},{θi}

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

∣∣∣hH
i wj

∣∣∣2 + σ2
n

)
(6a)

s.t.
M

∑
i=1
‖wi‖2 ≤ Pmax (6b)

θi
∣∣hH

i wi
∣∣2

θi

(
M
∑

j=1,j 6=i

∣∣hH
i wj

∣∣2 + σ2
n

)
+ σ2

v

≥ ai , ∀i, ∀i (6c)

M

∑
i=1

∣∣∣gH
l wi

∣∣∣2 ≤ It, ∀l (6d)

0 < θi < 1, ∀i, (6e)

where we set
M
∑

i=1
λi = 1, and the weight factor λi > 0 emphasizes the different priority for harvesting

energy at SRi. Constraint Equation (6b) corresponds to the power constraint of the ST. Constraint
Equation (6c) is corresponds to the SINR constraint such that SINRi at SRi is larger than the minimum
required SINR, ai. Moreover, constraint Equation (6d) shows that the interference power at which the
ST interferes with PUl should be lower than It in the underlay cognitive mode. Since the problem is
non-convex due to the objective function and constraint Equation (6c), it is quite challenging to solve
the WSHE problem directly. Therefore, in the next sub-section we propose an algorithm to solve the
WSHE problem based on semidefinite relaxation and particle swarm optimization.

3.1. SDR Approach with Fixed PS Ratios

The idea for solving problem (6) is to separate the variables into two groups including the
precoding vectors {wi} and the power splitting ratios {θi}. To do this, we transform the objective
function in Equation (6a) into:
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max
0<θi<1,∀i

(
max
{wi }

M

∑
i=1

λiEHi

)
.

After that, let us consider problem (7) with fixed PS ratios {θi} and only beamforming vector
variables as follows:

max
{wi}

M

∑
i=1

λiEHi (7a)

s.t. Equations (6b), (6c) and (6d). (7b)

Using the semidefinite relaxation method [20], we convert Equation (7) into standard semidefinite
programming (SDP) [26] which can be effectively resolved via general-purpose numerical solver like
CVX [21]. For this, let us denote W i = wiwH

i , H i = hih
H
i , ∀i and Gl = gl g

H
l , ∀l. Based on the formulas

u = Tr(u), ‖u‖2 = uHu, and Tr(UV) = Tr (VU), the following results are obtained as follows:

‖wi‖2 = wH
i wi = Tr

(
wH

i wi

)
= Tr (W i)

∣∣∣hH
i wj

∣∣∣2 = Tr
(

wH
j hih

H
i wj

)
= Tr

(
H iW j

)
.

Similarly,
∣∣gH

l wi
∣∣2 = Tr (GlW i). We also have the property as W i = wiwH

i ⇔ W i � 0 and
rank (W i) = 1. Therefore, the problem (7) can be recast as follows:

min
{Wi}

(
−

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

Tr
(

H iW j
)
+ σ2

n

))
(8a)

s.t.
M

∑
i=1

Tr (W i)− Pmax ≤ 0 (8b)

− Tr (H iW i)

ai
+

M

∑
j 6=i

Tr
(

H iW j
)
+ σ2

n +
σ2

v
θi
≤ 0, ∀i (8c)

M

∑
i=1

Tr (GlW i) − It ≤ 0, ∀l (8d)

W i � 0, ∀i (8e)

rank (W i) = 1, ∀i. (8f)

The above optimization problem is non-convex due to constraint (8f). According to the SDR
technique, we remove constraint (8f) to make problem (8) a standard semidefinite programming (SDP)
problem. Here, we define problem (8) without constraint (8f) as the problem (8)-SDR. Then, we solve
the problem (8)-SDR via a numerical solver for the convex optimization problem. Note that we refer to
Remark 2 for convex problem with respect to complex-valued variables. However, the general SDP
problem does not always give the rank-1 solutions and there is also no general method to prove the
rank-1 solutions. In [27], the uplink-downlink duality is exploited to obtain the rank-1 solution for the
SDP problem with M separable matrix variables and M linear constraints. The idea is to convert the
downlink problem into the virtual uplink problem and then construct the rank-1 solution. However,
this method can not be applied to our problem due to the different objective function of weighted sum
harvested energy and the appearance of the constraints of total transmit power limit and interference
threshold at primary users. In [28], in particular, the rank-1 solution of the SDP problem is always
obtained whenever M ≤ L + 2 with the number of matrix variables M and the number of constraints L.
However, this result can not be applied to our proposed SDP problem since the number of constraints
and the number of variables in problem (8)-SDR do not satisfy the above rank-1 conditions whenever
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the number of primary users is larger than 1. Interestingly, the optimal solution to problem (8)-SDR
can be proven as rank-1. Therefore, it is also the optimal solution of the original problem (8).

