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Abstract: In this paper, a novel infrared target co-detection model combining the self-correlation
features of backgrounds and the commonality features of targets in the spatio-temporal domain
is proposed to detect small targets in a sequence of infrared images with complex backgrounds.
Firstly, a dense target extraction model based on nonlinear weights is proposed, which can better
suppress background of images and enhance small targets than weights of singular values. Secondly,
a sparse target extraction model based on entry-wise weighted robust principal component analysis
is proposed. The entry-wise weight adaptively incorporates structural prior in terms of local weighted
entropy, thus, it can extract real targets accurately and suppress background clutters efficiently.
Finally, the commonality of targets in the spatio-temporal domain are used to construct target
refinement model for false alarms suppression and target confirmation. Since real targets could
appear in both of the dense and sparse reconstruction maps of a single frame, and form trajectories
after tracklet association of consecutive frames, the location correlation of the dense and sparse
reconstruction maps for a single frame and tracklet association of the location correlation maps
for successive frames have strong ability to discriminate between small targets and background
clutters. Experimental results demonstrate that the proposed small target co-detection method can
not only suppress background clutters effectively, but also detect targets accurately even if with
target-like interference.
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1. Introduction

Infrared small target detection has been widely used in the airborne early warning, infrared guidance,
surveillance and tracking and other fields [1–4]. In these applications, the infrared small targets have the
following characteristics: (1) often immersed in strong noises or complex background (cloud clutter,
plants and buildings, etc.), (2) with less texture and shape Information, (3) non-cooperative and without
fixed law of movement. These characteristics make it very difficult to detect infrared small targets, and
it has always been the hot and difficult issue of infrared detection field.

Because of the movement (jitter) of the infrared observation platform or the change of the
imaging background, it is difficult to obtain the accurate infrared background by sequential detection
methods [5–7], because the infrared small targets are easily mistaken for background and vice versa.
In this case, the single frame detection methods have received a great attention recently, and are valid
for infrared small target detection with static or changing backgrounds [8–10]. However, it is difficult
to suppress clutters (cloud boundary, targe-like artifacts), which are very similar to real targets
from the view of high intensities, because of the limited target information available in a single frame.
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Fortunately, the commonality of targets in the spatio-temporal domain can be used to build better
target detection models and suppress suspected clutters and noise.

To the best of our knowledge, tracklets information are rarely used in existing infrared target
detection methods. Note that tracklets information are widely used in tracking problem, in which
the target position in the first frame is given in advance [11,12]. However, there is no such prior
target information in detection problem in which either a small target exists in a frame or not
is still ambiguous.

As discussed above, upon encountering suspected targets or clutters, using the commonality
of targets in the spatio-temporal domain is necessary for better detection performance. The commonality
features of targets in the spatial domain can be utilized by combining two one-dimensional dense and
sparse reconstruction models [13,14]. Different from the one-dimensional dense and sparse reconstruction
models [13,14], in this paper we consider the two-dimensional form of dense and sparse reconstruction
no longer transforming a matrix to a vector. A two-dimensional dense reconstruction model is proposed
based on the global singular value decomposition (SVD) [15], which sets the first few singular values
equal to zero and preserves the remaining singular values unchanged. However, this method does
not give a general method to select the scope of singular values, and the center-bias mechanism
will suppress small targets located at the edges of the image while suppressing clutters or noise.
To address this limitation of the global SVD-based reconstruction method [15], we use differences of
adjacent singular values to select the proper singular value scope for target extraction, and meanwhile
use a sigmoid function to regularize the singular values in order to suppress the background
components. The intuition is that each singular value indicates the ability of the corresponding
sub-image to approximate the original image. In [8,16], the authors give one-dimensional sparse
reconstruction models based on the patch-image model. However, these methods have the following
limitations: (1) The detection performance depends largely on the patch size (it was set to 50× 50
in [8] or 51× 51 in [16]), and the patch vectorization and the pixel reconstruction from overlapped
patches could also increase the running time of the algorithm. Moreover, in the patch-image model,
one target may appear in different locations of several aligned patches, and after vectorization the
intrinsic structure and correlations in the image could be broken, which could influence the separation
of target and background later; (2) The algorithm uses L1-norm to measure the sparsity of small
targets, but L1-norm treats each pixel independently in terms of intensity, thus the pixels with
higher intensities (cloud border, artifacts), are easily mistaken for target pixels, and difficult to be
removed through a global threshold [8]. Due to our observation, in an infrared background image,
columns (rows) also have non-local self-correlation property and columns (rows) in distant locations
are approximately linearly correlated with each other. Hence, to address the first limitation of the
patch-image model, we directly consider each column (row) of an image as a column (row) of the
observation matrix instead of dividing the image into patches and forming a patch vectorization matrix.
Thus, we refer the proposed sparse reconstruction model as a global sparse reconstruction model.
Moreover, we exploit entry-wise prior in the sparse reconstruction model to better separate targets
from complex backgrounds. The intuition behind the entry-wise prior is that, each pixel in a target
should be weighted differently according to its local weighted entropy which measures the local
difference between the target and neighboring background. Thus, both the local target features and
the global background features are incorporated into the proposed sparse reconstruction model.

