
sensors

Article

CuFusion: Accurate Real-Time Camera Tracking and
Volumetric Scene Reconstruction with a Cuboid

Chen Zhang * ID and Yu Hu

College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;
yudeshui@zju.edu.cn
* Correspondence: zhangxaochen@163.com; Tel.: +86-135-7575-2056

Received: 6 August 2017; Accepted: 27 September 2017; Published: 1 October 2017

Abstract: Given a stream of depth images with a known cuboid reference object present in the scene,
we propose a novel approach for accurate camera tracking and volumetric surface reconstruction in
real-time. Our contribution in this paper is threefold: (a) utilizing a priori knowledge of the precisely
manufactured cuboid reference object, we keep drift-free camera tracking without explicit global
optimization; (b) we improve the fineness of the volumetric surface representation by proposing
a prediction-corrected data fusion strategy rather than a simple moving average, which enables
accurate reconstruction of high-frequency details such as the sharp edges of objects and geometries
of high curvature; (c) we introduce a benchmark dataset CU3D that contains both synthetic and
real-world scanning sequences with ground-truth camera trajectories and surface models for the
quantitative evaluation of 3D reconstruction algorithms. We test our algorithm on our dataset and
demonstrate its accuracy compared with other state-of-the-art algorithms. We release both our dataset
and code as open-source (https://github.com/zhangxaochen/CuFusion) for other researchers to
reproduce and verify our results.

Keywords: real-time reconstruction; SLAM; Kinect sensors; depth cameras; open source

1. Introduction

Real-time camera tracking and simultaneous dense scene reconstruction has been one of the most
actively studied problems in computer vision over recent years. The advent of depth cameras based
either on structured light (e.g., Asus Xtion, Kinect 1.0) or time-of-flight (ToF) (e.g., Kinect 2.0) sensing
offers dense depth measurements directly in real-time as video streams. Such dense depth sensing
technologies have drastically simplified the process of dense 3D modeling, which turns the widely
available Kinect-style depth cameras into consumer-grade 3D scanners.

KinectFusion [1] is one of the most famous systems for registering each incoming frame of depth
images captured during the scanning into one integrated volumetric representation of the scene.
An iterative closest point (ICP) algorithm [2] is performed to align the current depth map to the
reconstructed volumetric truncated signed distance function (TSDF) [3] surface model to get the
camera pose estimation. Each depth measurement is fused into the TSDF model directly to update the
reconstruction. A triangulated 3D mesh model could finally be extracted using a Marching Cubes type
algorithm [4].

Existing geometric alignment approaches based on ICP and its variants [5] are prone to drift in the
presence of structure-less surfaces. Drift might be accumulated and even cause the failure of camera
tracking when scanning larger man-made environments. Meanwhile, the weighted moving average
TSDF fusion strategy makes the assumption of a Gaussian noise model on the depth measurements
with a naïve surface visibility predicate that every surface point is visible from all sensor viewpoints [6].
This predicate is only locally true and usually violated due to surface occlusions [1] when scanning

Sensors 2017, 17, 2260; doi:10.3390/s17102260 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5250-4962
https://github.com/zhangxaochen/CuFusion
http://dx.doi.org/10.3390/s17102260
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2260 2 of 21

around the scene. Although truncation of the signed distance function (SDF) is performed to avoid
surfaces interfering, surface blurring and the inflating problem (as shown in Figure 1c) may happen
when scanning around tiny objects or sharp geometries in the scene.

Sensors 2017, 17, 2260 2 of 21

(SDF) is performed to avoid surfaces interfering, surface blurring and the inflating problem (as shown
in Figure 1c) may happen when scanning around tiny objects or sharp geometries in the scene.

(a) (b)

(c) (d)

Figure 1. (a) Color (not used) and (b) depth image from our input sequence “lambunny”; (c)
KinectFusion: mild accumulated camera drift and simple moving average truncated signed distance
function (TSDF) fusion result in reconstruction inflation; (d) Our approach, CuFusion, keeps drift free
camera tracking with additional constraints of a cuboid reference object and preserves the fidelity of
the reconstructed objectives using our prediction-corrected TSDF fusion strategy. Note the sharpness
of the cuboid edges and the thinness of the character’s ears of our reconstruction.

Existing algorithms have been proposed to keep globally consistent camera trajectory
estimation. Pose graphs are created and optimized when large loop closures are found [7], which
may substantially reduce the odometry error accumulation. On the task of scanning small-sized
scenes or objects, however, even small camera drift may cause deformation of the reconstruction. We
propose a novel algorithm called CuFusion, which particularly focuses on the application of
reconstructing small-sized scenes and objects precisely in real-time, with the accuracy of both camera
tracking and data fusion significantly improved. With a priori knowledge of the planar faces and
occluding contours of the cuboid reference object partly or totally present in the scene, each data
frame is aligned against both the reconstructed scene and the localized cuboid model, and thus drift-
free camera trajectories are maintained.

The predicate that every surface point is visible from all sensor viewpoints is only locally true
due to surface occlusions [1]. In our work, we drop such assumptions and implement a “prediction-
corrected” data fusion algorithm to integrate all incoming data into one geometrically consistent 3D
model in the global reference frame. Instead of a simple moving average surface reconstruction, our
work extends the TSDF representation by adding components storing the locally consistent TSDF
value, the pixel ray and surface normal vector in each voxel grid for the detection of the camera view
variation and correction of the global TSDF value. Experimental results (Figure 1) show the ability of

Figure 1. (a) Color (not used) and (b) depth image from our input sequence “lambunny”;
(c) KinectFusion: mild accumulated camera drift and simple moving average truncated signed distance
function (TSDF) fusion result in reconstruction inflation; (d) Our approach, CuFusion, keeps drift free
camera tracking with additional constraints of a cuboid reference object and preserves the fidelity of
the reconstructed objectives using our prediction-corrected TSDF fusion strategy. Note the sharpness
of the cuboid edges and the thinness of the character’s ears of our reconstruction.

Existing algorithms have been proposed to keep globally consistent camera trajectory estimation.
Pose graphs are created and optimized when large loop closures are found [7], which may substantially
reduce the odometry error accumulation. On the task of scanning small-sized scenes or objects, however,
even small camera drift may cause deformation of the reconstruction. We propose a novel algorithm
called CuFusion, which particularly focuses on the application of reconstructing small-sized scenes and
objects precisely in real-time, with the accuracy of both camera tracking and data fusion significantly
improved. With a priori knowledge of the planar faces and occluding contours of the cuboid reference
object partly or totally present in the scene, each data frame is aligned against both the reconstructed
scene and the localized cuboid model, and thus drift-free camera trajectories are maintained.

The predicate that every surface point is visible from all sensor viewpoints is only locally true due to
surface occlusions [1]. In our work, we drop such assumptions and implement a “prediction-corrected”
data fusion algorithm to integrate all incoming data into one geometrically consistent 3D model in the
global reference frame. Instead of a simple moving average surface reconstruction, our work extends the
TSDF representation by adding components storing the locally consistent TSDF value, the pixel ray and
surface normal vector in each voxel grid for the detection of the camera view variation and correction

Sensors 2017, 17, 2260 3 of 21

of the global TSDF value. Experimental results (Figure 1) show the ability of our fusion method to
keep the structural details of surfaces, which is on par with, or better than, existing state-of-the-art
reconstruction systems that focus mostly on camera tracking accuracy.

Many scanning and reconstruction systems use both RGB and depth images. Feature-based
registration is combined with dense ICP shape matching to estimate the best alignment between
consecutive frames. Our system exploits only depth information as input to maximize tracking
accuracy for the following reasons: First, some depth cameras such as ASUS Xtion PRO are not
accompanied by RGB cameras. Second, for RGB-D cameras which provide both color and depth
streams, the spatiotemporal alignment of RGB and depth information in pixel level may not be perfect.
Third, by using only depth data, our system enables scanning in complete darkness regardless of the
ambient lighting conditions.

We evaluate our algorithm qualitatively and quantitatively using both noiseless synthetic and
noisy real-world data captured by a hand-held Kinect. The synthesized data provide both ground-truth
(GT) camera trajectories and GT mesh models enabling both the trajectories and reconstructions
to be quantitatively evaluated. For real-world image sequences, unfortunately we do not have
GT camera trajectories. We 3D printed several rigid models using a high precision 3D printer
(http://www.dowell3d.com/3d/3.html) for scanning and evaluate the quality of our reconstructions
directly compared with the GT models.

2. Related Work

The research into the real-time 3D model reconstruction problem has been extensively studied
in recent decades. The advance of range sensing technology has facilitated the development of
real-time interactive range scanners for dense 3D surface model acquisition. Such range sensors,
particularly on active sensing technologies, could be categorized into different types including laser
scanners [8,9], time-of-flight (ToF) [10,11] sensing and structured-light cameras [12]. The introduction
of Microsoft’s Kinect—based on structured-light sensing—has brought dense depth sensors to wide
consumer-grade accessibility.

KinectFusion [1] of Newcombe et al. is one of the founding systems for real-time dense SLAM,
taking a sequence of depth maps streamed from a Kinect-style sensor as the input to create a globally
consistent 3D model of the scene. Despite its enlightenment, this algorithm has limitations in several
aspects. First, pure geometric alignment of ICP is prone to drift in the presence structure-less surfaces.
Second, the regular volumetric representation is memory consuming, which limits the size of the
reconstructed model to medium sized rooms, also with limited resolution. Third, it cannot detect loop
closures and therefore lacks the ability to recover from accumulating drift, leading to mesh artifacts.