L ({W i} , α, {βi} , {γl} , {Ei}) = −
M
∑

i=1
λiηi (1− θi)

(
M
∑

j=1
Tr
(

H iW j
)
+ σ2

n

)
+

α

(
M
∑

i=1
Tr (W i)− Pmax

)
+

M
∑

i=1
βi

(
− (1/ai)Tr (H iW i) +

M
∑
j 6=i

Tr
(

H iW j
)
+ σ2

n + σ2
v

θi

)
+

L
∑

l=1
γl

(
M
∑

i=1
Tr (GlW i)− It

)
−

M
∑

i=1
Tr (EiW i).

(9)

Lemma 1. The optimal solution, W i, of problem (8)-SDR is rank-1, i.e., rank (W i) = 1, ∀i = 1, ..., M.

Proof. The Karush–Kuhn–Tucker (KKT) optimality conditions are applied to the proof of Lemma 1.
The Lagrangian function of problem (8)-SDR is written as seen in (9) where α ≥ 0, βi ≥ 0, ∀i, γl ≥ 0, ∀l,
and Ei � 0, ∀i are the dual variables associated with constraints (8b), (8c), (8d), and (8e), respectively.
Since W i � 0, H i = hih

H
i , and Gl = gl g

H
l , we derive that Tr (Wi), Tr

(
HjWi

)
and Tr (GlWi) are

real-valued for all i, j, l. Therefore, the objective function (8a), the constraint functions in (8b), (8c), (8d)
and then Lagrangian (9) are real-valued functions with complex-valued Hermitian matrix variables.
At the optimal points, the gradient of Lagrangian (9) must vanish at all independent real variables, i.e.,
all real and imaginary variables of complex-valued matrix variables {Wi}. This is equivalent to the
gradient of real-valued Lagrangian vanishing at {Wi} according to Theorem 2 in ([29], Section 4).

Following Lemma 1 in ([30], Section 4B), we obtain the gradient of Tr (AX) as ∇XTr (AX) =
∂Tr(AX)

∂X∗ = A where A and X are Hermitian matrices. Since Wi, Hj, and Gl are Hermitian matrices
for all i, j, l, we derive the gradient of Lagrangian in (10). As a result, we obtain the KKT optimality
conditions used for the proof as follows:

−
M

∑
j=1

λjηj
(
1− θj

)
H j + αI − βi

ai
H i +

M

∑
j 6=i

β j H j

+
L

∑
l=1

γlGl − Ei = 0, ∀i (10)

EiW i = 0, ∀i (11)

α, βi, γl ≥ 0; Ei, W i � 0, ∀i, l, (12)

where (10) and (11), respectively, are calculated from ∇W iL = 0 and Tr (EiW i) = 0 with Ei, W i � 0.
In addition, I ∈ CN×N is an identity matrix. From (10), we derive

Ei = A−
(

βi +
βi
ai

)
H i, ∀i, (13)

where

A = αI +
M

∑
j=1

β j H j +
L

∑
l=1

γlGl −
M

∑
j=1

λjηj
(
1− θj

)
H j. (14)

First, α > 0 is proved by contradiction. Assuming that α = 0, let us introduce

Di = [h1, ..., hi−1, hi+1, ..., hM, g1, ..., gL], ∀i.
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Since Di ∈ CN×(M+L−1), we set a basic of Null
(

DH
i
)

as Li ∈ CN×(N−M−L+1). In this paper, the
number of antennas N is assumed to be larger than M + L− 1. Thus, we derive H jLi = 0, ∀j 6= i, and
Gl Li = 0, ∀i, l. After that, with x ∈ C(N−M−L+1)×1 and y = Lix, we obtain

yHEiy = −
(

λiηi (1− θi) +
βi
ai

)
yH H iy (15)

yHEiy = −
(

λiηi (1− θi) +
βi
ai

) ∣∣∣hH
i Lix

∣∣∣2 ≤ 0. (16)

Owing to Ei � 0 and (16), we obtain the following:

yHEiy ≥ 0, ∀y ⇒ hH
i Lix = 0, ∀x ⇒ hH

i Li = 0. (17)

From the fact that the transmission channels hi, gl , ∀i, l, are independent and random, we can
assume that hi /∈ Range (Di). Thus, we derive hH

i Li 6= 0, which contradicts (17). Subsequently, α > 0
is satisfied. Moreover, since Gl � 0, we have(

αI +
L

∑
l=1

γlGl

)
� 0. (18)

Second, we also prove that A � 0 by contradiction. We assume that A � 0, i.e., there exists at
least a vector z 6= 0 such that zH Az ≤ 0. From (13), we derive

zHEiz = zH Az−
(

βi +
βi
ai

)
zH H iz, ∀i. (19)