For each frame, to increase the confidence level that candidates are real targets, correspondence
between suspected targets obtained by dense and sparse reconstructions is conducted to suppress
clutters and false alarms further. As we know, the target region in an infrared image has striking
discontinuity with the surrounding background. However, due to our observation, the pixels with
higher intensities (cloud border, artifacts) as a whole also have this property. Because of the limited
target information available in a single frame, these targe-like false alarms could also be detected
as real targets. In order to suppress false alarms further, especially the highly suspected targets,
in this paper we adopt multiple frame target refinement by tracklets association, based on the facts
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that real targets and false alarms have different movement characteristics, and false alarms should not
be temporally continuous between successive frames like real targets. Due to that the spatio-temporal
target commonality is used to refine the rough detection result of each frame in this paper, thus we refer
to the propose method as a target co-detection model.

In this paper, we propose a novel infrared target co-detection model that combines the self-correlation
features of backgrounds and the commonality features of targets in the spatio-temporal domain to detect
infrared small targets in a sequence of images with complex backgrounds. In the first step, the dense
reconstruction model is proposed to extract a coarse target map with benefit of regularization
of singular values. In the second step, we design a sparse reconstruction model to extract a sparse
target map. In the third step, the correspondence between suspected targets of two types of target
maps are conducted to suppress clutters and noise. In the fourth step, the tracklets are associated
to suppress false alarms and form trajectories which are used to confirm targets for each frame.

The contributions of this paper are summarized as: (1) A dense target extraction method based
on regularization of singular values is proposed. Due to the introduction of a sigmoid function,
the background components in the target map can be inhibited further. It should be noticed that we
do not minimize the nuclear norm but only use the singular value information; (2) A sparse target
extraction method based on entry-wise weighted robust principal component analysis is presented.
The entry-wise weight uses the structure prior based on the local difference between the target and
neighboring background existing in a natural scene from viewpoint of human recognition, which can
promote the complex background suppression effect and keep the small target, and (3) we propose
a false alarm suppression and target refinement method based on location correlation of the dense and
sparse reconstruction maps for a single frame and tracklet association of the location correlation maps
for successive frames. Based on the spatio-temporal commonality features of targets, this method can
effectively detect small targets and suppress false alarms as much as possible.

The remainder of this paper is organized as follows. Section 2 reviews the related work from the
view of processing units in the target detection. Section 3 presents our detection approach comprising
of single frame target extraction and multiple frame target refinement. The evaluation on real infrared
data set and comparisons are presented in Section 4. Conclusions are given in Section 5.

2. Related Work

In recent years, many infrared small target detection methods have been proposed for different
applications. According to the processing units in the detection process, we categorize these approaches
into pixel-wise, patch-image, and whole-image groups. As discussed later, each group has its own
characteristic. The pixel-wise detection methods usually estimate one pixel at a time based on its local
neighborhood or its temporal profile, so they could make better use of local difference between the current
pixel and its neighborhoods, but are not suitable for the cases when the background scene in a sequence
changes fast and weak dim targets are contained in a single image. Besides, the patch-image detection
methods calculate each patch in light of the patch set which consists of low-rank and sparse parts, could
suffer from more running time caused by vectorization and is also not suitable for detection of weak dim
targets with complex background, and the non-local background patches could help separating targets
from the patch set. Also according to low-rank matrix approximation, the whole-image detection
methods could estimate a whole image from a sequence or a single image, thus the global background
feature is used in separating targets from the background, but the whole-image model could also suffer
from the problems of vectorization, fast changing background and low signal-to-clutter ratio.

