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Abstract: The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years.
On-board integrated navigation sensors are a key component of UAVs’ flight control systems and
are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor
fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy
Inference System (ANFIS)-based approach is presented for the detection of on-board navigation
sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on
predefined or modelled faults, the proposed algorithm combines an online data training mechanism
with the ANFIS-based decision system. The main advantages of this algorithm are that it allows
real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build
a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which
makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness
of the proposed fault detection method in terms of accuracy and misdetection rate.

Keywords: online; data-driven; navigation sensor fault detection; adaptive neuron fuzzy
inference system

1. Introduction

Unmanned Aerial Vehicle (UAV) applications have been increasing in recent years, including
surveillance, reconnaissance, search/destroy missions, aerial photography, and disaster monitoring [1].
Nevertheless, with the rapid development of these applications, some of which are safety critical, UAV
flight safety has become a critical issue. UAV navigation sensors are a key component of its flight
control system, necessitating that mechanisms are in place to ensure that faults are detected in a manner
that ensures safety. However, because UAVs operate in changing and complex environments, it can be
difficult to predict all possible faults. In addition, the highly dynamic operational environment requires
faults to be detected in real-time. Therefore, due to the high importance of detecting navigation sensor
faults there is a need to design a reliable algorithm that can extract the failures from the real-time UAV
states fast, accurately, and with low misdetection and low false alarm rates.

In general, UAV navigation sensors faults can be classified into three types: point, contextual, and
collective [2]. A point fault occurs when a data instance is shown as invalid; for example, a fault could
cause the Global Positioning System (GPS) output to display a latitude value that is out of the range
of the valid UAV latitude value. A contextual fault means that although a particular data instance
may be valid on its own, it is considered as invalid with respect to a certain context. For example, the
GPS receiver may output a velocity value of 0, which would be valid for the UAV on the ground but
not in flight. A collective fault means that values are considered as valid individually, but not when
put together collectively. For example, if the altimeter is stuck when a UAV’s altitude is increasing,
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the altimeter outputs values that while individually valid (i.e., each value is within the range of valid
output values and valid in the context of the UAV being airborne) are not collectively valid since
they are unchanged while other sensors report the UAV to be climbing. The fault detection algorithm
presented in this paper is designed to detect these three types of navigation sensor faults as they
manifest in the position domain through excessive position error.

Specifically, there are a variety of ways in which the position error from an integrated navigation
system can be excessive. These include system/sensor faults and those induced by the operational
environment. Reference is made to Global Navigation Satellite System (GNSS) faults, including those
due to malfunction in the satellite clock, incorrect modelling of the orbits, ionization of satellite payload
silicon material, and inter-channel bias [3]. For the Inertial Measurement Unit (IMU) system, there
are also several types of failure modes, including hardware and software faults and those specific to
Micro-Electromechanical System (MEMS) technology failures (e.g., excessive scale factor, drift, and
ageing). Furthermore, the sensor integration process can result in faults. These faults have the potential
to result in excessive position error being generated by the Kalman Filter (KF) used for integration.
The approach in this paper is designed to monitor the output of the KF (i.e., the position error) and
thereby account for any faults that may be present in the data. Such faults include not only sensor
specific ones but also those related to the operational environment (e.g., UAV operation in GNSS
denied environment in which an outage or reduction of satellites or poor geometry contribute to
degraded performance by the integrated positioning system).

In general, fault detection algorithms can be classified into three types: model-based,
knowledge-based, and data-driven-based approaches [4]. For the classic model-based fault detection
and diagnosis, the research could be classified into two distinct and parallel communities [5], i.e., the
Fault Detection and Isolation (FDI) community and Diagnosis (DX) community. FDI is based on
control theory and statistical decision making [6–8], while the DX is based on soft computing and
artificial intelligence [9]. The concepts and assumptions for the two communities are quite different.
Details on these techniques and approaches can be found in [5]. For the mode- based approach, Cork
and Walker [10] developed an Interactive Multiple Model and Unscented Kalman Filter (IMM-UKF)
estimation based UAV anomaly detection algorithm, which is focused especially on inertial sensor
faults and their effect on the estimation of the control and performance of the UAV system. The initial
results demonstrated the effectiveness of the designed algorithm in the UAV positioning error detection
in specific scenarios. However, the algorithm has failure mode-mismatch errors, when applying
multiple models.