With Ei, H i � 0, we have zHEiz ≥ 0, and zH H iz ≥ 0. Thus, from (19) we derive zH Az = 0, and

zH H iz = 0, ∀i. From (14), we derive zH
(

αI +
L
∑

l=1
γlGl

)
z = 0, which contradicts (18). It thus follows

that A � 0.
Last, we prove that rank (W i) = 1, ∀i. We know that rank(X − Y) ≥ rank(X)− rank(Y) is a

basic rank inequality property. Thus, according to (13), we derive the following:

rank (Ei) ≥ rank (A)− rank
((

βi +
βi
ai

)
H i

)
= N − 1 (20)

since rank (A) = N and rank (H i) = 1. From (11), we have Range (W i) ⊆ Null (Ei), so rank (W i) ≤
N − rank (Ei). Then, from (20) we derive rank (W i) ≤ 1. Since W i = 0 does not satisfy constraint (8c),
we can finally conclude that rank (W i) = 1. Thus, Lemma 1 is completely proven.

Remark 1. Inspired by the idea in [3], we can propose another approach to prove Lemma 1 by considering the
minimization of the partial Lagrangian and the dual problem. First, we have the partial Lagrangian of the primal
problem (8)-SDR expressed as follows:

L ({W i} , α, {βi} , {γl}) = −
M
∑

i=1
λiηi (1− θi)

(
M
∑

j=1
Tr
(

H iW j
)
+ σ2

n

)
+

α

(
M
∑

i=1
Tr (W i)− Pmax

)
+

M
∑

i=1
βi

(
− (1/ai)Tr (H iW i) +

M
∑
j 6=i

Tr
(

H iW j
)
+ σ2

n + σ2
v

θi

)
+

L
∑

l=1
γl

(
M
∑

i=1
Tr (GlW i)− It

) (21)
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where α ≥ 0, βi ≥ 0, ∀i, and γl ≥ 0, ∀l are the dual variables associated with constraints (8b), (8c), and (8d),
respectively. The dual function of dual problem is expressed as

g (α, {βi} , {γl}) = min
Wi�0,∀i

L ({Wi} , α, {βi} , {γl}) . (22)

The dual problem is expressed as follows:

max
α,{βi},{γl}

g (α, {βi} , {γl}) (23a)

s.t. α ≥ 0, βi ≥ 0, γl ≥ 0, ∀i, l. (23b)

We rewrite the partial Lagrangian function and equivalently obtain the minimization problem as:

min
Wi�0,∀i

M

∑
i=1

Tr

((
−

M

∑
j=1

λjηj
(
1− θj

)
Hj + αI− βi

ai
Hi +

M

∑
j 6=i

β jHj +
L

∑
l=1

γlGl

)
Wi

)
. (24)

That is equivalent to the optimization problem for separate variables Wi:

min
Wi�0

Tr (FiWi) , ∀i (25)

where we denote Fi = −
M
∑

j=1
λjηj

(
1− θj

)
Hj + αI− βi

ai
Hi +

M
∑
j 6=i

β jHj +
L
∑

l=1
γlGl , ∀i. For simple notation, we

denote α, {βi} , {γl} as the optimal dual solution of (23). Then, we derive Fi � 0 by contradiction. Suppose that
Fi is not a positive semidefinite matrix, i.e., there exists at least a vector x 6= 0 such that xHFix < 0. Therefore,
if we choose Wi = txxH where t > 0, then Tr (FiWi) = Tr

(
FitxxH) = txHFix < 0 is unbounded below when

t→ +∞. Therefore, we can not obtain the bounded optimal dual value. Hence, Fi � 0. From (25), we derive
Tr (FiWi) = 0 and then FiWi = 0 since Fi � 0 and Wi � 0, ∀i. The rest of the rank-1 proof is similar to the
KKT method from Equation (13) where Fi has the same role as Ei in (13).

Remark 2. The real-valued objective and constraint functions with complex-valued variables in the problem
(8)-SDR exist with partial derivatives according to Definition 2.2 ([31], Chapter 2) or Theorem 1 ([32], Section
2). These functions are affine and convex in complex variables Wi according to Remark 3.15 ([33], Chapter 3).
Thus, the problem (8)-SDR is a convex optimization problem with respect to complex-valued matrix variables.
Moreover, KKT conditions can be applied to the problem (8)-SDR with real-valued functions and complex-valued
variables from Remark 9.13 ([33], Chapter 9). Another approach to solving problem (8)-SDR is to convert
problems with complex-valued variables to equivalent problem with real-valued variables according to Remark
1.20 ([33], Chapter 1). However, the proof of rank-1 constraints which we have not obtained yet, is still much
more complicated than that of the problem (8)-SDR with complex-valued variables, although the same optimal
values are achieved and the rank-1 constraints are satisfied in numerical experiments.