2.1. Pixel-Wise Detection Methods

Besides some classical pixel-wise detection methods, such as the topHat method [17], the maxMean
and maxMedian methods [18], more pixel-wise approaches have been proposed recently. In [9], the
authors proposed an effective small target detection approach according to the contrast mechanism
of human vision system and derived kernel model, therein the local contrast measure was defined
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to compute the dissimilarity between the current location and its neighborhood. In [19], the authors
presented local mutation weighted information entropy to suppress background and enhance the gray
value of targets. In [10], inspired by the concept of local difference, the authors proposed a weighted
local difference measure for the detection of infrared small targets. In addition, in [20], the authors
developed a multiscale facet model to enhance targets and then used the multiresolution representation
to reduce the false alarm rate. A fast-saliency method based on the facet model was presented for
real-time infrared small target detection, and therein the facet kernel operator was designed and used
in separating small targets from the background [21]. A biologically inspired method named multiscale
patch-based contrast measure was proposed for small infrared target detection, which could increase
the contrast between target and background [22]. Furthermore, other pixel-wise detection methods
are also proposed using temporal information. Suggested by the singular value decomposition, a
temporal filter was developed for dim target detection in evolving cloud clutters [23]. A nonlinear
adaptive filter was proposed to detect infrared moving dim targets, and has high performance in
removing large fluctuations on temporal profiles that are caused by evolving clutters [5]. By combining
spatial and temporal information together, a target detection method was introduced using spatial
bilateral filter and temporal cross product, which are respectively used to extract the spatial target
information and the features of temporal profiles [6]. Subsequently, a spatial-temporal bilateral filter
was presented to detect target trajectories, by extracting spatial and temporal target information
simultaneously [7]. As discussed above, pixel-wise detection methods use a local region or a temporal
profile to extract target information under the assumption that the target location has conspicuous
discontinuity with the nearby background. However, when the the imaging background changes fast
or the background has many types of clutters, jamming objects and noises are still the key factor to
influence the detection performance.

2.2. Patch-Image Detection Methods

In [8], the authors proposed an infrared patch-image (IPI) model for target detection in a single
frame. In the IPI model, a frame is divided into small patches and the patches are stacked as columns
of a new matrix for robust principal component analysis (RPCA). The intuition behind the IPI model
is that the local patches in distant regions in an infrared background image could be approximately
linearly correlated with each other. Subsequently, the IPI model inspires much related work [16,24].
In [24], the authors generated an image patch set according to multi-scale transform and patch
transform, and every patch was given an individual regulation weight which was computed
by combining the information of patch size, patch entropy and target saliency level. In [16], the authors
generated an image patch set according to the same scheme in [8], and also stacked all the patches
as columns of a matrix, and each patch is given an individual regulation weight based on the steering
kernel. However, one target may appear in different locations of several aligned patches, so adding the
steering kernel at the central position is not always applicable. As a whole, the patch-image models
describe the sparsity of small targets with L1-norm, and the cloud borders or target-like artifacts which
have similar intensities with targets are easily mistaken for target pixels. In addition, the performance
of IPI models depends on the patch size (it was set to 50× 50 in [8] or 51× 51 in [16]), and when the
patch has a higher dimension, the vectorization in patch-image model needs more computation time.

2.3. Whole-Image Detection Methods

In [15], the authors proposed a visible image saliency detection approach based on SVD.
The intuition behind this approach is that the large singular values mainly indicate the non-salient
background information and slight saliency information, while the intermediate singular values
indicate most or even all of the saliency information, and the small singular values contain little or even
none of the saliency information. However, this approach does not give a general selection scheme
for the scope of singular values which indicates the salient components, and the used center-bias
mechanism could suppress small targets at the edges of an infrared image. In [25,26], the authors
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considered the low-level vision problems where a priori target rank information is available in advance,
and minimized the partial sum of singular values instead of minimizing the nuclear norm [27].
In [25–27], the individual frames are stacked as columns of a matrix before performing RPCA and each
frame is seen as an independent entity. RPCA-based background modeling for static video sequence
assumes that these background variations are low-rank and the foreground activity is sparse due
to spatially localized. When the background changes fast, it is difficult to obtain accurate backgrounds
and then the target regions.