The knowledge-based approaches are based on the predefined rules (if-then) sentences.
Bu et al. [11] introduced a UAV navigation sensor fault detection-based particle filter and fuzzy
logic model. However, its performance is limited in terms of the false alarm rate and processing speed
due to the very high computational load of the particle filter algorithm. Furthermore, the fixed rules in
the fuzzy logic model have the impact of decreasing the performance of fault detection, as it is not able
to detect the effect of unknown faults.

The data-driven algorithms are based on the statistical information (usually obtained from the
training results) to detect outliers and label them as the faults. For the data-driven approaches,
Lin et al. [12] designed an algorithm to detect UAV sensor faults based on the monitoring of the
internal and external sensor readings, including the navigation sensor data. The Mahalanobis distance
was then calculated in order to identify the significant standard deviations within the collected data.
This algorithm, however, could only be operated after fine tuning of the measurements to be within
a certain threshold in the offline mode. Furthermore, the validity of the algorithm in the field has
not been verified. Khalastchi et al. [4,13] proposed a data-driven approach for fast and accurate
autonomous machine fault detection. The Mahalanobis distance was again used to evaluate sets of
correlated attributes generated based on filter estimations from real-time in-flight navigation sensor
parameters. It is claimed that the faults could be effectively detected based on a threshold determined
directly from the distance residual size. A warning is triggered if the distance residual exceeds a
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specified threshold. A key limitation of this method is that it is difficult to adjust the threshold level to
maintain a balance between accuracy and false alarm rate.

From the literature above, although the classic model-based and knowledge-based algorithms are
widely used in many applications, they have high model and rule dependencies, and, therefore, are
unable to detect unknown or non-modelled faults. In addition, the classic fault detection algorithm
performance will always be suboptimal for complex UAV navigation systems, due to the high
computational effort required. Data-driven algorithms, meanwhile, exhibit superior ability in terms of
fast response and flexibility based on statistical information.

Accordingly, this paper presents a novel data-driven Kalman Filter (KF)—Adaptive Neuro
Fuzzy Inference System (ANFIS)-based algorithm for the detection of UAV navigation sensor
faults. This method integrates the online data-driven detection cycle with the KF residuals and
an ANFIS-based fault detector. The advantages over the state-of-the-art are: (1) Model free—without
the need to consider the nature of the faults or models for the complex UAV navigation system,
as required for the model-based approach in [10]; (2) Adaptive rules extraction—by employing a
frequently updated training database online, unlike the traditional rule-based approach [11]. The latest
features of all types of faults (point, contextual, and collective) present in the database are used for
the extraction of fault judgement rules; (3) Robust fault detection decision making and more detailed
analysis of the algorithm—the proposed KF residual with the ANFIS-based decision-making method
is more robust compared to the simple Mahalanobis distance-based detector in [4,12,13], and faster
than the Particle Filter (PF)- and Fuzzy Inference System (FIS)-based algorithm in [11]. In addition,
field test results are presented and the relationship between the size of the sliding window and the
fault detection performance is investigated in the paper.

The contributions of the paper are as follows:

(1) Development of a novel data-driven KF residual analysis with ANFIS-based fault detection
algorithm for fast online detection and low misdetection rate.

(2) The algorithm’s training database is updated online to ensure that it always contains the latest
features of point, contextual, and collective faults.

(3) Novel adaptive online training strategies are employed for the extraction of ANFIS rules to ensure
timely and accurate fault detection.

The rest of the paper is organized as follows. The online data-driven ANFIS-based algorithm
for the detection of UAV navigation sensor faults is presented in Section 2. Simulation and field
experiments to evaluate the proposed algorithm are presented in Sections 3 and 4, respectively.
Finally, the paper is concluded in Section 5 by a summary of the main findings.

2. Online Data-Driven ANFIS-Based Algorithm

The system overview is presented in Section 2.1. The three parts of the fault detection model are:
(i) Database creation, described in Section 2.2; (ii) ANFIS-based fault decision model, described in
Section 2.3; and (iii) Online data-driven fault detection cycle, described in Section 2.4.