3.2. PSO-SDR Approach to Maximizing WSHE

We can apply the brute-force method to search the optimal PS ratios over all possible collections
of {θi}. Since the brute-force search method has very high computational complexity, i.e., in the
M-dimension search, it is very slow to obtain the optimal results. To avoid this difficulty, a PSO-based
algorithm [22,34,35] with low complexity, high convergence rate, and high rigor is exploited to search
the best power-splitting ratios in the paper.

A main description of the PSO-based algorithm is presented as follows. The limited number
of iterations and the number of elements in a swarm are denoted by Tmax and NS, respectively. We
assign each element’s position to a set of M PS ratios (θ1, ..., θM). By observing the SINR constraint (8c)
in problem (8), we do not obtain this constraint if θi is extremely small. As a result, we set a lowest
value for θi, represented by θmin. Therefore, [θmin, 1] is the search interval of each PS ratio θi. For the
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n-th particle, xn, vn, and pb,n, are represented for its position, velocity and local optimal position,
respectively. The global best position denoted as gb is obtained by collecting information from all the
particles. With the set of PS ratios, xn, we solve problem (8) with the SDR technique to achieve the
maximum WSHE value denoted as f (xn). For the update step, the new velocity is affected by the
previous velocity with the inertia weight, iw, and the local and global best positions with the cognitive
and social factors, denoted as c1 and c2, respectively. Finally, problem (6) is solved by the proposed
PSO-based algorithm described in detail in Table 2.

Table 2. The PSO-based algorithm for solving the WSHE problem (6).

1: input parameters: Tmax, NS, θmin, vmax, iw, c1, c2,
and variables {xn}, ∀n.

2: initialization:
2: Assign the iteration index of PSO loop: m = 1.
3: The xn’s values of elements, ∀n, are

assigned randomly in [θmin, 1], then obtain f (xn) by solving (8).
4: Assign the global maximum value: f (gb) = max

1≤n≤NS
f (xn).

5: Set the best position of particle: pb,n = xn, ∀n.
Set the velocity of particle: vn = 0, ∀n.

6: repeat (PSO loop)
7: for n = 1 : NS do
8: Calculate particle’s new velocity:

vn ← iwvn + c1π1,n �
(

pb,n − xn

)
+ c2π2,n � (gb − xn),

� denotes the Hadamard product, and the vectors π1,n, π2,n
have independent uniformly distributed elements in [0, 1].

9: Restrict vector vn’s each element in [−vmax, vmax].
10: Calculate particle’s new position: xn ← xn + vn.
11: Restrict each element of vector xn in [θmin, 1].
12: Accessment: Compute f (xn) and the optimal beamforming

variables {wi}n, ∀i from the solution of problem (8)-SDR
according to the PS ratios set, xn.

13: Update the new best position of particle:
if f (xn) > f

(
pb,n

)
then

Assign: pb,n ← xn.
end if

14: Update particle’s new global best position:
if f (xn) > f (gb) then

Assign: gb ← xn,
{

w∗i
}
← {wi}n, ∀i.

end if
15: end for
16: Update iteration index: m← m + 1.
17: until m > Tmax (end PSO loop)
18: final results: the global best value f (gb) is the optimal value of

WSHE problem (6) according to the optimal PS ratios
{

θ∗i
}
= gb,

and the optimal beamforming vectors
{

w∗i
}

, ∀i.

We can calculate the computational complexity of the PSO-based algorithm according
to Tmax, NS, and the complexity in solving the SDP problem (8)-SDR. In the PSO
method, the problem (8)-SDR is solved within TmaxNS times. In the problem (8)-SDR,
there exist (M + L + 1) linear constraints for M matrix variables, and each matrix
variable has a size N × N. Therefore, the complexity of solving problem (8)-SDR is
O
(√

MN
(

M3N6 + (M + L + 1) MN2) log
(
1
/

ζ
))

[36]. As a result, the computational complexity

of the proposed algorithm is O
(

TmaxNS
√

MN
(

M3N6 + (M + L + 1) MN2) log
(
1
/

ζ
))

, for a given
solution accuracy ζ.
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The proposed solutions are not only suitable for the conventional cognitive radio (CR) network
but also CR sensor networks where the secondary receivers are the wireless sensor nodes with a
limited energy and low complexity due to the following reason. After the channel side information
(CSI) from the secondary transmitter to the secondary receivers and primary users is obtained, the
proposed SDR-PSO algorithm in Table 2 is performed at the secondary transmitter, which is usually a
base station equipped with powerful computational processors. After that, the optimal power-splitting
ratios are sent to the secondary receivers for setting the PS ratios by the secondary transmitter. As
a result, the secondary receivers can split the incoming signal by optimal PS ratios without running
the algorithms. Therefore, the proposed algorithms can be applied to low resources-constrained CR
sensor networks.