3. The Proposed Method

In this section, we aim to design an infrared small target detection system which consists of
two parts as shown in Figure 1. The first part aims to extract highly suspected targets in each frame,
and the second part is to confirm true targets from highly suspected targets. The first step of the
first part is to suppress complex backgrounds (such as clouds, plants, and strong noises), and detect
the suspected targets from a single frame using dense and sparse computation models separately.
The second step of the first part is to associate the dense and sparse reconstruction maps obtained by
the two computation models in the first step, and suppress false alarms in each frame. Repeating the
first step and the second step for consecutive frames, many single-frame detection results can be
obtained accordingly. So the second part is to refine the single-frame detection results of different
frames based on tracklet association using target location and appearance features.

Figure 1. Flow chart of the proposed method.

3.1. Infrared Dim Target Model

An infrared image can be usually described as [8]

F(x, y) = B(x, y) + D(x, y) + N(x, y) (1)

where (x, y) denotes the coordinate of a pixel, F(x, y), B(x, y), D(x, y) and N(x, y) are the pixel intensity
at coordinate (x, y) for the original infrared image, the background image, the target image, and the
random noise image respectively. We can get dense and sparse reconstruction maps from a single image,
depending on whether there is a sparse constraint on the target image D in the decomposition process.
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3.1.1. Frequency Analysis of Infrared Images

It is well known that the singular value decomposition is a powerful tool, and is widely used
in latent semantic analysis, recommendation system, defect detection, background suppression and
so on [28,29]. The SVD of an infrared image F with size m× n can be defined as

F =
r

∑
i=1

σiuivT
i (2)

where {ui}, {vi} and {σi} are the left singular vectors, right singular vectors, and singular values
respectively, and {σi} is arranged in descending order.

We can find from (2) that an infrared image F can be represented as a sum of different frequency
components {uivT

i } regularized by {σi}, and the low frequency components correspond to the
background part B which always changes quite slowly, the medium frequency components correspond
to the target part D which usually appears as a bright area, and the high frequency components
correspond to the noise part N. So, each part of an infrared image can be obtained by regularizing
proper singular values for different purposes, such as background approximation with low pass
filtering, and target detection with band pass filtering.

3.1.2. Low-Rank Analysis of Infrared Images

As discussed above, the infrared background image B usually changes slowly and occupies most
part of the original image F, and the image columns (rows) have the property of non-local self-correlation,
i.e., columns (rows) are approximately linearly correlated with each other. Thus the background image B
can be well approximated by a low-rank matrix.

For a target image, the total number of target pixels is far less than the total number of pixels in the
whole image, because of the small size of each target (usually no more than 10× 10). So it is reasonable to
assume that the target image is sparse.

Based on low-rank property of the background image and sparse property of the target image,
the low-rank decomposition model can be used to build up a separation model for small targets and
complex backgrounds.

3.2. Single Frame Target Extraction

3.2.1. Target Extraction via Dense Reconstruction

A dense reconstruction model is developed here to extract target regions in an infrared image.
For an original infrared image F, we can construct filters vi (orthogonal bases of row space)
by performing SVD on F. Based on these filters, we can compute a one-dimensional response Rr

i
by filtering infrared image F

Rv
i =

1
σi

Fvi = ui (3)

Similarly, we can obtain a one-dimensional response Ru
i by filtering infrared image F with filters

ui (orthogonal bases of column space)

Ru
i =

1
σi

FTui = vi (4)

Combining Equations (3) and (4), we can compute a two-dimensional response Ri

Ri = Rv
i (R

u
i )

T = uivT
i (5)

Equations (3)–(5) show that a pair of filters (ui, vi) can be used to generate a two-dimensional
response Ri which just corresponds to one frequency component of infrared image F. To better
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utilize multiple frequencies of F to extract target information, we choose to combine the obtained
two-dimensional responses in a reasonable bound together to obtain the final target map

Dd =
h

∑
i=l

ρiRi =
h

∑
i=l

ρiuivT
i (6)

where l denotes the low cut subscript, h denotes the high cut subscript, and ρi denotes a linear weight
or non-linear weight. When ρi equals to σi, Equation (6) degenerates to Equation (2), up to the low
and high cut subscripts. In Equation (6), Ri denotes a two-dimensional response of dense filters vi
and ui, and all its elements is weighted by only one weight ρi, thus the map Dd is a global dense
representation for infrared targets.