2.1. System Overview

The flowchart for the online data-driven UAV navigation sensor fault detection is presented in
Figure 1.

Firstly, the initial offline mixed database is created with both “normal” and “fault” data collected
and labelled from the UAV navigation sensors. The “normal” data are stored in Database 1 and the
“fault” data in Database 2. Database 1 and Database 2 are then combined to form a mixed database.
The data in the mixed database are used for ANFIS rule training and updated online by means
of the fault detection cycle (described in Section 2.2). Afterwards, the real-time online navigation
sensor measurement states are used as the input to the KF model to output real-time state estimations.
Based on the KF estimations, the KF residual, ∆rt is then calculated for fault detection. The R-Indicator
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and C-Indicator are further developed based on the ∆rt to feed the ANFIS system for the designed
fault indicator output, noted as the F-Indicator. In particular, the R-Indicator is developed based on the
sliding window of the ∆rt for three-axes states of the navigation sensor and the C-Indicator is calculated
based on the Pearson’s correlation test and sliding window of the ∆rt for three-axes states of the related
navigation sensor [11]. The fuzzy rules and membership functions for the ANFIS are updated in
real-time based on the adaptive neuro network training. Finally, based on the value of the F-Indicator,
the status is determined to be either “normal” or “fault”. Accordingly, the newly determined status of
the data is used to update the database for the next iteration (described in Sections 2.3 and 2.4).Sensors 2017, 17, 2243  4 of 12 
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Figure 1. Overview of the algorithm. ANFIS, Adaptive Neuron Fuzzy Inference System; KF, Kalman 
Filter. 
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2.2. Database Creation

The previously experienced data for the navigation sensors are collected, cleaned, and labelled to
create the initial offline database. The initial databases are represented in Equations (1)–(3).

D10 =
{

N0−q+1, N0−q+2 . . . , N0
}

(1)

D20 =
{

F0−q+1, F0−q+2 . . . , F0
}

(2)

D0 = {D10, D20} (3)

The initial Database 1 is expressed as D10 in Equation (1), where, q is the length of the database.
The data noted as N in D1 are always nominal. Accordingly, the initial fault data, including different
types of faults, are cleaned and labelled and stored in Database 2, see Equation (2), where, q is the
length of the database. The data noted as F in D2 are always classified as fault. The initial mixed
database for the algorithm process is therefore expressed as D0 in Equation (3).

In the general case, the databases in any time epoch t could be expressed as follows.

D1t =
{

Nt−q+1 , Nt−q+2 . . . , Nt
}

(4)

D2t =
{

Ft−q+1, Ft−q+2 . . . , Ft
}

(5)
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Dt = {D1t, D2t} (6)

where, t ≥ 0 and q ≥ 1.

2.3. ANFIS-Based Fault Detection Model

ANFIS is an integrated algorithm by combining Neural Network (NN) architectures with Fuzzy
Inference Systems (FISs). By employing the advantages of both FISs (i.e., their transparency and use
of expert knowledge in their structure) and NNs (i.e., their fast learning capability), it is possible to
extract the fuzzy rules and establish the adaptive membership function from the experienced input
data based on neuro network training [14]. Figure 2 depicts the structure of the designed ANFIS-based
fault detection system, which implements a first order Sugeno fuzzy model.
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Figure 2. The structure of the designed ANFIS-based fault detection system.

The R-Indicator and C-Indicator are the two inputs into the ANFIS, and the F-Indicator is the output
of the system. In total, the system is designed in five layers. A typical if-then rule in ANFIS can be
expressed as:

If R-Indicator is A1 and C-Indicator is B1, then

f1 = p1 × A1 + q1 × B1 + r1 (7)

where the parameters defining the membership functions A1, B1, along with p1, q1, and r1, are modified
during the training. The description of each layer in ANFIS is as follows:

Layer 1. Assumes every node i in this layer is a square node with a node function. O1
i is the

membership function of Ai. In our case, the initial membership functions of the input variables are set
as the Gaussian based on the characteristic of the input information, as follows:

O1
i = µAi(x) = Gaussian (Indicator; σi, ci) = e

− (Indicator−ci)
2

2σ2
i (8)

where, Indicator represents the value of R-Indicator or C-Indicator, ci is the parameter to determine the
centre of the membership function, and σi determines the width of the curve. The parameters defined
in this layer are the premise parameters.
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Layer 2. Each node in this layer calculates the firing strength of each rule via multiplication.
And T-norm operators are used here, given by,

O2
i = wi = µAi(x)× µBi(y), i = 1, 2, 3 (9)

Layer 3. The ith node of this layer calculates the ratio of the ith rule’s firing strength to the sum of
the firing strength of all rules.