Researchers have been making efforts to address the problems mentioned above. Henry et al. [13]
were the first to combine texture feature matching with Generalized-ICP [14] using RGB-D data to
reduce drift result from pure geometric alignment and increase the robustness of visual odometry [15].
Loop closure is detected when the previously seen region is revisited, and a pose graph is optimized to
create a globally consistent map in [13], as well as in the work of Endres et al. [7,16], Whelan et al. [17,18]
and Kerl et al. [19]. Whelan et al. [20] further proposed ElasticFusion, a novel algorithm for loop
closure optimization without a pose graph. Moreover, higher-level primitives such as edges [21,22],
occluding contours [23], curvature information [24], lines [25] and planes [26–29] are used as additional
information to constrain the pose estimation process.

On dense scene representation, Whelan et al. [17] extended the KinectFusion algorithm spatially
to support large unbounded scenes, with a cyclical buffer data structure. Endres et al. [7,16] used an
octree-based mapping framework OctoMap [30] to generate a volumetric 3D map of the environment at
scale, yet no mesh model is created. Other researchers have been using points and surfels [20,24,31–34]
to represent the scene and render it with the surface-splatting technique [35]. Such point-based scene
representation has significantly reduced computational complexity and lowered the memory overhead
compared with the volumetric approaches and is therefore adequate for reconstructing large-scale

http://www.dowell3d.com/3d/3.html

Sensors 2017, 17, 2260 4 of 21

environments. Note that Lefloch et al. [24] use curvature information as an independent surface
attribute for their real-time reconstruction, leading not only to camera drift reduction but also to
improved scene reconstruction.

However, despite the efforts exerted, both the camera pose estimation and the reconstructed
models are far from perfect. On small-sized scenes particularly, slight camera drift may lead to
reconstruction deformation and sharp depth edges or highly concave scenes are problematic for these
approaches [36]. We tackle these problems and focus on fidelity preservation in this paper.

3. Method

We base our work on an open-sourced implementation of the KinectFusion algorithm from the
PCL library [37]. Our reconstruction pipeline is illustrated in Figure 2, which is described in detail in
the following sections.

Sensors 2017, 17, 2260 4 of 21

surface attribute for their real-time reconstruction, leading not only to camera drift reduction but also
to improved scene reconstruction.

However, despite the efforts exerted, both the camera pose estimation and the reconstructed
models are far from perfect. On small-sized scenes particularly, slight camera drift may lead to
reconstruction deformation and sharp depth edges or highly concave scenes are problematic for these
approaches [36]. We tackle these problems and focus on fidelity preservation in this paper.

3. Method

We base our work on an open-sourced implementation of the KinectFusion algorithm from the
PCL library [37]. Our reconstruction pipeline is illustrated in Figure 2, which is described in detail in
the following sections.

Figure 2. System overview.

3.1. Notation

We define the image domain as Ω ⊂ Գଶ, and a depth image D௞ ∶ Ω → Թ at time k. We represent
the camera pose at time k in the global coordinate frame ℱg by a rigid transformation matrix:

Tg, k = ൤Rg, k tg, k

0T 1
൨ ∈ ॺॱ(3), (1)

with a 3 ൈ 3 rotation matrix Rg, k ∈ ॺॹ(3) and a 3 ൈ 1 translation vector tg, k ∈ Թଷ , which
transforms a point ܘ௞ ∈ Թଷ in the camera coordinate frame ℱ௞ to a global point ܘg = Rg, kܘ௞ + tg, k ∈Թଷ. We model the depth camera by the simple pinhole model, and use a constant camera intrinsic
matrix K to transform points on the sensor plane into image pixels:

K = ൥ ௫݂ 0 ܿ௫0 ௬݂ ܿ௬0 0 1 ൩, (2)

where (௫݂, ௬݂) are the horizontal and vertical focal lengths and (ܿ௫, ܿ௬) is the image coordinate of the
principal point.

We define the 3D back-projection of an image pixel ܝ ∈ Ω as ܘ = Kିଵܝሶ D(ܝ) , where ܝሶ ܘ And inversely, we define the perspective projection of point .ܝ ୘ is the homogeneous form of(୘|1ܝ)≕ = ,ݔ) ,ݕ ୘(ݖ as ܝ = π(Kܘ) , where function π(ܘ) = ,ݖ/ݔ) ୘(ݖ/ݕ performs perspective projection
including de-homogenization process.

Prior to registration, an organized vertex map V௞ is computed by bilateral-filtering and back-
projecting the raw depth image D௞. The normal map N௞ is computed using the PCA method. Given
the camera pose Tg, k at time k, we could transform both V௞, 	N௞ to the global frame of coordinate:

ቊVሶ௞g(ܝ) = Tg, kVሶ௞(ܝ)N௞g(ܝ) = Rg, kN௞(ܝ), (3)

Figure 2. System overview.

3.1. Notation

We define the image domain as Ω ⊂ N2, and a depth image Dk : Ω→ R at time k. We represent
the camera pose at time k in the global coordinate frame Fg by a rigid transformation matrix:

Tg, k =

[
Rg, k tg, k
0T 1

]
∈ SE(3), (1)

with a 3× 3 rotation matrix Rg, k ∈ SO(3) and a 3× 1 translation vector tg, k ∈ R3, which transforms a
point pk ∈ R3 in the camera coordinate frame Fk to a global point pg = Rg, kpk + tg, k ∈ R3. We model
the depth camera by the simple pinhole model, and use a constant camera intrinsic matrix K to
transform points on the sensor plane into image pixels:

K =

 fx 0 cx

0 fy cy

0 0 1

, (2)

where
(

fx, fy
)

are the horizontal and vertical focal lengths and
(
cx, cy

)
is the image coordinate of the

principal point.
We define the 3D back-projection of an image pixel u ∈ Ω as p = K−1 .

uD(u), where
.
u :=

(
uT
∣∣1)T

is the homogeneous form of u. And inversely, we define the perspective projection of point
p = (x, y, z)T as u = π(Kp), where function π(p) = (x/z, y/z)T performs perspective projection
including de-homogenization process.

Prior to registration, an organized vertex map Vk is computed by bilateral-filtering and
back-projecting the raw depth image Dk. The normal map Nk is computed using the PCA method.
Given the camera pose Tg, k at time k, we could transform both Vk, Nk to the global frame of coordinate:

Sensors 2017, 17, 2260 5 of 21

{ .
V

g
k (u) = Tg, k

.
Vk(u)

Ng
k (u) = Rg, kNk(u)

, (3)

3.2. Cuboid Localization

Given a depth image Dk and a rectangular cuboid with edge lengths Pcu = (a, b, c) present in
the image, we localize the cuboid and calculate its pose in the global coordinate frame Fg. Live depth
frames will be latterly aligned against the reference cuboid when scanning around it to mitigate the
accumulating camera drift.

We first perform plane segmentation using the Agglomerative Hierarchical Clustering (AHC)
algorithm [38], as illustrated in Figure 3c. Then we check the orthogonality of the segmented
planes. Two planes are considered to be orthogonal if the angle Θp between their normal vectors is
approximately 90◦ (i.e., |Θp − 90◦| < εΘ; εΘ = 5◦). Once we find three planes that are orthogonal to
each other, we check the length of the intersecting line segments between the planes. If the three line
segments’ lengths match the cuboid edge length parameter Pcu approximately (differences below a
threshold εP = 10 mm), we claim to find the cuboid and mark the three planes as its adjacent planes.

Sensors 2017, 17, 2260 5 of 21

3.2. Cuboid Localization

Given a depth image D௞ and a rectangular cuboid with edge lengths ௖࣪௨ = (a, b, c) present in
the image, we localize the cuboid and calculate its pose in the global coordinate frame ℱg. Live depth
frames will be latterly aligned against the reference cuboid when scanning around it to mitigate the
accumulating camera drift.

We first perform plane segmentation using the Agglomerative Hierarchical Clustering (AHC)
algorithm [38], as illustrated in Figure 3c. Then we check the orthogonality of the segmented planes.
Two planes are considered to be orthogonal if the angle Θ௣ between their normal vectors is
approximately 90° (i.e., หΘ௣ − 90°ห < ௵ߝ	;௵ߝ = 5°). Once we find three planes that are orthogonal to
each other, we check the length of the intersecting line segments between the planes. If the three line
segments’ lengths match the cuboid edge length parameter ௖࣪௨ approximately (differences below a
threshold ࣪ߝ = 10	mm), we claim to find the cuboid and mark the three planes as its adjacent planes.

(a) (b)

(c) (d)

Figure 3. (a) Color (not used) and (b) depth image from our input sequence “wingedcat;” pixels with
depth values larger than 1.5 m are truncated in the depth image; (c) Segmented planes obtained by
the AHC algorithm [38] are labeled with random colors, the cuboid is localized with its vertices
marked as green circles, and the axes of the cuboid frame are drawn in CMY colors; (d) The localized
cuboid is drawn as a red wireframe in the depth image, and the “contour generators” proposed in
[23] are drawn as white lines.

We consequently define the cuboid coordinate frame of reference. We set frame origin O௖௨ to
the intersection point of the three orthogonal planes, and draw the system axes from the normal
vectors. Due to the inaccuracy of the depth measurement and camera intrinsic calibration,
orthogonality between the normal vectors of the segmented adjacent planes are not guaranteed
strictly. We obtain the nearest orthogonal axes [ܺ௖௨, ௖ܻ௨, ܼ௖௨] of the frame by solving the Orthogonal
Procrustes Problem. The cuboid pose in the camera frame at time k is:

Figure 3. (a) Color (not used) and (b) depth image from our input sequence “wingedcat;” pixels with
depth values larger than 1.5 m are truncated in the depth image; (c) Segmented planes obtained by the
AHC algorithm [38] are labeled with random colors, the cuboid is localized with its vertices marked
as green circles, and the axes of the cuboid frame are drawn in CMY colors; (d) The localized cuboid
is drawn as a red wireframe in the depth image, and the “contour generators” proposed in [23] are
drawn as white lines.