For each response Ri, the background clutter is still a key factor to influence the final target
map, thus the corresponding weight ρi should be regularized to suppress the background further.
In Equation (6), weight ρi is defined as the logistic sigmoid function of σi

ρi =
1

1+ exp(−σi)
(7)

As mentioned above, each singular value indicates the ability of the corresponding response
to approximate the original image. Thus, the singular values can be used to estimate parameters
l and h. Note that the first component always corresponds to the main part of the background,
so we do not consider the first singular value in computing l and h. Let σ̂i = σi − σi+1, i = 2, . . . , r− 1,
and σ1 = 1

r−1(σ̂2 + · · ·+ σ̂r−1), we can compute l using the following equation

l = max
i
{σ̂i > ζ1σ1}r−1

i=1 + 1 (8)

A similar consideration can be used to obtain the parameter h. Let σ2 = 1
r−l (σ̂l + · · ·+ σ̂r−1),

we can calculate h using the following equation

h = max
i
{σ̂i > ζ2σ2}r−1

i=l (9)

ζ1 and ζ2 are scaling factors.
For the final target map Dd, a small part of background clutter and noise is still required to be

removed, because Dd comprises of a series of responses {Ri}which is regularized by a global weight ρi.
In fact, the remaining clutter and noise is not necessarily to be gaussian. Therefore, we use Chebyshev’s
theorem to remove the clutter and noise in Dd, and set Th = µ + cτ as the global threshold, where µ

and τ denote the mean and standard deviation of Dd, and c is a positive number and denotes the
multiple of standard deviations [30].

3.2.2. Target Extraction via Sparse Reconstruction

As discussed above, it can be concluded from the view of low-rank representation that the task of
target map computation can be formulated as a convex optimization problem:

min
B,D
‖B‖∗ + λ‖W ◦D‖1, s.t. ‖F− B−D‖2

F ≤ ε (10)

where ‖.‖∗ denotes the nuclear norm of a matrix, ‖.‖F is the Frobenius norm of a matrix, ‖.‖1 represents
the sum of absolute values of matrix elements, ◦ denotes the entrywise product of the weighting matrix
W and the target image D, λ > 0 is a regularization parameter which controls the tradeoff between the
background image B and the target image D, and ε > 0 is the upper bound of noise energy.
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By introducing a multiplier µ > 0, the optimization problem (10) can be relaxed as:

min
B,D
‖B‖∗ + λ‖W ◦D‖1 +

1
2µ
‖F− B−D‖2

F (11)

It can be shown that for some proper value µ(ε), any solution of (11) is equivalent to the solution
of (10) [27]. To achieve superior convergence, the accelerated proximal gradient (APG) algorithm with
a continuation technique on µ is used to solve (11) [31–33]. The convex optimization problem (11)
can be decomposed into two subproblems that minimize B and D respectively (for details please see
the appendix):

Bk+1 = arg min
B
{‖B‖∗ +

1
µ
‖B−YB

k +
1
2
(YB

k +YD
k − F)‖2

F} (12)

Dk+1 = arg min
D
{λ‖W ◦D‖1 +

1
µ
‖D−YD

k +
1
2
(YB

k +YD
k − F)‖2

F} (13)

The subproblems (12) and (13) can be solved by the following equations respectively [34,35]

Bk+1 = B µ
2
(YB

k −
1
2
(YB

k +YD
k − F)) (14)

Dk+1 = D µλW
2
(YD

k −
1
2
(YB

k +YD
k − F)) (15)

where B µ
2
(GB

k ) = Udiag(max{σi−
µ
2 , 0})VT in which U, V and {σi} are generated by the singular value

decomposition of GB
k = YB

k −
1
2(Y

B
k +YD

k − F), and D µλW
2
(GD

k ) = sign(GD
k )max(abs(GD

k )−
µλW

2 , 0) in

which GD
k = YD

k −
1
2(Y

B
k +YD

k − F). The details of the solution via APG is described in Algorithm 1.