Layer 4. The multiplication of the input from Layers 3 and 1 is implemented. The parameters in
this layer are therefore consequent parameters.

Layer 5. The overall outputs as the summation of all incoming signals are computed. The grid
partition method is employed for the initial FIS generation. The premise parameters in Layer 1 and the
consequent parameters in Layer 4 are tuned until the desired response of the FIS is achieved during
the learning process. Based on the training results of the ANFIS, the rule surface for the fault detection
is established.

2.4. Online Data-Driven Fault Detection Cycle

The integration is performed through loose coupling, and therefore the monitored state is
xt = {GPSposition, acclerameter, gyro . . . }, which are the inputs to the KF system. The KF then
computes the estimated state x̂t. The KF is one of the most powerful data processing tools, and has
been widely used in a range of the fault detection applications for years [15]. KF-based GNSS/INS
integration and its application for fault detection is not new, and proof of convergence can be found in
a number of sources including [16–18].

The KF residual, which reflects the discrepancy between the KF estimated state and the actual
measured state, are generated as (10).

rt = yt − x̂t (10)

where, rt is the KF residual in time epoch t, yt is the measurement of UAV navigation sensor state at
time epoch t, and x̂t is the KF estimated state at time epoch t. The residual should be close to zero if
the model is error free.

The difference in the residuals over time, ∆rt is calculated to form a basis parameter for the fault
detection in (11).

∆rt = rt − rt−1 (11)

where, rt is the KF residual in time epoch t and ∆rt is the difference between the KF residual in time
epoch t and t− 1. The R-Indicator and C-Indicator are further developed based on the ∆rt to feed the
ANFIS system in order to generate the designed F-Indicator output.

The fault status output from the ANFIS is classified as either “Normal” or “Fault”. If the detected
result xt is recognized as “Normal” in the time epoch t, the detected “Normal” data xt is named as N′t
and added to D1t−1. At the same time, the end data Nt−q in D1t−1 is deleted. If the detected results
are recognized as “Fault”, however, xt is named as F′t and added to D2t−1. The end data Ft−q in the
D2t−1 are correspondingly deleted. The databases before the update are expressed as follows.

D1t−1 =
{

Nt−q , Nt−q+1 . . . , Nt
}

(12)

D2t−1 =
{

Ft−q, Ft−q+1 . . . , Ft
}

(13)

Dt−1 = {D1t−1, D2t−1} (14)

where, D1t−1, D2t−1, Dt−1 are the “normal”, “fault”, and mixed databases in the time epoch t – 1
before update, respectively.
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As the detected status of xt would be either “normal” or “fault” in a specific epoch, the update
of the databases has two scenarios or cases. If the detected results are recognized as “normal”, the
updated databases in the time epoch t are expressed as follows:

D1t =
{

Nt−q+1, Nt−q+2 . . . , Nt
′
}

(15)

D2t = D2t−1 (16)

Dt = {D1t, D2t} (17)

If the detected results are recognized as “fault”, the updated databases in the time epoch t are
as follows:

D1t = D1t−1 (18)

D2t =
{

Ft−q+1, Ft−q+2 . . . , Ft
′
}

(19)

Dt = {D1t, D2t} (20)

where, D1t, D2t, Dt are the “normal”, “fault”, and mixed databases in the time epoch t after
update, respectively.