We consequently define the cuboid coordinate frame of reference. We set frame origin Ocu to the
intersection point of the three orthogonal planes, and draw the system axes from the normal vectors.
Due to the inaccuracy of the depth measurement and camera intrinsic calibration, orthogonality

Sensors 2017, 17, 2260 6 of 21

between the normal vectors of the segmented adjacent planes are not guaranteed strictly. We obtain
the nearest orthogonal axes [Xcu, Ycu, Zcu] of the frame by solving the Orthogonal Procrustes Problem.
The cuboid pose in the camera frame at time k is:

Tk, cu =

[
Rk, cu tk, cu

0T 1

]
∈ SE(3), (4)

Rk, cu = [Xcu, Ycu, Zcu], (5)

tk, cu = OT
cu, (6)

Assuming the camera pose Tg, k at time k is known, the cuboid pose Tg, cu =

[
Rg, cu tg, cu

0T 1

]
in the global frame of coordinate could then be derived: Tg, cu = Tg, k Tk, cu. Figure 4 illustrates the
notations used in the paper.

Sensors 2017, 17, 2260 6 of 21

Tk, cu = ൤Rk, cu tk, cu

0T 1
൨ ∈ ॺॱ(3), (4)

Rk, cu = [ܺ௖௨, ௖ܻ௨, ܼ௖௨], (5)

tk, cu = O௖௨୘ , (6)

Assuming the camera pose Tg, k at time k is known, the cuboid pose Tg, cu = ൤Rg, cu tg, cu

0T 1
൨ in the

global frame of coordinate could then be derived: Tg, cu = Tg, k	Tk, cu. Figure 4 illustrates the notations
used in the paper.

Figure 4. Illustration of the notations used in this paper.

3.3. Camera Pose Estimation

Since we use depth maps as input sequences, only geometric alignment is performed. For each
input frame D௞ at time k, we estimate the pose Tg,	k of the depth camera frame ℱ௞ with respect to
the global frame ℱg by registering the live depth map to both the global reconstructed surface model
and the cuboid reference object.

A. Frame to Model Registration

Given the implicit TSDF surface model ܁, the surface prediction w.r.t. the camera pose Tg,	k-1 is
obtained as an organized vertex and normal map (V෡௞ିଵ, N෡௞ିଵ), and transformed into the global frame
as (V෡௞ିଵg , N෡௞ିଵg). For frame-to-model registration, a transformation Tg,	k is pursued to minimize the
point-to-plane error between Tg,	kV௞ and V෡௞ିଵg : E௙௥௔௠௘ଶ௠௢ௗ௘௟൫Tg,	k൯ = ∑ ൬ቀTg,	kVሶ௞(ܝ) − V෡௞ିଵg ቁN෡௞ିଵg(ෝܝ) ॶభ∋(ෝܝ,ܝ)൰ଶ(ෝܝ) , (7)

where ॶଵ = ,ܝ)} ෝܝ :ෝ)} is the set of correspondences obtained by projective data association [1]ܝ = πቀK T෩௞ିଵ,௞Vሶ௞(ܝ)ቁ, (8)T෩௞ିଵ,௞ denotes the transformation from current time k to time (k − 1) during each ICP iteration.

B. Frame to Cuboid Registration

Assuming the cuboid pose w.r.t., the global coordinate frame is already known. For each camera
pose Tg,	k, per-pixel ray casting is performed on the global cuboid to synthesize a proxy depth map D෡௞௖௨. An organized vertex and normal map in the global frame as (Vୡ୳෢ ௞ିଵg , Nୡ୳෢ ௞ିଵg) is then obtained
using back projection of the depth map and local to global transformation. Similar to the frame-to-

Figure 4. Illustration of the notations used in this paper.

3.3. Camera Pose Estimation

Since we use depth maps as input sequences, only geometric alignment is performed. For each
input frame Dk at time k, we estimate the pose Tg, k of the depth camera frame Fk with respect to the
global frame Fg by registering the live depth map to both the global reconstructed surface model and
the cuboid reference object.

A. Frame to Model Registration

Given the implicit TSDF surface model S, the surface prediction w.r.t. the camera pose Tg, k−1 is
obtained as an organized vertex and normal map (V̂k−1, N̂k−1), and transformed into the global frame
as (V̂

g
k−1, N̂

g
k−1). For frame-to-model registration, a transformation Tg, k is pursued to minimize the

point-to-plane error between Tg, kVk and V̂
g
k−1:

E f rame2model

(
Tg, k

)
= ∑

(u, û)∈K1

((
Tg, k

.
Vk(u)− V̂

g
k−1(û)

)
N̂

g
k−1(û)

)2
, (7)

where K1 = {(u, û)} is the set of correspondences obtained by projective data association [1]:

û = π
(

K T̃k−1, k
.

Vk(u)
)

, (8)

Sensors 2017, 17, 2260 7 of 21

T̃k−1, k denotes the transformation from current time k to time (k − 1) during each ICP iteration.

B. Frame to Cuboid Registration

Assuming the cuboid pose w.r.t., the global coordinate frame is already known. For each camera
pose Tg, k, per-pixel ray casting is performed on the global cuboid to synthesize a proxy depth map D̂

cu
k .

An organized vertex and normal map in the global frame as
(

V̂cu
g
k−1, N̂cu

g
k−1

)
is then obtained using

back projection of the depth map and local to global transformation. Similar to the frame-to-model
registration, a frame is aligned against the cuboid surface in the global coordinate frame by minimizing
the point-to-plane error:

E f rame2cuboid

(
Tg, k

)
= ∑

(u, û)∈K2

((
Tg, k

.
Vk(u)− V̂cu

g
k−1(û)

)
N̂cu

g
k−1(û)

)2
, (9)

In addition, we adopt the edge-to-edge error metric as a constraint to mitigate the potential camera
drift. Given the inpainted depth map D′k, we find the edge points (i.e., pixels at depth discontinuities)
on the live depth map along the contour generator set Ck as proposed in [23]:

Ck =
{

s ∈ Dk : ∃t ∈ N 8
s , s.t. D′k(s)−D′k(t) > δc

}
, (10)

where N 8
s is the 8-neighborhood of pixel s ∈ Dk and δc is the depth discontinuity threshold, set to

50 mm according to the sensor noise magnitudes [39]. Figure 3d demonstrates the contour generators
with white lines labeled on the depth map. Edge points set Vek of the live depth map is obtained by
back-projection of Ck.

On the other hand, the cuboid edges are discretized into a 3D point set Vecu
g in the global frame

with an interval of 1 mm. Vecu
g is invariant to the camera pose, and is obtained once the cuboid is

successfully localized, prior to the ICP registration procedure. We also set up a KD-tree over Vecu
g

beforehand for fast correspondence search for each point in Vek. The edge-to-edge error to minimize is:

Eedge2edge

(
Tg, k

)
= ∑

(s, t)∈K3

((
Tg, k

.
Vek(s)−Vecu

g (t)
)

N̂cu
g
k−1(t)

)2
, (11)

where K3 = {(s, t)} is the correspondence set obtained by nearest neighbor search with KD-tree.

C. Joint Optimization

We combine Equations (7), (9) and (11) to form a joint cost function:

Etrack = E f rame2model +w f 2cE f rame2cuboid +we2eEedge2edge, (12)

where w f 2c and we2e are the weights that determine the influence of correspondences on the cuboid
surfaces and edges. When setting w f 2c = we2e = 0, our optimization objective is equivalent to
KinectFusion. We set w f 2c = 1 and we2e = 4 in our experiments empirically, enforcing the constraint
of the edge correspondences.

The camera pose Tg, k is then obtained by minimizing the overall cost function Etrack iteratively.
A linear approximation is made to solve the system, assuming the orientation change between
consecutive frames is very small [1,40]. Using the small angle assumption at each iteration, we
approximate the incremental rotation matrix as:

Rinc =

 1 −γ β

γ 1 −α

−β α 1

, (13)

Sensors 2017, 17, 2260 8 of 21

where α, β, and γ are the rotation in radians about the X, Y, and Z axis, respectively. Similar to
KinectFusion, we compute and sum the linear system in parallel on the GPU, and solve it on the CPU
using a Cholesky decomposition.

3.4. Improved Surface Reconstruction

Although we are trying to stabilize camera tracking, surface reconstruction is yet to be perfect.
The TSDF volumetric representation allows for online surface extraction as a polygon mesh, while
the simple moving average TSDF fusion strategy proposed in KinectFusion suffers from the
inflation problem, and lower the reconstruction accuracy. Figure 5 illustrates one of our synthetic
datasets “armadillo.” Even with noiseless depth images and GT camera trajectory as input, surface
reconstruction is smoothed and inflated, particularly at the cuboid edges, the claws and ears of the
armadillo, which is far less satisfactory than the GT surface model.Sensors 2017, 17, 2260 8 of 21

(a) (b)

(c) (d)

Figure 5. (a) Ground-truth (GT) mesh surface model and (b) GT camera trajectory which are used for
depth image generation; (c) Surface reconstruction with GT camera trajectory as input using the
simple moving average TSDF fusion strategy; (d) A heat map is used to visualize the cloud-to-mesh
distances from reconstructed point cloud to the GT mesh. Note the inflation of the cuboid edges, the
claws and ears of the armadillo character.