Algorithm 1: Target map extraction by APG.
Input: Infrared image F, λ, W.

Output: B = Bk, Ds = Dk

1: B0 = B−1 = 0; D0 = D−1 = 0; t0 = t−1 = 1; µ0 > 0; µ > 0.

2: while not converged do

3: YB
k = Bk +

tk−1−1
tk

(Bk − Bk−1)

4: YD
k = Dk +

tk−1−1
tk

(Dk −Dk−1)

5: Bk+1 = B µ
2
(YB

k −
1
2(Y

B
k +YD

k − F))

6: Dk+1 = D µλW
2
(YD

k −
1
2(Y

B
k +YD

k − F))

7: tk+1 = 1
2 +

1
2

√
4t2

k + 1

8: µk+1 = max(0.9µk, µ)

9: k = k + 1

10: end while

The computation of the entry-wise weight matrix W is based on the local difference features
between the target and neighboring background, and these local difference features could be well
measured by the local weighted entropy [19]. For a pixel F(x, y) which has a small neighborhood
containing n kinds of gray values f1, f2, . . . , fn, its local weighted information entropy is expressed as

H(x, y) = −
n

∑
i=l

( fi − F(x, y))2pilogpi, pi =
ni

m× n
(16)
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where ni is the number of gray value fi in the neighborhood. Then H is convolved with
a two-dimensional Gaussian operator Ga(x, y) = exp{− 1

2σ2
0
(x2 + y2)} to generate a new version

H. Consequently the weighting matrix W is computed as α(1− H), where α denotes a regularization
parameter which controls the prior impact in the weight matrix.

3.2.3. Target Confirmation via Location Correlation

In order to extract as many highly suspected targets as possible, we use the location cue to remove
false alarms and validate candidates in each frame. The intuition is that real targets though obtained
by different methods should be located at the same position, but the random noise is not necessarily
so. Therefore, through location correlation, some random noise should be suppressed and the ones
occurring both in the dense and sparse reconstruction maps may be real targets with high probability.

Suppose that the regions obtained from Dd and Ds are denoted by Gd
j with coordinate set X d

j
and Gs

i with coordinate set X s
j respectively, each region corresponding to a suspected target, and that

Dc = 0 has the same size with Dd and Ds. The main steps of target confirmation are described
as follows:

1. For each Gs
i in the target map Ds, we find Gd

j in Dd whose coordinates are overlapped with that

of Gs
i , namely X d

j ∩X
s
i 6= ∅.

2. For each successfully correlated pair (Gs
i , Gd

j ), we select pixels in Dd with coordinates X s
i as the

correlation result, namely Dc(X s
i ) = Dd(X s

i ).

Note that in step 2, we choose the pixels with coordinates X s
i in the dense reconstruction map

Dd. This step could not only avoid the drawback of L1-norm target measure, which treats each pixel
independently in terms of intensity and weakens the intensities of the boundary target pixels, but also
avoid the drawback of dense reconstruction, which enlarges the target area by combining nearby false
alarms together. In essence, the dense reconstruction extracts suspected targets from the view of L2
norm that measures the minimal residual, and thus the boundary target pixels obtained from the dense
reconstruction have more bright values than the ones obtained by the sparse reconstruction.

3.3. Multiple Frame Target Refinement

After obtaining candidates from each target map Dc
k, we generate suspected target tracklets

based on target location and appearance features of consecutive frames, then perform non-maxima
suppression to remove false tracks formed by noisy or clutter, finally refine the suspected targets
in each target map Dc

k according to the obtained tracks.
Suppose that the candidates in the target map Dc

p and Dc
k are denoted by Gp

j = {xp
j , yp

j , Ep
j }

and Gk
i = {xk

i , yk
i , Ek

i } respectively. Note that the italic symbol k denotes the image index, and the
upright symbol p indicates the association result before the kth frame. For each candidate, E represents
the energy of pixels, and (x, y) denotes the average coordinate of pixels. Hence, the tracklets can
be generated by repeating linking {Gp

j } and {Gk
i } together, whereas {Gp

j } is updated with each
association. The details of generating tracklets are described as follows:

1. We set Dc
p = Dc

1, {X t = (xt
1, yt

1)}, k = 2.