3.3. Zero-Forcing Beamforming (ZFBF) Problem

In the ZFBF problem, we choose the weighted vector for the information message to the SRi
which are orthogonal to the channels from the ST to the other SRj, ∀j 6= i, and the PUs, i.e., wi ∈
Null

(
BH

i
)

where Bi = [h1, ..., hi−1, hi+1, ..., hM, g1, ..., gL] ∈ CN×(M+L−1). The null-space of BH
i has

an orthonormal basic Qi ∈ CN×(N−(M+L−1)) where QH
i Qi = I. As a result, wi can be expressed

wi = Qiui where ui ∈ C(N−(M+L−1))×1. Let us introduce U i = uiuH
i . Some calculations are then

performed as follows:

Tr (W i) = Tr
(

QiuiuH
i QH

i

)
= Tr

(
QH

i QiuiuH
i

)
= Tr (U i) , ∀i (26a)

Tr (H iW i) = Tr
(

H iQiuiuH
i QH

i

)
= Tr

(
QH

i H iQiU i

)
, ∀i (26b)

Tr
(

H jW i
)
= 0, Tr (GlW i) = 0, ∀j 6= i, ∀l. (26c)

As a result, the optimization problem with ZFBF beamforming is formulated as follows:

max
{Ui},{θi}

M

∑
i=1

λiηi (1− θi)
(

Tr
(

QH
i H iQiU i

)
+ σ2

n

)
(27a)

s.t.
M

∑
i=1

Tr (U i)− Pmax ≤ 0 (27b)

−
Tr
(

QH
i H iQiU i

)
ai

+ σ2
n +

σ2
v

θi
≤ 0, ∀i (27c)

U i � 0, 0 < θi < 1, ∀i (27d)

rank (U i) = 1. (27e)

The ZFBF problem is solved by using the similar solution of the general problem (6). The optimal
value of this ZFBF problem is compared with the optimal WSHE value of (6) in the numerical section.

3.4. Equal Power Splitting (EPS) Problem

In the special case of EPS design, the power-splitting factors θi are simply assigned to be 0.5, ∀i.
It means that the secondary receivers share a half received signal energy for decoding information
and a half for harvesting power. The secondary transmitter can control the direction and power of
beamforming vectors to achieve the WSHE maximization without join to the secondary receivers.
Thus, the EPS problem is formulated as follows:
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min
{Wi}

(
− 0.5

M

∑
i=1

λiηi

(
M

∑
j=1

Tr
(
HiWj

)
+ σ2

n

))
(28a)

s.t.
M

∑
i=1

Tr (U i)− Pmax ≤ 0 (28b)

− Tr (HiWi)

ai
+

M

∑
j 6=i

Tr
(
HiWj

)
+ σ2

n +
σ2

v
0.5
≤ 0, ∀i (28c)

M

∑
i=1

Tr (GlWi) − It ≤ 0, ∀l (28d)

W i � 0, ∀i (28e)

rank (W i) = 1, ∀i. (28f)

For the EPS problem with fixed PS factors, we only have the variables of beamforming vectors in
the optimization problem. Therefore, we can obtain the optimal solution by SDR technique and CVX
solver. The optimal WSHE value in the EPS problem is considered as a special case in comparision
with the general WSHE problem (6).

4. Robust WSHE Maximization with Imperfect Channels

The perfect CSI assumption is not practical due to many reasons such as the mobility of users, the
estimation errors, limited CSI feedback quantization, etc. Therefore, we propose a robust design for
the imperfect CSI of the channels. First, the models of imperfect CSI from the ST to the SRs and the
PUs, are respectively considered as follows:

hi = ĥi + ∆hi, ∆hi ∈ CN×1, ‖∆hi‖ ≤ εi

gl = ĝl + ∆gl , ∆gl ∈ C
N×1, ‖∆gl‖ ≤ δl ,

where hi and gl are the actual channels; ĥi and ĝl are the estimated channels at the ST; and ∆hi and
∆gl are the CSI errors. The error bounds, εi and δl , represent the radius of the uncertainty region
of the estimated CSI channels. When these radiuses go to zero, the estimated channels become the
perfect channels. For the imperfect CSI case, the optimization problem (6) becomes non-convex and
has infinite number of constraints. The idea to solve this problem is to apply the vector inequalities and
the S-Procedure [26,33] in order to obtain a tractable SDP problem. The robust WSHE maximization
problem can be expressed as problem (29).

max
{wi},{θi}

min
‖∆hi‖≤εi ,∀i

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

∣∣∣(ĥ
H
i + ∆hH

i

)
wj

∣∣∣2 + σ2
n

)
(29a)

s.t.
M

∑
i=1

Tr (W i) ≤ Pmax (29b)

θi

∣∣∣(ĥ
H
i + ∆hH

i

)
wi

∣∣∣2
θi

(
M
∑

j=1,j 6=i

∣∣∣(ĥ
H
i + ∆hH

i

)
wj

∣∣∣2 + σ2
n

)
+ σ2

v

≥ ai , ∀ ‖∆hi‖ ≤ εi, ∀i (29c)