The created real-time mixed database Dt is used for continued ANFIS training.
The up-to-date rules extracted from the training are used for the fault detection. Considering

the requirement of fast detection and a low false alarm rate, the training for the ANFIS is designed
to be adaptive, which means that the training is not carried out for every iteration cycle. Instead, the
ANFIS training is carried out only when a certain amount of “fault” labelled data is accumulated in
Database 2. This means that the neuro network-based training is adaptively linked to the database
update conditions, ensuring that the fuzzy logic rules are updated properly, while still allowing for
fast detection. A detailed analysis is presented in the simulation section.

3. Simulation

A simulation was carried out to test the performance of the designed algorithm in different
scenarios. A 250 s UAV flight profile, including climbing, level flight, and descent, was generated with
MATLAB (see Figure 3). The reference trajectory for the predefined route and the simulated GPS/IMU
integration including periods of GPS outage and satellite loss of lock (representing environment
induced faults) were generated. The three defined fault scenarios were: (i) a GPS outage in the ascent
phase (30 s–40 s), (ii) a GPS outage in the level flight phase (100 s–110 s), and (iii) a GPS outage in the
descent phase (220 s–230 s). Note that the algorithm developed monitors the impacts of these “faults”
on the positioning error from the output of the KF-integrated GNSS/IMU system.

During the simulation, the Training Condition (TC) indicator was optimised for the online
data-driven ANFIS fault detection algorithm. The TC is the indicator defined to represent the
accumulated number of “fault” data for training. For example, if TC = 20, when the number of
detected “fault” data in the D2 accumulates to 20, new training is initiated for the generation of rules
to be used for the next iteration.

Figure 4 shows the fault detection results with different TC values. Comparing the detection
results with the reference, the best performance happens when TC = 100 and the worst when TC = 1.
A confusion matrix of the fault and normal (1 and 0, respectively) detection results using the proposed
online data-driven ANFIS-based algorithm with different TC values is presented in Table 1. Detection
accuracy is calculated as the ratio (in percentage) of the number of correct detected activities to the
number of total known activities, false alarm rate as the ratio of the number of false positive activities
(0 but detected as 1) to the total number of detected faults and misdetection rate as the ratio of the
number of false negative activities (1 but detected as 0) to the total number of actual faults.
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Table 1. Confusion matrix of fault and normal (1 and 0, respectively) detection results based on the
proposed data-driven algorithm with different training strategies.

Number of “Fault” Data Accumulated
Training Condition (TC) TC = 1 TC = 20 TC = 50 TC = 100 TC = 150

Algorithm Calculated Results
1 0 1 0 1 0 1 0 1 0

1 84 216 134 166 110 190 286 14 237 63
Label Results 0 721 1479 200 2000 70 2130 43 2157 117 2083

Accuracy 0.625 0.854 0.896 0.977 0.928
False Alarm Rate 0.896 0.599 0.389 0.130 0.331
Misdetection Rate 0.720 0.553 0.633 0.047 0.210

Calculation Time Used 102s 13s 15s 11s 15s

By considering the accuracy, misdetection rate, false alarm rate, and computation time, the best
performance in terms of accuracy (97.7%), false alarm (13%), and time consumption (11 s) were all
achieved at TC = 100. In addition, while the accuracy steadily increased and the false alarm rate
decreased as the TC value was increased from 1–100, increasing the value of TC to 150 results in the
performance deteriorating slightly compared to the performance at TC = 100. The reason for this is that
when TC = 150, the rules are no longer current for accurate fault detection. The reason for the lowest
performance at TC = 1 is that this high training frequency resulted in more inaccurate detection results
being added to the updated database. The accuracy of the rules generated from the updated database
is affected by the accumulated inaccuracy of the training data, resulting in accumulated errors in the
whole fault detection cycle.

4. Initial Field Test

An initial field test was carried out to validate the effectiveness of the proposed data-driven
ANFIS-based fault detection algorithm. The test site was close to Ningshuang Road, Nanjing City,
China. The UAV used in the field test is from TopXGun Robotics and the flight route in shown in
Figure 5. The UAV flight data was collected from around 10:12:00–10:19:00 Beijing time. The flight test
was more complex than the simulated flight trajectory, as it not only included take-off and landing, but
also roving in the air, in straight and curved manoeuvres.
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The duration of the test was about 7 min and three operational environment-induced faults
occurred due to GPS signal obstruction or observed satellite geometry changes. These three fault
sessions are further defined in Table 2. The test data regarding the tri-axial states of the UAV was
generated from GPS and IMU sensor measurements at a 10 Hz output rate, while the reference UAV
manoeuvre data was generated by Real-Time Kinematic (RTK) GPS and IMU integration with forward
and backward post-processing.