2. For each Gk
i in the target map Sc

k(k ≤ L), we select {Gp
j } in Dc

p within a circular gate of Gk
i .

3. For each Gk
i , if Ek

i > Eθ , we keep Gk
i in Dc

k and generate {((xp
j , yp

j ), (x
k
i , yk

i ))} as small tracklets,
here Eθ denotes the average energy of all candidate regions.

4. Update each track X t with a proper tracklet selected from the set {((xp
j , yp

j ), (x
k
i , yk

i ))}.
5. We set Dc

p = Dc
k, k = k + 1.

6. Repeating the above steps until k is greater than L, we finally obtain tracks {X t}.
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After obtaining trajectories through the above process, a non-maximum suppression (NMS)
scheme is used to prune false trajectories. For each trajectory Xt, a displacement gain measure ∆1

t and
a length ratio measure ∆2

t are computed as

∆1
t = ∑

i
|xt

i − xt
i−1|+ |yt

i − yt
i−1| (17)

∆2
t =

len(Xt)

L
(18)

where (xt
i , yt

i) and (xt
i−1, yt

i−1) denote elements of track Xt, and len(·) is a function to solve the length
of track Xt. Next, the trajectories that not only have greater displacement gain than a threshold θ1 but
also have longer length gain than a threshold θ2, are selected. The intuition is that real targets and
false alarms have different motion features, and the trajectories formed by false alarms are diverse
from the true trajectories produced by real targets. Finally, each suspected target in the target map Dc

k
is refined by measuring the distance of its centroid to the valid tracks, and the final detection result Dr

k
is obtained accordingly.

4. Experimental Section

4.1. Experimental Configuration

4.1.1. Data Sets

In order to fairly evaluate the performance of infrared detection methods, a representative
data set consisting of three public infrared sequences with different complex backgrounds is used
and the detailed features are listed in Table 1. In Sequence 1, the detection is influenced by strong
noise, plants and trees [36]. In Sequence 2, the background changes rapidly due to the movement
of imaging platform, and a plane moves from the thick cloud region to the sky [37]. In Sequence 3,
the detection barrier is noise and changing wispy clouds [11]. On a whole, the data set contains various
situations in airborne infrared target detection. Therefore, using the given data set could fairly show
the performance of infrared detection methods.

Table 1. Details of the evaluation data set.

Sequences Number Size Target Type Target Details Background Details

Sequence 1 600 320× 240 Helicopter Low SCR value Heavy noise backgrounds
A smaller size Skyline and plants backgrounds

Sequence 2 30 256× 200 Airplane
A long imaging distance Heavy clouds backgrounds
Keeping curved movement Uniform backgrounds
A changing size with a big range

Sequence 3 40 256× 200 Airplane A long imaging distance Wispy cloud backgrounds
Keeping zigzag-shaped movement Uniform backgrounds

4.1.2. Evaluation Metrics

The main objective of the proposed method is to effectively suppress the background noise and
clutters, and then significantly reduce false alarms to improve detection performance. In this paper,
the metrics of signal-to-clutter ratio gain (SCRG), background suppression factor (BSF), precision,
recall and F-measure (PRF) are used to evaluate the performance of infrared detection methods. More
specifically, the SCRG measures the enhancement of targets relative to the backgrounds before and
after detection, and is defined as follows [38,39]:

SCRG =
SCRout

SCRin
(19)
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where SCRout and SCRin are the local SCR values computed from the filtered and original images
respectively. Moreover, the BSF evaluates the background inhibition degree, and is defined by [40]:

BSF =
δin

δout
(20)

where δin and δout denote the standard deviations of the original and processed images respectively.
In addition, the precision and recall reflect the false alarm rate and miss rate respectively, and the
F-measure is the weighted harmonic mean of precision and recall [41].