M

∑
i=1

∣∣∣(ĝH
l + ∆gH

l

)
wi

∣∣∣2 ≤ It, ∀ ‖∆gl‖ ≤ δl , ∀l (29d)

0 < θi < 1, ∀i. (29e)
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First, we consider the objective function (29a) as follows

min
‖∆hi‖≤εi ,∀i

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

∣∣∣(ĥ
H
i + ∆hH

i

)
wj

∣∣∣2 + σ2
n

)

From the inequalities |x + y| ≥ |x| − |y| and
∣∣uHv

∣∣ ≤ ‖u‖ ‖v‖, we obtain the results as follows∣∣∣(ĥ
H
i + ∆hH

i

)
wj

∣∣∣ ≥ ∣∣∣ĥH
i wj

∣∣∣− ∣∣∣∆hH
i wj

∣∣∣
≥
∣∣∣ĥH

i wj

∣∣∣− εi
∥∥wj

∥∥ .

Subsequently, we have ∣∣∣(ĥ
H
i + ∆hH

i

)
wj

∣∣∣2 ≥ (∣∣∣ĥH
i wj

∣∣∣− εi
∥∥wj

∥∥)2

(∣∣∣ĥH
i wj

∣∣∣− εi
∥∥wj

∥∥)2
=
∣∣∣ĥH

i wj

∣∣∣2 + ε2
i

∥∥wj
∥∥2

−2εi

∣∣∣ĥH
i wj

∣∣∣ ∥∥wj
∥∥

(∣∣∣ĥH
i wj

∣∣∣− εi
∥∥wj

∥∥)2
≥ wH

j ĥiĥ
H
i wj + ε2

i wH
j wj

−2εi

∥∥∥ĥi

∥∥∥ ∥∥wj
∥∥2

∣∣∣(ĥ
H
i + ∆hH

i

)
wj

∣∣∣2 ≥ wH
j H̃ iwj,

where H̃ i = ĥiĥ
H
i +

(
ε2

i − 2εi

∥∥∥ĥi

∥∥∥) I. Thus, the objective function is recast as follows

max
{wi},{θi}

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

wH
j H̃ iwj + σ2

n

)
. (30)

Next, we apply S-Procedure to convert the SINR and PU constraints to linear matrix inequality
(LMI) constraints.

Lemma 2. (S-Procedure) We have the function

fk (x) = xH Akx + 2Re
{

bH
k x
}
+ ck,

where k = 1, 2, Ak ∈ HN , bk ∈ CN×1, and ck ∈ C. Then, the implication f1 (x) ≤ 0⇒ f2 (x) ≤ 0 holds if
and only if there exists a ξ ≥ 0 such that

ξ

[
A1 b1

bH
1 c1

]
−
[

A2 b2

bH
2 c2

]
� 0, (31)

provided that there exists a point x̄ such that f1 (x̄) < 0.

We first analyze the SINR constraints (29c) at the SRs as follows:

f1 (∆hi) = ∆hH
i I∆hi + 2Re

{
0H∆hi

}
+
(
−ε2

i

)
≤ 0
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f2 (∆hi) = −
(

ĥ
H
i +∆hH

i

)
wiwH

i (ĥi+∆hi)
ai

+
(

ĥ
H
i + ∆hH

i

)(
M
∑
j 6=i

wjwH
j

)(
ĥi + ∆hi

)
+ σ2

n + σ2
v

θi
≤ 0.

We can rewrite f2 (∆hi) as follows

f2 (∆hi) = ∆hH
i Ai∆hi + 2Re

{(
Aiĥi

)H
∆hi

}
+ĥ

H
i Aiĥi + σ2

n + σ2
v

θi
≤ 0,

where Ai =
M
∑
j 6=i

wjwH
j −

wiwH
i

ai
. Note that Ai, ∀i, are Hermitian matrices.

According to Lemma 2, there exists αi ≥ 0 satisfying

αi

[
I 0
0 −ε2

i

]
−
[

Ai Aiĥi

ĥ
H
i Ai ĥ

H
i Aiĥi + σ2

n + σ2
v

θi

]
� 0

⇔
[

αi I − Ai −Aiĥi

−ĥ
H
i Ai −αiε

2
i −

(
ĥ

H
i Aiĥi + σ2

n + σ2
v

θi

) ] � 0, ∀i. (32)

Finally, we consider the interference constraints (29d) at the PUs as follows:

f1 (∆gl) = ∆gH
l I∆gl + 2Re

{
0H∆gl

}
+
(
−δ2

l

)
≤ 0

f2 (∆gl) = ∆gH
l B∆gl + 2Re

{
(Bĝl)

H∆gl

}
+ ĝH

l Bĝl − It ≤ 0,

where B =
M
∑

i=1
wiwH

i . Note that B is Hermitian matrix.