The reason for fusion inflation is illustrated in Figure 6. Due to the simple moving average TSDF
fusion algorithm based on the predicate that every surface point is visible from all sensor viewpoints
[6], voxel grids with negative TSDF values interfere with the positive ones. To tackle this problem,
we extend the storage of TSDF (ܘ)܁ from the truncated signed distance value F(ܘ) and its weight W(ܘ) to: (ܘ)܁ ↦ ൣF(ܘ),W(ܘ), Fᇱ(ܘ),Wᇱ(ܘ), Rg(ܘ), Ng(ܘ), Cv ,(ܘ) Cn ൧, (14)(ܘ)

where for each voxel grid ܘ:

1. [F(ܘ),W(ܘ)] are the original TSDF components, and [Fᇱ(ܘ),Wᇱ(ܘ)] are “ghost” distance value
and weight for correction of the existing TSDF prediction;

2. Rg(ܘ) and Ng(ܘ) are the view ray and the normal vector in the global coordinate frame
respectively, which are used to check if a new surface patch is observed from a different view;

3. Cv	(ܘ) and Cn	(ܘ) are two integer counters as the confidence indices of voxel ܘ and its normal
vector Ng(ܘ). When Cv	(ܘ) > of voxel has been robustly (ܘ)௩, we think the distance value Fߜ
estimated; when Cn	(ܘ) > is believed to be stable enough against (ܘ)௡, the normal vector Ngߜ
the measurement noise. A simple Boolean semantic function is defined to check if a new face is
observed from a new view point:

Figure 5. (a) Ground-truth (GT) mesh surface model and (b) GT camera trajectory which are used for
depth image generation; (c) Surface reconstruction with GT camera trajectory as input using the simple
moving average TSDF fusion strategy; (d) A heat map is used to visualize the cloud-to-mesh distances
from reconstructed point cloud to the GT mesh. Note the inflation of the cuboid edges, the claws and
ears of the armadillo character.

The reason for fusion inflation is illustrated in Figure 6. Due to the simple moving average TSDF
fusion algorithm based on the predicate that every surface point is visible from all sensor viewpoints [6],
voxel grids with negative TSDF values interfere with the positive ones. To tackle this problem, we
extend the storage of TSDF S(p) from the truncated signed distance value F(p) and its weight W(p) to:

Sensors 2017, 17, 2260 9 of 21

S(p) 7→
[
F(p), W(p), F′(p), W′(p), Rg(p), Ng(p), Cv (p), Cn (p)

]
, (14)

where for each voxel grid p:

1. [F(p), W(p)] are the original TSDF components, and [F′(p), W′(p)] are “ghost” distance value
and weight for correction of the existing TSDF prediction;

2. Rg(p) and Ng(p) are the view ray and the normal vector in the global coordinate frame
respectively, which are used to check if a new surface patch is observed from a different view;

3. Cv (p) and Cn (p) are two integer counters as the confidence indices of voxel p and its normal
vector Ng(p). When Cv (p) > δv, we think the distance value F(p) of voxel has been robustly
estimated; when Cn (p) > δn, the normal vector Ng(p) is believed to be stable enough against
the measurement noise. A simple Boolean semantic function is defined to check if a new face is
observed from a new view point:

1

estimated; when Cn	ሺܘሻ > ሻ is believed to be stable enough against theܘ௡, the normal vector Ngሺߜ
measurement noise. A simple Boolean semantic function is defined to check if a new face is
observed from a new view point:

IsNewFaceሺܘሻ = True	iff	 ۔ە
ۓ Cn ሺܘሻ > ,௡ߜ andAngle ቀRgሺܘሻ, Rୈೖሺܘሻቁ > ,௥ߠ andAngle ቀNgሺܘሻ, Nୈೖሺܘሻቁ > .௡ߠ , (15)

where the thresholds are set to δ௩ = 15, δ௡ = 5, θ௥ = 15°, θ௡ = 30° empirically. We define a weight
map ௞ࣱ for each input frame D௞:

(15)

where the thresholds are set to δv = 15, δn = 5, θr = 15◦, θn = 30◦ empirically. We define a
weight mapWk for each input frame Dk:

Wk(u) = cos(θI) ∗
Lk(u)
Dk(u)

, (16)

with θI = Angle
(
RDk (p), NDk (p)

)
denoting the incidence angle of the view ray to the surface,

and Lk is a distance transform map obtained from the contour generator map Ck. For each grid p
in the TSDF volume, we obtain the adaptive fusion weight Wk(p) and the truncation distance
threshold µk(p): {

WDk (p) = Wbase ∗Wk(u)
µDk (p) = µbase ∗Wk(u)

, (17)

where u is the projection of p given the camera pose Tg, k, and Wbase, µbase are the base weight
and base truncation distance which are set empirically. Our prediction-corrected TSDF fusion
algorithm is then detailed as a flowchart in Figure 7. We categorize the fusion procedure into
three sub-strategies:

Moving Average: Identical to the TSDF update procedure of KinectFusion, simple moving average
TSDF fusion is performed when a voxel has high uncertainty (e.g., at glancing incidence angle or too
close to the depth discontinuity edge):{

Fk(p) = Wk−1(p)Fk−1(p) + WDk (p)FDk (p)
Wk(p) = Wk−1(p) + WDk (p)

, (18)

Ignore Current: We ignore the TSDF value at the current time when a previously robustly
estimated voxel is at glancing incidence angle along the view ray. This is also the case when the
current TSDF value with higher uncertainty is observed from a new perspective.

Fix Prediction: When a voxel with previously stable TSDF value Fk−1(p) < 0 is observed to
increase from a new point of view—either with FDk (p) > 0 or

(
FDk (p)

〈
0 and FDk (p)

〉
Fk−1(p)

)
—we

believe the live TSDF estimation is more trustworthy as a correction of the previous prediction. In the
case of measurement noise, we fuse the live estimation into the ghost storage:{

F′k(p) = W′k−1(p)F
′
k−1(p) + WDk (p)FDk (p)

W′k(p) = W′k−1(p) + WDk (p)
, (19)

Sensors 2017, 17, 2260 10 of 21

and replace the global TSDF with the ghost storage when W′k(p) is above a threshold:{
Fk(p) = F′k(p)

Wk(p) = W′k(p)
, (20)

Sensors 2017, 17, 2260 10 of 21

(a) (b)

(c) (d)

(e)

Figure 6. Illustration of the TSDF update process of KinectFusion [1]. (a–d) denote four different
camera poses and update of surface reconstruction (green line) at time ݇, (݇ + Δ݇), (݇ + 2Δ݇), (݇ +3Δ݇) respectively. Note the inflated reconstruction of the highly-convex surface (black line) during
the camera movement; (e) denotes our reconstruction at time (݇ + 3Δ݇). Compared with (d), our
result preserves the sharpness of the protrusion area of the surface.

Figure 6. Illustration of the TSDF update process of KinectFusion [1]. (a–d) denote four different camera
poses and update of surface reconstruction (green line) at time k, (k + ∆k), (k + 2∆k), (k + 3∆k)
respectively. Note the inflated reconstruction of the highly-convex surface (black line) during the
camera movement; (e) denotes our reconstruction at time (k + 3∆k). Compared with (d), our result
preserves the sharpness of the protrusion area of the surface.

Sensors 2017, 17, 2260 11 of 21

Sensors 2017, 17, 2260 11 of 21

Figure 7. Description of our TSDF fusion algorithm as a flowchart.

4. Evaluation

We compare our algorithm with four other dense tracking and mapping approaches:
KinectFusion [1] (PCL implementation [37]), the work of Zhou et al. [23], ElasticFusion [20] of Whelan
et al., and the NICP algorithm [32] of Serafin et al. ElasticFusion jointly aligns RGB and depth
information, while the other four are pure depth camera tracking and reconstruction approaches. We
set the weight ݓ௥௚௕ = 0 for RGB alignment component in ElasticFusion, to make it relies only on
depth camera tracking as in others’ work. On the evaluation of NICP, we run their CPU
implementation offline at full resolution, with default configuration (only the camera parameters are
updated). We use the point clouds for reconstruction accuracy evaluation.

Since the scales of our scanned objectives are small, we use a volume of size 1	mଷ with 256ଷ
voxels for all the compared algorithms, where each voxel is approximately 3.9	mmଷ.

4.1. Dataset

A. Noiseless Synthetic Data

We synthesize three depth image sequences with ground-truth (GT) mesh surface models and
GT camera trajectories. A camera intrinsic matrix K௦ is given to generate images of resolution 640 ൈ480, as shown in Table 1. We choose from “The Stanford Models” [41] the armadillo, dragon and
bunny, and scale and place them respectively on top of a synthetic cuboid of edge lengths ௖࣪௨ =(400, 300, 250) mm. We then move the camera freely around the scene to generate GT trajectories
and depth images, as illustrated in Figure 8. Note that neither the depth measurement noise nor the
motion blur is modeled and the only measurement inaccuracy comes from data type casting from
floats to integers when saving the depth images.

Table 1. Camera intrinsic parameters used in our dataset, including the focal lengths ൫ ௫݂, ௬݂൯ and the
optical center ൫ܿ௫, ܿ௬൯. Note that on real-world data the RGB and the depth camera share one intrinsic
matrix K௥ since they are pre-aligned together.

Scenario Intrinsic Matrix ࢞ࢌ ࢟ࢌ ࢞ࢉ ࢟ࢉ
synthetic K௦ (RGB) 525.50 525.50 320.00 240.00

real-world K௥ (RGB-D) 529.22 528.98 313.77 254.10

Figure 7. Description of our TSDF fusion algorithm as a flowchart.

Note the update of
[
Rg(p), Ng(p), Cv(p), Cn(p)

]
is performed independently from the three

fusion strategies. With our subdivided fusion algorithm, different surface areas are reconstructed
elaborately, resulting in the good preservation of high-curvature surface areas, as illustrated in
Figure 6e.