Table 2. Defined fault sessions and the time duration of the faults.

Session ID Faults Start Time Faults Stop Time

Session 1 10:12:39.5 10:13:20.2
Session 2 10:16:39.3 10:16:58.5
Session 3 10:18:41.1 10:19:00.0

An example of the velocity fault status with 10 Hz output rate is shown in Figure 6. It can be seen
that the proposed algorithm detected the faults in the designed sessions. Table 3 further illustrates the
related parameters for the performance of the algorithm and compares the proposed online data-driven
ANFIS algorithm with the FIS-based UAV navigation sensor fault detection algorithm in [11]. From the
detection results with real data, it is validated that the proposed data-driven ANFIS-based algorithm is
superior to the FIS-based algorithm in [11], in terms of accuracy, false alarm rate, and misdetection rate.
Specifically, with the proposed algorithm, the average misdetection rate was significantly reduced
from 24.9% to 9%, the false alarm rate was reduced from 25.4% to 14%, and the accuracy improved
from 82% to 92.6%. It is important to note that the proposed approach in this paper is data-driven
(i.e., detection is based on the quality of the data), and therefore accounts for all sources of faults
including those related to trajectory and environmental contexts.Sensors 2017, 17, 2243  11 of 12 
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Table 3. Fault detection performance in the defined sessions.

Session ID Parameters Proposed Algorithm (TC = 100) (%) Algorithm from [11] (%)

Session 1
Accuracy 93.6 83.1

False Alarm Rate 14.1 23.2
Misdetection Rate 7.6 26.1

Session 2
Accuracy 91.3 82.5

False Alarm Rate 15.4 25.8
Misdetection Rate 8.3 20.4

Session 3
Accuracy 92.8 80.4

False Alarm Rate 12.5 27.3
Misdetection Rate 8.1 28.3

Average
Performance

Accuracy 92.6 82
False Alarm Rate 14 25.4
Misdetection Rate 8 24.9

The risk of hazardously misleading information (i.e., integrity risk) is the product of the probability
of sensor/system failure and the probability of misdetection.

PIntegrity Risk =Psensor/ system Failure × PMisdetection (21)

Our research has shown that for the UAV delivery application, the required Integrity Risk (IR) is
of the order of 10−5 per hour. If the sensor failure probability is assumed to be 10−4 per hour, as is the
case for GPS satellites [19], then then probability of missed detection is 0.1. From our field test results,
the misdetection rate is 0.08, which meets this requirement. However, the false alarm rate is still a bit
high, and further work is planned to fine tune the algorithm.

5. Conclusions

This paper presents a novel online data-driven ANFIS-based algorithm for UAV on-board
navigation sensor fault detection, by combining the conditional online data training with KF and
an ANFIS-based decision system. Compared to the traditional fault detection methods which have
a high dependency on models and rules—and therefore are not effective at detecting unknown or
non-modelled faults—the proposed online data-driven algorithm provides robust and flexible fault
detection without the need for a priori models and rules. The proposed algorithm is the first based on a
KF algorithm to obtain high accuracy residual estimations. Afterwards, the R-Indicator and C-Indicator,
which capture the characteristics of the data (e.g., spatial and temporal), were developed to feed the
ANFIS-based decision system. In addition, the proposed dynamic database creation algorithm ensures
reliable fault detection in the presence of sudden changes in fault types.

The field test results show that the developed fault detection model can provide improved
detection results, with accuracy, false alarm rate, and misdetection rates of 92.6%, 14%, and 8%,
respectively. This is better than the PF-FIS-based algorithm in [11] (which featured results of 82%,
25.4%, and 24.9%, respectively). From the application requirements, the misdetection rate achieved
is acceptable for some UAV applications such as delivery. Research is underway to capture more
representative data in order to further improve the performance of the data-driven algorithm, and, in
particular, increase the accuracy and reduce the number of false alarms.
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