According to Lemma 2, there exists βl ≥ 0 satisfying

βl

[
I 0
0 −δ2

l

]
−
[

B Bĝl
ĝH

l B ĝH
l Bĝl − It

]
� 0, ∀l

⇔
[

βl I − B −Bĝl
−ĝH

l B −βlδ
2
l − ĝH

l Bĝl + It

]
� 0, ∀l. (33)

From (30), (32), and (33), we obtain the robust WSHE problem with imperfect CSI channels as
follows

max
{wi},{θi},{αi},{βl}

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

wH
j H̃ iwj + σ2

n

)
(34a)

s.t. (29b), (32), (33), (29e) (34b)

αi ≥ 0, βl ≥ 0, ∀i, l. (34c)
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We denote W i = wiwH
i , and transform the robust problem to the equivalent problem as follows

max
{Wi},{θi},{αi},{βl}

M

∑
i=1

λiηi (1− θi)

(
M

∑
j=1

Tr
(

H̃ iW j
)
+ σ2

n

)
(35a)

s.t.
M

∑
i=1

Tr (W i)− Pmax ≤ 0 (35b)

(32), Ai =
M

∑
j 6=i

W j −
W i
ai

, ∀i (35c)

(33), B =
M

∑
i=1

W i, ∀l (35d)

0 < θi < 1, αi ≥ 0, βl ≥ 0, ∀i, l (35e)

rank (W i) = 1, ∀i. (35f)

This optimization problem is solved by an approach similar to the WHSE problem (6) with perfect
channels. For fixed power splitting ratios θi, by relaxing the rank-1 constraints, the robust problem
becomes the SDP form and can be solved by numerical solvers. By using the PSO method, we can
obtain the optimal value of the robust problem by relaxing the rank-1 constraints. However, since the
solutions do not always guarantee the properties of rank-1, we only obtain the upper bound of the
robust WSHE value. The rank-1 suboptimal solutions have not found yet in the paper, and are left for
future work where the randomization method [20] can be applied.

5. Simulation Results

In this section, the Monte Carlo simulations are performed to evaluate the numerical results
of the proposed algorithms. The simulation parameters are given by: the number of SRs and PUs,
M = 2, L = 2, respectively; the maximum transmit power of ST, Pmax = 30 dBW; the variance of
noises, σ2

n = −75 dBm, σ2
v = −55 dBm; and the energy harvesting efficiency of all SRs, ηi = 1, ∀i. The

weighted factors for two SRs are given as (λ1, λ2) = (0.2, 0.8). We assume that the power attenuation
of the channels from the ST to the SRs and the PUs are identical and equal, at 50dB. Each entry
of channel vectors is randomly generated from i.i.d. Rayleigh flat-fading according to the above
power attenuation.

We define the normalized maximum channel estimation error of secondary receivers and primary
users as εnor

i = εi
‖hi‖

, δnor
l = δl

‖gl‖
, ∀i, l. We assume that the normalized maximum channel estimation

errors εnor
i = δnor

l = 0.001, ∀i, l. For the PSO method in Tabel 2, according to the experiments in [34,35],
the simulation parameters are set as follows: iw = 0.7, c1 = 1.494, and c2 = 1.494, with which the
good convergence can be obtained in the proposed algorithm. Furthermore, the swarm size, the
maximum number of iterations, and the minimum value of θi, are set as NS = 10, Tmax = 30, and
θmin = 0.001, respectively.

Figures 2 and 3 show the convergence characteristics of the WSHE of the proposed scheme
according to the number of iterations in both cases of perfect and imperfect CSI, respectively, when the
number of antennas, N, is 10. We can see that the fitness function (the WSHE) can quickly converge
in less than 30 iterations. As a result, we use the maximum iteration number Tmax of 30 for futher
simulations. Furthermore, it is observed that the increase of the minimum required SINR corresponds
to the decreases of the WSHE of which reasons will be explained in Figure 4 in more detail.
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Figure 2. The iteration behavior of the proposed PSO-based algorithm when the required
signal-to-interference-plus-noise ratios (SINRs) are given as 2, 4, 6, 8, and 10 dB, respectively and a
random perfect CSI is considered.
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Figure 3. The iteration behavior of the proposed PSO-based algorithm when the required
signal-to-interference-plus-noise ratios (SINRs) are given as 2, 4, 6, 8, and 10 dB, respectively, and a
random imperfect CSI is considered.