4. Evaluation

We compare our algorithm with four other dense tracking and mapping approaches: KinectFusion [1]
(PCL implementation [37]), the work of Zhou et al. [23], ElasticFusion [20] of Whelan et al., and the NICP
algorithm [32] of Serafin et al. ElasticFusion jointly aligns RGB and depth information, while the other
four are pure depth camera tracking and reconstruction approaches. We set the weight wrgb = 0 for
RGB alignment component in ElasticFusion, to make it relies only on depth camera tracking as in others’
work. On the evaluation of NICP, we run their CPU implementation offline at full resolution, with default
configuration (only the camera parameters are updated). We use the point clouds for reconstruction
accuracy evaluation.

Since the scales of our scanned objectives are small, we use a volume of size 1 m3 with 2563 voxels
for all the compared algorithms, where each voxel is approximately 3.9 mm3.

4.1. Dataset

A. Noiseless Synthetic Data

We synthesize three depth image sequences with ground-truth (GT) mesh surface models and GT
camera trajectories. A camera intrinsic matrix Ks is given to generate images of resolution 640× 480, as
shown in Table 1. We choose from “The Stanford Models” [41] the armadillo, dragon and bunny, and
scale and place them respectively on top of a synthetic cuboid of edge lengths Pcu= (400, 300, 250)
mm. We then move the camera freely around the scene to generate GT trajectories and depth images, as
illustrated in Figure 8. Note that neither the depth measurement noise nor the motion blur is modeled
and the only measurement inaccuracy comes from data type casting from floats to integers when
saving the depth images.

Sensors 2017, 17, 2260 12 of 21

Table 1. Camera intrinsic parameters used in our dataset, including the focal lengths
(

fx, fy
)

and the
optical center

(
cx, cy

)
. Note that on real-world data the RGB and the depth camera share one intrinsic

matrix Kr since they are pre-aligned together.

Scenario Intrinsic Matrix fx fy cx cy

synthetic Ks (RGB) 525.50 525.50 320.00 240.00
real-world Kr (RGB-D) 529.22 528.98 313.77 254.10Sensors 2017, 17, 2260 12 of 21

(a) (b) (c)

Figure 8. Synthetic data. The (a) armadillo; (b) dragon; and (c) bunny are set upright on top of a cuboid
(400 ൈ 300 ൈ 250	mmଷ) respectively. The top row shows the snapshot of the GT models, the middle
row shows the GT camera trajectories (top view), and the bottom row shows the generated depth
images (at time 0).

B. Noisy Real-World Data

We manufacture six rigid objects using a 3D printer and put them on a precisely manufactured
cuboid with dimensions 400 ൈ 300 ൈ 250	mmଷ , same as the one used in our synthetic data. The
cuboid is placed on a turntable which is turned by hand, and we held and moved a Kinect camera
slowly to perceive more details of the objectives. 640 ൈ 480 pre-aligned RGB-D images are
generated at 30	Hz , with the camera intrinsic matrix K௥ (Table 1). We pre-process the depth
sequences by truncating depth pixels of values larger than 1.5 m, to remove static background areas.
Figure 9 demonstrates our GT mesh models, the 3D printed objects and the captured depth images
with the scanning objectives placed on top of the cuboid reference object. Note that in data
“lambunny,” a simplified bunny model with merely 640 vertices and 1247 faces is used, and in data
“mug,” a regular hexagonal mug resting upside down on the cuboid is scanned.

Figure 8. Synthetic data. The (a) armadillo; (b) dragon; and (c) bunny are set upright on top of a cuboid
(400× 300× 250 mm3) respectively. The top row shows the snapshot of the GT models, the middle row
shows the GT camera trajectories (top view), and the bottom row shows the generated depth images
(at time 0).

B. Noisy Real-World Data

We manufacture six rigid objects using a 3D printer and put them on a precisely manufactured
cuboid with dimensions 400× 300× 250 mm3, same as the one used in our synthetic data. The cuboid
is placed on a turntable which is turned by hand, and we held and moved a Kinect camera slowly to
perceive more details of the objectives. 640× 480 pre-aligned RGB-D images are generated at 30 Hz,
with the camera intrinsic matrix Kr (Table 1). We pre-process the depth sequences by truncating depth
pixels of values larger than 1.5 m, to remove static background areas. Figure 9 demonstrates our GT
mesh models, the 3D printed objects and the captured depth images with the scanning objectives
placed on top of the cuboid reference object. Note that in data “lambunny,” a simplified bunny model

Sensors 2017, 17, 2260 13 of 21

with merely 640 vertices and 1247 faces is used, and in data “mug,” a regular hexagonal mug resting
upside down on the cuboid is scanned.Sensors 2017, 17, 2260 13 of 21

(a) (b) (c) (d) (e) (f)
Figure 9. Real-world data: (a) lambunny; (b) owl; (c) wingedcat; (d) buddhahead; (e) tooth; and (f)
mug. The top row shows the snapshots of the GT models, the middle row shows the 3D printed rigid
objects, and the bottom row shows the depth images of models placed on our man-made cuboid
resting on a turntable.

4.2. Error Metrics

On synthetic data, both GT camera trajectories and GT mesh surfaces are provided. We quantify
the accuracy of camera trajectory using absolute trajectory error (ATE) proposed by Sturm et al. [42],
and evaluate the root mean squared error (RMSE) of the translational components over all time
indices, which gives more influence to outliers. We further quantify the surface reconstruction
accuracy using the cloud to mesh (C2M) distance metric [43] after aligning the GT model with the
reconstructed model using the CloudCompare software [44]. We use two standard statistics: Mean
and Std. over the C2M distances for all vertices in the reconstruction. On our real-world data, GT
camera trajectories are not available nor do we have GT surface models of the entire scenes. We focus
on the evaluation of the reconstructed 3D printed models using the C2M error metric.

4.3. Camera Trajectory Accuracy

We evaluate the absolute trajectory error (ATE) of the camera trajectories on synthetic depth
image sequences. Although planar surfaces of the cuboid occupy the majority of the depth images,
KinectFusion [1], Zhou et al. [23], ElasticFusion [20] and our approach achieve decent camera
trajectories without prominently accumulating drift, as listed in Table 2. However, NICP [32]
produces inaccurate trajectories with ATE up to hundreds of millimeters. With the additional
information from the cuboid a priori, our approach significantly outperforms the reference
algorithms, reducing the RMS odometry error from 3~8 mm to less than 2 mm.

Table 2. Evaluation of the odometry accuracy with absolute trajectory error (ATE) RMSE metric in
millimeters.

Synthetic Data KinectFusion [1] Zhou et al. [23] ElasticFusion [20] NICP [32] Our
Approach

armadillo 3.2 6.4 7.1 454.6 1.5
dragon 4.2 6.7 8.0 292.8 1.7
bunny 3.9 5.1 6.6 417.8 1.3

Figure 9. Real-world data: (a) lambunny; (b) owl; (c) wingedcat; (d) buddhahead; (e) tooth; and
(f) mug. The top row shows the snapshots of the GT models, the middle row shows the 3D printed
rigid objects, and the bottom row shows the depth images of models placed on our man-made cuboid
resting on a turntable.

4.2. Error Metrics

On synthetic data, both GT camera trajectories and GT mesh surfaces are provided. We quantify
the accuracy of camera trajectory using absolute trajectory error (ATE) proposed by Sturm et al. [42],
and evaluate the root mean squared error (RMSE) of the translational components over all time indices,
which gives more influence to outliers. We further quantify the surface reconstruction accuracy using
the cloud to mesh (C2M) distance metric [43] after aligning the GT model with the reconstructed model
using the CloudCompare software [44]. We use two standard statistics: Mean and Std. over the C2M
distances for all vertices in the reconstruction. On our real-world data, GT camera trajectories are not
available nor do we have GT surface models of the entire scenes. We focus on the evaluation of the
reconstructed 3D printed models using the C2M error metric.

4.3. Camera Trajectory Accuracy

We evaluate the absolute trajectory error (ATE) of the camera trajectories on synthetic depth
image sequences. Although planar surfaces of the cuboid occupy the majority of the depth images,
KinectFusion [1], Zhou et al. [23], ElasticFusion [20] and our approach achieve decent camera
trajectories without prominently accumulating drift, as listed in Table 2. However, NICP [32] produces
inaccurate trajectories with ATE up to hundreds of millimeters. With the additional information from
the cuboid a priori, our approach significantly outperforms the reference algorithms, reducing the
RMS odometry error from 3~8 mm to less than 2 mm.

Since the errors of all the trajectory estimations (NICP excluded) on synthetic data are small
(<10 mm), we plot the per frame ATE (as in Figure 10) for each algorithm (NICP excluded) rather
than the trajectory overviews. Our approach (cyan line) keeps the least drift on most of the frames
compared with the other three algorithms.

Sensors 2017, 17, 2260 14 of 21

Table 2. Evaluation of the odometry accuracy with absolute trajectory error (ATE) RMSE metric
in millimeters.

Synthetic Data KinectFusion [1] Zhou et al. [23] ElasticFusion [20] NICP [32] Our Approach

armadillo 3.2 6.4 7.1 454.6 1.5
dragon 4.2 6.7 8.0 292.8 1.7
bunny 3.9 5.1 6.6 417.8 1.3

Sensors 2017, 17, 2260 14 of 21

Since the errors of all the trajectory estimations (NICP excluded) on synthetic data are small (<10 mm), we plot the per frame ATE (as in Figure 10) for each algorithm (NICP excluded) rather than
the trajectory overviews. Our approach (cyan line) keeps the least drift on most of the frames
compared with the other three algorithms.

(a) (b)

(c)

Figure 10. Illustration of per frame ATE on the synthetic (a) armadillo; (b) dragon; and (c) bunny data
sequences.

4.4. Surface Reconstruction Accuracy

The surface reconstruction accuracy is evaluated with the cloud to mesh (C2M) distances
between the reconstructions and the ground-truth mesh models. For our synthetic data, GT models
of the whole scenes are provided while for our real-world data, we have only GT models for the 3D
printed objectives placed on the reference cuboid. Surface reconstructions are first aligned against the
GT models for C2M distance computation, and heat maps of the C2M distances are plotted in Figure
11 for qualitatively reconstruction accuracy evaluation. Rows 1~3 show the reconstruction of the
synthetic data inputs, and rows 4~9 show the real-world ones. The outputs of ElasticFusion in column
3 are not watertight, since it outputs clouds instead of meshes. NICP is excluded from comparison,
since its inaccurate camera trajectories result in invalid scene clouds on our benchmark dataset. Note
how tightly our approach preserves the scale of the reconstruction and maintains high-fidelity
particularly on sharp geometries.

Figure 10. Illustration of per frame ATE on the synthetic (a) armadillo; (b) dragon; and (c) bunny
data sequences.

4.4. Surface Reconstruction Accuracy

The surface reconstruction accuracy is evaluated with the cloud to mesh (C2M) distances between
the reconstructions and the ground-truth mesh models. For our synthetic data, GT models of the
whole scenes are provided while for our real-world data, we have only GT models for the 3D printed
objectives placed on the reference cuboid. Surface reconstructions are first aligned against the GT
models for C2M distance computation, and heat maps of the C2M distances are plotted in Figure 11 for
qualitatively reconstruction accuracy evaluation. Rows 1~3 show the reconstruction of the synthetic
data inputs, and rows 4~9 show the real-world ones. The outputs of ElasticFusion in column 3 are
not watertight, since it outputs clouds instead of meshes. NICP is excluded from comparison, since
its inaccurate camera trajectories result in invalid scene clouds on our benchmark dataset. Note how
tightly our approach preserves the scale of the reconstruction and maintains high-fidelity particularly
on sharp geometries.

Sensors 2017, 17, 2260 15 of 21
Sensors 2017, 17, 2260 15 of 21

 KinectFusion [1] Zhou et al. [23] ElasticFusion [20] Our approach
ar

m
ad

ill
o

dr
ag

on

bu
nn

y

la
m

bu
nn

y

ow
l

w
in

ge
dc

at

bu
dd

ha
he

ad

to
ot

h

Figure 11. Cont.

Sensors 2017, 17, 2260 16 of 21
Sensors 2017, 17, 2260 16 of 21

m
ug

 (a) (b) (c) (d)

Figure 11. Heat maps of cloud to mesh (C2M) distances for qualitative evaluation of the
reconstructions. The compared algorithms are (a) KinectFusion [1]; (b) Zhou et al. [23]; (c)
ElasticFusion [20]; and (d) our approach. Rows 1~3 are reconstructions of the synthetic data, rows 4~9
are the real-world reconstructions (only the 3D printed objectives are evaluated, with other areas of
the scenes grayed out). The scale of the color bar is 0~15	mm among all the tests.

We quantitatively evaluate the C2M errors for each algorithm with Mean and Std. statistics, as
shown in Tables 3 and 4. Our approach keeps the minimum values on both Mean and Std. in all
experimental datasets, indicating its superiority in accuracy over the compared algorithms. Close-up
views of the reconstructions are detailed in Figure 12, for further comparison between KinectFusion
and our approach.

Table 3. Surface Reconstruction accuracy on our synthetic data, with C2M error metric (Mean ± Std.)
in millimeters.

Synthetic Data KinectFusion [1] Zhou et al. [23] ElasticFusion [20] Our Approach
armadillo 0.9 ± 1.1	 1.6 ± 1.4 1.3 ± 1.6 ૙. ૛ ± ૙. ૞	

dragon 1.0 ± 1.2	 1.5 ± 1.4 1.3 ± 1.6 ૙. ૜ ± ૙. ૟	
bunny 0.9 ± 1.9	 1.3 ± 1.8 1.0 ± 1.1 ૙. ૝ ± ૚. ૚	

Table 4. Surface Reconstruction accuracy on our real-world data, with C2M error metric (Mean ± Std.)
in millimeters. Note that for real-world data, the evaluation is only performed on the 3D printed
objectives but not the whole scene.

Real-World Data KinectFusion [1] Zhou et al. [23] ElasticFusion [20] Our Approach
lambunny 4.0 ± 3.3	 4.5 ± 3.0 3.5 ± 3.7 ૚. ૜ ± ૚. ૞	

owl 4.4 ± 3.1	 4.9 ± 2.9 5.1 ± 4.4 ૚. ૚ ± ૚. ૜	
wingedcat 5.0 ± 3.3	 5.2 ± 3.1 3.2 ± 3.1 ૚. ૞ ± ૚. ૡ	

buddhahead 4.8 ± 3.3	 5.3 ± 3.0 4.5 ± 3.7 ૚. ૙ ± ૙. ૡ	
tooth 4.4 ± 1.7	 4.8 ± 1.8 3.9 ± 3.6 ૚. ૛ ± ૚. ૙	
mug 2.7 ± 2.0	 3.5 ± 2.3 5.0 ± 3.2 ૙. ૢ ± ૙. ૡ	

Additionally, we evaluate the reversed C2M errors, namely the distance from the point clouds
of the GT models to the mesh of the surface reconstructions. ElasticFusion is excluded from this
comparison, since it produces no surface meshes. Tables 5 and 6 show the quantitative results of this
evaluation. On average, the error of this metric is slightly larger than that of the normal C2M distance
metric shown in Tables 3 and 4, which results from the inabilities of the compared algorithms to
accurately reconstruct extremely sharp surface geometries.

Table 5. Reversed C2M error in millimeters on our synthetic data.

Synthetic Data KinectFusion [1] Zhou et al. [23] Our Approach
armadillo 1.7 ± 1.5 2.0 ± 1.5 ૙. ૞ ± ૙. ૟	

dragon 1.8 ± 2.1 2.0 ± 2.2 ૙. ૢ ± ૛. ૙	
bunny 1.4 ± 2.3 1.7 ± 2.3 ૙. ૢ ± ૛. ૜	

Figure 11. Heat maps of cloud to mesh (C2M) distances for qualitative evaluation of the reconstructions.
The compared algorithms are (a) KinectFusion [1]; (b) Zhou et al. [23]; (c) ElasticFusion [20]; and
(d) our approach. Rows 1~3 are reconstructions of the synthetic data, rows 4~9 are the real-world
reconstructions (only the 3D printed objectives are evaluated, with other areas of the scenes grayed
out). The scale of the color bar is 0 ∼ 15mm among all the tests.

We quantitatively evaluate the C2M errors for each algorithm with Mean and Std. statistics, as
shown in Tables 3 and 4. Our approach keeps the minimum values on both Mean and Std. in all
experimental datasets, indicating its superiority in accuracy over the compared algorithms. Close-up
views of the reconstructions are detailed in Figure 12, for further comparison between KinectFusion
and our approach.

Table 3. Surface Reconstruction accuracy on our synthetic data, with C2M error metric (Mean± Std.)
in millimeters.

Synthetic Data KinectFusion [1] Zhou et al. [23] ElasticFusion [20] Our Approach

armadillo 0.9± 1.1 1.6± 1.4 1.3± 1.6 0.2± 0.5
dragon 1.0± 1.2 1.5± 1.4 1.3± 1.6 0.3± 0.6
bunny 0.9± 1.9 1.3± 1.8 1.0± 1.1 0.4± 1.1

Table 4. Surface Reconstruction accuracy on our real-world data, with C2M error metric (Mean± Std.)
in millimeters. Note that for real-world data, the evaluation is only performed on the 3D printed
objectives but not the whole scene.

Real-World Data KinectFusion [1] Zhou et al. [23] ElasticFusion [20] Our Approach

lambunny 4.0± 3.3 4.5± 3.0 3.5± 3.7 1.3± 1.5
owl 4.4± 3.1 4.9± 2.9 5.1± 4.4 1.1± 1.3

wingedcat 5.0± 3.3 5.2± 3.1 3.2± 3.1 1.5± 1.8
buddhahead 4.8± 3.3 5.3± 3.0 4.5± 3.7 1.0± 0.8

tooth 4.4± 1.7 4.8± 1.8 3.9± 3.6 1.2± 1.0
mug 2.7± 2.0 3.5± 2.3 5.0± 3.2 0.9± 0.8

Additionally, we evaluate the reversed C2M errors, namely the distance from the point clouds
of the GT models to the mesh of the surface reconstructions. ElasticFusion is excluded from this
comparison, since it produces no surface meshes. Tables 5 and 6 show the quantitative results of
this evaluation. On average, the error of this metric is slightly larger than that of the normal C2M
distance metric shown in Tables 3 and 4, which results from the inabilities of the compared algorithms
to accurately reconstruct extremely sharp surface geometries.

Table 5. Reversed C2M error in millimeters on our synthetic data.

Synthetic Data KinectFusion [1] Zhou et al. [23] Our Approach

armadillo 1.7± 1.5 2.0± 1.5 0.5± 0.6
dragon 1.8± 2.1 2.0± 2.2 0.9± 2.0
bunny 1.4± 2.3 1.7± 2.3 0.9± 2.3

Sensors 2017, 17, 2260 17 of 21

Sensors 2017, 17, 2260 17 of 21

Table 6. Reversed C2M error in millimeters on our real-world data.