Figure 4 shows average weighted sum harvested power according to the minimum required SINR
when the interference threshold It = −45 dBm, and the number of antennas N = 10. Two suboptimal
zero-forcing beamforming (ZFBF) and equal power splitting (EPS) ratios are also considered as the
baseline schemes in comparison with the optimal design in perfect CSI case. The design parameters
of the ZFBF is obtained by the solution of problem (27) in Section 3.3. In case of the EPS design, the
SRs equally divides the received signal for the ID part and the EH part, i.e., θi = 0.5, ∀i. Therefore, the
optimization problem (28) has only the beamforming vectors variables in the EPS design. Also, the
results of problem (6) without the PU constraints are also provided. In addition, the brute-force search
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(BFS) method with M-dimension search for θi, i = 1, ..., M, is also considered to check the optimal
value obtained by the proposed PSO-based method.
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Figure 4. Average weighted sum harvested energy according to minimum required SINR. BFS:
brute-force search.

As shown in Figure 4, the maximum weighted sum harvested energy decreases as the required
minimum SINR increases in all cases except the ZFBF scheme. The reason is that the secondary
receivers should increase the power splitting ratios and adjust the beamforming vectors in order to
get more energy in information decoding parts and further to satisfy the increasing SINR constraints.
Hence, the secondary receivers harvest less energy in energy harvesting parts. The ZFBF scheme is not
sensitive to the SINR value because the SINR constraints in (27c) are easily satisfied with small noise
variances. Also, Figure 4 shows that the optimal solution (6) with perfect CSI achieves better WSHE
than ZFBF, EPS, and robust imperfect CSI (35) since both power splitting ratios and beamforming
vectors are optimized. The case without primary users gives better WSHE since no PU interference
constraints are considered. Furthermore, Figure 4 shows that the proposed PSO-based method achieves
the same optimal value as BFS method in both perfect and robust imperfect CSI cases.

Figure 5 shows the average weighted sum harvested energy according to the PU interference
threshold when the minimum required SINR ai = 5 dB, and the number of antennas N = 10.
We observe that the WSHE increases with the increasing interference threshold in all schemes except
the no PUs and ZFBF schemes. The reason is that when the PU interference threshold increases, the
beamforming vectors of the secondary transmitter are more flexible to transmit information and energy
simultaneously. The proposed scheme with perfect CSI gives better performance than ZFBF, EPS
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and the proposed robust schemes. Obviously, the scheme without the constraints of PU interference
provides the highest performances. Moreover, when the interference threshold gets smaller, the gap
between the proposed perfect CSI and no PUs schemes gets larger because the beamforming vectors
have to limit the interference leakage to primary users. On the other hand, when the interference
threshold is high, the WSHE of the proposed perfect CSI solution is similar to that of the no PUs
scheme because the PU interference constraints are easily obtained. Also, Figure 5 shows the proposed
PSO-based method achieves the same performance as the BFS-based method in both perfect and robust
imperfect CSI schemes.
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Figure 5. Average weighted sum harvested energy according to the interference threshold.

Finally, Figure 6 shows the weighted sum harvested energy according to the number of antennas
N when the minimum required SINR ai = 5 dB, and the interference threshold It = −45 dBm. It is
observed that the weighted sum harvested energy increases as the number of antennas increases, in
all schemes. When the secondary transmitter has more antennas, it can exploit the extra degrees of
freedom in optimizing the direction of the beamforming vectors. Thus, the transmitted signal can
be more exactly steered towards the secondary receivers. Consequently, we can obtain more energy
harvesting at the secondary receivers and less interference to primary users. Similar to Figures 4 and 5,
the performances of the proposed scheme with perfect CSI are better than those of ZFBF, EPS and
the proposed robust solution with imperfect CSI. Moreover, the proposed method gives the same
harvested energy as that of BFS method in both perfect and imperfect CSI cases while requiring much
lower computational complexity.
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6. Conclusions

We have investigated a multiuser SWIPT cognitive radio network to maximize the weighted
sum harvested energy of the secondary receivers under the constraints on total transmit power at the
secondary transmitter, the required SINR at the secondary receivers with power-splitting structure,
and the interference level at the primary users. The efficient algorithms based on SDR and PSO
methods are proposed to find the optimal beamforming at the secondary transmitter and the optimal
power-splitting ratios at the secondary receivers for both cases of the perfect and imperfect CSIs.
Through simulation, it was shown that the proposed PSO-based algorithm achieves a fast convergence
within 30 iterations. It was also shown that the obtained maximum WSHEs in both cases of perfect
and imperfect CSI are increased when the allowable interference level at primary users as well as the
number of antenna at secondary transmitter get larger.

In the paper, however, the upper bound of WSHE is only archived for the robust imperfect CSI
case, and subsequently, the optimal solution satisfying the rank-1 constraints needs to be investigated
more in future. In addition, the SDR-based solution has large computational complexity since the
number of variables is squared when vector variables are changed to matrix variables. Therefore, the
SDR-based approach may not be appropriate to the large-scale system where the antenna number N is
very large and the complexity of SDR method is O

(
N6.5). Thus, fast solutions should be investigated

in future works such as with respect to the alternative direction method of multipliers [37].
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