Real-World Data KinectFusion [1] Zhou et al. [23] Our Approach
lambunny 3.3 ± 2.6 3.9 ± 2.5 ૚. ૛ ± ૚. ૙	

owl 4.0 ± 2.1 4.8 ± 2.1 ૚. ૞ ± ૚. ૟	
wingedcat 7.6 ± 5.9 8.0 ± 6.0 ૝. ૜ ± ૞. ૙	

buddhahead 4.7 ± 1.8 5.6 ± 1.6 ૚. ૚ ± ૙. ૡ	
tooth 4.1 ± 1.6 4.6 ± 1.7 ૚. ૙ ± ૚. ૙	
mug 2.3 ± 1.5 3.1 ± 1.9 ૚. ૚ ± ૚. ૛	

(a) (b) (c)

(d) (e) (f)

Sensors 2017, 17, 2260 18 of 21

(g) (h) (i)

Figure 12. Close-up views of the reconstructions, colored with C2M distances. The synthetic data are
(a) armadillo; (b) dragon; (c) bunny; and the real-world data are (d) lambunny; (e) owl; (f) wingedcat;
(g) buddhahead; (h) tooth; and (i) mug. The odd rows are reconstructions of KinectFusion [1] as a
comparison, and the even rows are of our approach.

5. Discussion and Conclusions

We have presented a novel approach called CuFusion for real-time 3D scanning and accurate
surface reconstruction using a Kinect-style depth camera. A man-made cuboid, the scale of which is
accurately known, is used as a reference object for accurate camera localization without explicit loop
closure detection, and a novel prediction-corrected TSDF fusion strategy is employed for
reconstruction update. By solving the surface inflation problem introduced by the simple moving
average fusion strategy, our approach preserves the surface details especially when scanning tiny
objects or edge areas with high curvatures, resulting in high-fidelity surface reconstruction, which
also improves the camera odometry accuracy in turn. We provide a dataset CU3D for the quantitative
evaluation of our algorithm and have made our code open-source for scientific verification.

There are several limitations for future work to overcome. First, our modified dense volumetric
representation needs 16 bytes per voxel—four times as much memory as KinectFusion at the same
resolution—which limits our reconstruction to small-sized scenes. Second, to be capable of
reconstructing high-curvature geometries, the camera should be moved as steadily as possible to
reduce motion blur and uncertainty in depth measurements. Our algorithm trades off the robustness
for reconstruction accuracy, which may fail in the presence of camera jitter or large motion. Figure 13
shows an example of the reconstruction failure result from depth motion blur artifact. Although no
noticeable tracking drift happens, the reconstruction is delicate due to our prediction-corrected TSDF
fusion strategy. Third, despite our efforts, the reconstructions are yet to be perfected due to sensor
noise and the limitation of the volume resolution. As illustrated in Figure 12, engraved surfaces such
as the armadillo shell, the facial expression of the owl, wingedcat and buddhahead are smoothed
out—additionally, very thin geometries such as the owl’s ears and the mug’s handle are partly gone.

(a) (b)

Figure 12. Close-up views of the reconstructions, colored with C2M distances. The synthetic data are
(a) armadillo; (b) dragon; (c) bunny; and the real-world data are (d) lambunny; (e) owl; (f) wingedcat;
(g) buddhahead; (h) tooth; and (i) mug. The odd rows are reconstructions of KinectFusion [1] as a
comparison, and the even rows are of our approach.

Sensors 2017, 17, 2260 18 of 21

Table 6. Reversed C2M error in millimeters on our real-world data.

Real-World Data KinectFusion [1] Zhou et al. [23] Our Approach

lambunny 3.3± 2.6 3.9± 2.5 1.2± 1.0
owl 4.0± 2.1 4.8± 2.1 1.5± 1.6

wingedcat 7.6± 5.9 8.0± 6.0 4.3± 5.0
buddhahead 4.7± 1.8 5.6± 1.6 1.1± 0.8

tooth 4.1± 1.6 4.6± 1.7 1.0± 1.0
mug 2.3± 1.5 3.1± 1.9 1.1± 1.2

5. Discussion and Conclusions

We have presented a novel approach called CuFusion for real-time 3D scanning and accurate
surface reconstruction using a Kinect-style depth camera. A man-made cuboid, the scale of which is
accurately known, is used as a reference object for accurate camera localization without explicit loop
closure detection, and a novel prediction-corrected TSDF fusion strategy is employed for reconstruction
update. By solving the surface inflation problem introduced by the simple moving average fusion
strategy, our approach preserves the surface details especially when scanning tiny objects or edge
areas with high curvatures, resulting in high-fidelity surface reconstruction, which also improves the
camera odometry accuracy in turn. We provide a dataset CU3D for the quantitative evaluation of our
algorithm and have made our code open-source for scientific verification.

There are several limitations for future work to overcome. First, our modified dense volumetric
representation needs 16 bytes per voxel—four times as much memory as KinectFusion at the
same resolution—which limits our reconstruction to small-sized scenes. Second, to be capable of
reconstructing high-curvature geometries, the camera should be moved as steadily as possible to
reduce motion blur and uncertainty in depth measurements. Our algorithm trades off the robustness
for reconstruction accuracy, which may fail in the presence of camera jitter or large motion. Figure 13
shows an example of the reconstruction failure result from depth motion blur artifact. Although no
noticeable tracking drift happens, the reconstruction is delicate due to our prediction-corrected TSDF
fusion strategy. Third, despite our efforts, the reconstructions are yet to be perfected due to sensor
noise and the limitation of the volume resolution. As illustrated in Figure 12, engraved surfaces such
as the armadillo shell, the facial expression of the owl, wingedcat and buddhahead are smoothed
out—additionally, very thin geometries such as the owl’s ears and the mug’s handle are partly gone.

Our future work will focus on the memory efficiency of our modified volumetric representation,
enabling higher volume resolution and a larger scale of reconstruction. The octree-based framework
OctoMap [30] could be used for volume data compression. Another interesting challenge might be the
surface smoothing problem, which we will focus on mitigating using the surface curvature consistency
among the captured frames.

Sensors 2017, 17, 2260 18 of 21

(g) (h) (i)

Figure 12. Close-up views of the reconstructions, colored with C2M distances. The synthetic data are
(a) armadillo; (b) dragon; (c) bunny; and the real-world data are (d) lambunny; (e) owl; (f) wingedcat;
(g) buddhahead; (h) tooth; and (i) mug. The odd rows are reconstructions of KinectFusion [1] as a
comparison, and the even rows are of our approach.

5. Discussion and Conclusions

We have presented a novel approach called CuFusion for real-time 3D scanning and accurate
surface reconstruction using a Kinect-style depth camera. A man-made cuboid, the scale of which is
accurately known, is used as a reference object for accurate camera localization without explicit loop
closure detection, and a novel prediction-corrected TSDF fusion strategy is employed for
reconstruction update. By solving the surface inflation problem introduced by the simple moving
average fusion strategy, our approach preserves the surface details especially when scanning tiny
objects or edge areas with high curvatures, resulting in high-fidelity surface reconstruction, which
also improves the camera odometry accuracy in turn. We provide a dataset CU3D for the quantitative
evaluation of our algorithm and have made our code open-source for scientific verification.

There are several limitations for future work to overcome. First, our modified dense volumetric
representation needs 16 bytes per voxel—four times as much memory as KinectFusion at the same
resolution—which limits our reconstruction to small-sized scenes. Second, to be capable of
reconstructing high-curvature geometries, the camera should be moved as steadily as possible to
reduce motion blur and uncertainty in depth measurements. Our algorithm trades off the robustness
for reconstruction accuracy, which may fail in the presence of camera jitter or large motion. Figure 13
shows an example of the reconstruction failure result from depth motion blur artifact. Although no
noticeable tracking drift happens, the reconstruction is delicate due to our prediction-corrected TSDF
fusion strategy. Third, despite our efforts, the reconstructions are yet to be perfected due to sensor
noise and the limitation of the volume resolution. As illustrated in Figure 12, engraved surfaces such
as the armadillo shell, the facial expression of the owl, wingedcat and buddhahead are smoothed
out—additionally, very thin geometries such as the owl’s ears and the mug’s handle are partly gone.

(a) (b)

Figure 13. Cont.

Sensors 2017, 17, 2260 19 of 21

Sensors 2017, 17, 2260 19 of 21

(c) (d)

Figure 13. A failure case of our approach when scanning a Spinosaurus model with thin spines on its
back. (a) Color (not used) and (b) depth image at time ݇ = 912. Slightly faster camera motion around
time k leads to mild motion blur, as can be seen from the color image; (c) A sectional view of part of
the reconstruction before time k. Note how accurately our approach reconstructs the thin spines of
the model; (d) A profile view of the reconstruction failure of the spine area at time k.

Our future work will focus on the memory efficiency of our modified volumetric representation,
enabling higher volume resolution and a larger scale of reconstruction. The octree-based framework
OctoMap [30] could be used for volume data compression. Another interesting challenge might be
the surface smoothing problem, which we will focus on mitigating using the surface curvature
consistency among the captured frames.

Acknowledgments: We thank Qianyi Zhou [23], Thomas Whelan [20] and Jacopo Serafin [32] for providing their
implementations, and thank Guofei Sun for dataset collection.

Author Contributions: Chen Zhang conceived and designed the study, performed the experiments, and
analyzed the results; Chen Zhang and Yu Hu prepared the benchmark dataset and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohli, P.; Shotton, J.; Hodges,
S.; Fitzgibbon, A. KinectFusion: Real-time Dense Surface Mapping and Tracking. In Proceedings of the 2011
10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR ’11), Basel, Switzerland,
26–29 October 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 127–136.

2. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256, doi:10.1109/34.121791.

3. Curless, B.; Levoy, M. A Volumetric Method for Building Complex Models from Range Images. In
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’96), New Orleans, LA, USA, 4–9 August 1996; ACM: New York, NY, USA, 1996; pp. 303–312.

4. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’87), Anaheim, CA, USA, 27–31 July 1987; Volume 21, pp. 163–169, doi:10.1145/37402.37422.

5. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third
International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June
2001; pp. 145–152.

6. Hernandez, C.; Vogiatzis, G.; Cipolla, R. Probabilistic visibility for multi-view stereo. In Proceedings of the
2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June
2007; pp. 1–8.

7. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D Mapping with an RGB-D Camera. IEEE Trans.
Robot. 2014, 30, 177–187, doi:10.1109/TRO.2013.2279412.

Figure 13. A failure case of our approach when scanning a Spinosaurus model with thin spines on its
back. (a) Color (not used) and (b) depth image at time k = 912. Slightly faster camera motion around
time k leads to mild motion blur, as can be seen from the color image; (c) A sectional view of part of
the reconstruction before time k. Note how accurately our approach reconstructs the thin spines of the
model; (d) A profile view of the reconstruction failure of the spine area at time k.

Acknowledgments: We thank Qianyi Zhou [23], Thomas Whelan [20] and Jacopo Serafin [32] for providing their
implementations, and thank Guofei Sun for dataset collection.

Author Contributions: Chen Zhang conceived and designed the study, performed the experiments, and analyzed
the results; Chen Zhang and Yu Hu prepared the benchmark dataset and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohli, P.; Shotton, J.;
Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time Dense Surface Mapping and Tracking. In Proceedings
of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR ’11), Basel,
Switzerland, 26–29 October 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 127–136.

2. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992,
14, 239–256. [CrossRef]

3. Curless, B.; Levoy, M. A Volumetric Method for Building Complex Models from Range Images. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96),
New Orleans, LA, USA, 4–9 August 1996; ACM: New York, NY, USA, 1996; pp. 303–312.

4. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH’87), Anaheim, CA, USA, 27–31 July 1987; Volume 21, pp. 163–169. [CrossRef]

5. Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International
Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001;
pp. 145–152.

6. Hernandez, C.; Vogiatzis, G.; Cipolla, R. Probabilistic visibility for multi-view stereo. In Proceedings of the
2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June
2007; pp. 1–8.

7. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D Mapping with an RGB-D Camera. IEEE Trans. Robot.
2014, 30, 177–187. [CrossRef]

8. Axelsson, P. Processing of laser scanner data—Algorithms and applications. ISPRS J. Photogramm. Remote Sens.
1999, 54, 138–147. [CrossRef]

9. Vosselman, G.; Gorte, B.G.; Sithole, G.; Rabbani, T. Recognising structure in laser scanner point clouds.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 46, 33–38.

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1109/TRO.2013.2279412
http://dx.doi.org/10.1016/S0924-2716(99)00008-8

Sensors 2017, 17, 2260 20 of 21

10. Cui, Y.; Schuon, S.; Chan, D.; Thrun, S.; Theobalt, C. 3D shape scanning with a time-of-flight camera.
In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
San Francisco, CA, USA, 13–18 June 2010; pp. 1173–1180.

11. Lange, R.; Seitz, P. Solid-state time-of-flight range camera. IEEE J. Quantum Electron. 2001, 37, 390–397.
[CrossRef]

12. Scharstein, D.; Szeliski, R. High-accuracy stereo depth maps using structured light. In Proceedings of the
2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA,
16–22 June 2003; Volume 1, pp. I–195–I–202.

13. Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D. RGB-D mapping: Using Kinect-style depth cameras for
dense 3D modeling of indoor environments. Int. J. Robot. Res. 2012, 31, 647–663. [CrossRef]

14. Segal, A.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems
Conference, Seattle, WA, USA, 28 June–1 July 2009; Volume 2, p. 435.

15. Nistér, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–
2 July 2004; Volume 1, pp. I–652–I–659.

16. Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D SLAM
system. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA),
St. Paul, MN, USA, 14–18 May 2012; pp. 1691–1696.

17. Whelan, T.; Kaess, M.; Fallon, M.; Johannsson, H.; Leonard, J.; McDonald, J. Kintinuous: Spatially
Extended Kinectfusion. Available online: https://dspace.mit.edu/handle/1721.1/71756 (accessed on
30 September 2017).

18. Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, J.J.; McDonald, J. Real-time large-scale dense
RGB-D SLAM with volumetric fusion. Int. J. Robot. Res. 2015, 34, 598–626. [CrossRef]

19. Kerl, C.; Sturm, J.; Cremers, D. Dense visual SLAM for RGB-D cameras. In Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013;
pp. 2100–2106.

20. Whelan, T.; Leutenegger, S.; Moreno, R.S.; Glocker, B.; Davison, A. ElasticFusion: Dense SLAM without A
Pose Graph. In Proceedings of the 2015 Robotics: Science and Systems, Rome, Italy, 13–17 July 2015.

21. Bose, L.; Richards, A. Fast depth edge detection and edge based RGB-D SLAM. In Proceedings of the 2016
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016;
pp. 1323–1330.

22. Choi, C.; Trevor, A.J.B.; Christensen, H.I. RGB-D edge detection and edge-based registration. In Proceedings
of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan,
3–7 November 2013; pp. 1568–1575.

23. Zhou, Q.-Y.; Koltun, V. Depth camera tracking with contour cues. In Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 632–638.

24. Lefloch, D.; Kluge, M.; Sarbolandi, H.; Weyrich, T.; Kolb, A. Comprehensive Use of Curvature for Robust
and Accurate Online Surface Reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2017, PP, 1. [CrossRef]
[PubMed]

25. Pumarola, A.; Vakhitov, A.; Agudo, A.; Sanfeliu, A.; Moreno-Noguer, F. PL-SLAM: Real-Time Monocular
Visual SLAM with Points and Lines. In Proceedings of the 2017 IEEE International Conference on Robotics
and Automation (ICRA), Singapore, 29 May–3 June 2017.

26. Ma, L.; Kerl, C.; Stückler, J.; Cremers, D. Cpa-slam: Consistent plane-model alignment for direct RGB-D Slam.
In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 1285–1291.

27. Nguyen, T.; Reitmayr, G.; Schmalstieg, D. Structural modeling from depth images. IEEE Trans. Vis. Comput. Graph.
2015, 21, 1230–1240. [CrossRef] [PubMed]

28. Salas-Moreno, R.F.; Glocken, B.; Kelly, P.H.; Davison, A.J. Dense planar SLAM. In Proceedings of the
2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany,
10–12 September 2014; pp. 157–164.

29. Taguchi, Y.; Jian, Y.-D.; Ramalingam, S.; Feng, C. Point-plane SLAM for hand-held 3D sensors. In Proceedings
of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
6–10 May 2013; pp. 5182–5189.

http://dx.doi.org/10.1109/3.910448
http://dx.doi.org/10.1177/0278364911434148
https://dspace.mit.edu/handle/1721.1/71756
http://dx.doi.org/10.1177/0278364914551008
http://dx.doi.org/10.1109/TPAMI.2017.2648803
http://www.ncbi.nlm.nih.gov/pubmed/28103193
http://dx.doi.org/10.1109/TVCG.2015.2459831
http://www.ncbi.nlm.nih.gov/pubmed/26340775

Sensors 2017, 17, 2260 21 of 21

30. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Auton. Robots 2013, 34, 189–206. [CrossRef]

31. Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S.; Weyrich, T.; Kolb, A. Real-time 3D reconstruction in dynamic
scenes using point-based fusion. In Proceedings of the 2013 International Conference on 3DTV-Conference,
Zurich, Switzerland, 29 June–1 July 2013; pp. 1–8.

32. Serafin, J.; Grisetti, G. NICP: Dense normal based point cloud registration. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 742–749.

33. Rusinkiewicz, S.; Hall-Holt, O.; Levoy, M. Real-time 3D model acquisition. ACM Trans. Graph. 2002, 21,
438–446. [CrossRef]

34. Weise, T.; Wismer, T.; Leibe, B.; Van Gool, L. In-hand scanning with online loop closure. In Proceedings of
the 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto,
Japan, 27 September–4 October 2009; pp. 1630–1637.

35. Pfister, H.; Zwicker, M.; Van Baar, J.; Gross, M. Surfels: Surface elements as rendering primitives.
In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
New Orleans, LA, USA, 23–28 July 2000; pp. 335–342.

36. Meister, S.; Izadi, S.; Kohli, P.; Hämmerle, M.; Rother, C.; Kondermann, D. When can we use kinectfusion
for ground truth acquisition. In Proceedings of the Workshop on Color-Depth Camera Fusion in Robotics,
Algarve, Portugal, 7 October 2012; Volume 2.

37. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4.

38. Feng, C.; Taguchi, Y.; Kamat, V.R. Fast plane extraction in organized point clouds using agglomerative
hierarchical clustering. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 6218–6225.

39. Khoshelham, K.; Elberink, S.O. Accuracy and resolution of kinect depth data for indoor mapping applications.
Sensors 2012, 12, 1437–1454. [CrossRef] [PubMed]

40. Low, K.-L. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration; University of North
Carolina: Chapel Hill, NC, USA, 2004; Volume 4.

41. The Stanford 3D Scanning Repository. Available online: http://graphics.stanford.edu/data/3Dscanrep/
(accessed on 18 July 2017).

42. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D
SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 573–580.

43. Handa, A.; Whelan, T.; McDonald, J.B.; Davison, A.J. A Benchmark for RGB-D Visual Odometry, 3D
Reconstruction and SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 31 May–7 June 2014.

44. CloudCompare—Open Source Project. Available online: http://www.danielgm.net/cc/ (accessed on 19
July 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1145/566654.566600
http://dx.doi.org/10.3390/s120201437
http://www.ncbi.nlm.nih.gov/pubmed/22438718
http://graphics.stanford.edu/data/3Dscanrep/
http://www.danielgm.net/cc/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Method
	Notation
	Cuboid Localization
	Camera Pose Estimation
	Improved Surface Reconstruction

	Evaluation
	Dataset
	Error Metrics
	Camera Trajectory Accuracy
	Surface Reconstruction Accuracy

	Discussion and Conclusions