4.2. Overall Performance of the Proposed Method

In subsection of dense reconstruction, the scaling factors ζ1 and ζ2 are both set to 1, and the
multiple c of standard deviations from the mean is set to 3. In subsection of sparse reconstruction,
the window of local weighted entropy is set to 5× 5, λ is set to 1/sqrt(max(m, n)), µ0 and µ are
set to σ3 and 1

r−2 ∑r
i=3 σi respectively, α is set to 2, and σ0 and the size for the Gaussian filter are

set to 1
36 min(m, n) and 1

6 min(m, n) respectively. In addition, in subsection of multiple frame target
refinement, the circular gate is set to 15, the displacement gain is set to 1

2 max(∆1
t ), and the length

threshold is set to 0.6. we first verify the validity of all the procedures of the proposed method, and test
the proposed method on all the sequences in the data set with the same configuration parameters.
More specifically, the visual illustrations of the dense reconstruction map (DRM) Dd

k , the sparse
reconstruction map (SRM) Ds

k, and the location correlation map (LCM) Dc
k of Dd

k and Ds
k, and the

refined map (RM) Dr
k are shown in Figure 2, and the quantitative evaluations are given in Table 2 and

Figure 3. Note that in Figure 2 the red circles denote the detected real targets, and the blue circles
denote some target-like false alarms.

As depicted in Figure 2, Dd
k and Ds

k display the ability to reveal the small target in the preliminary
results. In addition, the location correlation map Dc

k of Dd
k and Ds

k is shown to contribute to the results
further by suppressing the false alarms and enhancing the target. Consistently, as illustrated in Table 2,
the SCRG and BSF of Dc

k was a good tradeoff between that of Dd
k and Ds

k. Although Ds
k obtained higher

SCRG than Dd
k did on Sequence 3, it obtained lower SCRG than Dd

k did on Sequence 1 and Sequence 2,
because the very challenging dataset based on an actual application is diverse and characteristic.
Hence, a proper tradeoff based on location correlation is necessary for suppressing false alarms in
Dd

k and keeping target pixels in Ds
k. However, after correlation of Dd

k and Ds
k, there still exist highly

suspected targets in the correlation map Dc
k, and some representatives are labeled by blue circles.

So in this paper, we use multiple frame target refinement to suppress these false alarms. From the
visual and quantitative results in Figures 2 and 3 and Table 2, the refined map Dr

k produced the best
target detection performance.

Table 2. Average scores of the procedures of the proposed method.

Sequences Metrics DRM SRM LCM RM

Sequence 1 SCRG 2.37 1.71 2.27 2.31
BSF 7.01 25.44 10.91 19.12

Sequence 2 SCRG 3.25 3.14 3.60 3.60
BSF 1.89 9.20 6.04 6.51

Sequence 3 SCRG 1.33 1.38 1.34 1.34
BSF 4.19 8.37 6.67 7.84
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(a) (b) (c) (d) (e)

Figure 2. Visual illustration of the procedures of the proposed method. The first three rows, the middle
three rows, and the last three rows illustrate the results of the proposed method on Sequence 1,
Sequences 2 and Sequence 3 respectively. (a) denotes the original images selected from three sequences,
(b) denotes the dense reconstruction map Dd

k , (c) denotes the sparse reconstruction map Ds
k, (d) denotes

the location correlation map Dc
k of Dd

k and Ds
k, and (e) denotes the refined map Dr

k.
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Figure 3. Precision, recall, and F-measure bars for the procedures of the proposed method. (a–c) denote the
results of the procedures of the proposed method on Sequence 1, Sequences 2 and Sequence 3 respectively.

4.3. Parameters Analysis

For the dense reconstruction model, the main relevant parameters include the regularization
weight ρi and multiple c. As previously discussed, the regularization weight ρi helped to eliminate
the background influence and enhance the target further, and the multiple parameter c controlled
the global threshold for target extraction in the dense reconstruction map Dd. To show the benefits
of using ρi rather than σi in the dense reconstruction model, we consider several combinations (ρi, c)
and (σi, c) in the experiment, and set c = 1, 3, 5, 7. As seen from Figure 4a–d and the first four
rows of Table 3, for Sequence 1 and Sequence 2, the combinations (ρi, c) helped target map Dd obtain
the better precision, recall, and F-measure, and achieve the higher average SCRG and BSF values.
Note that the symbol ∞ in Table 3 indicates that the target map obtained by the combination (σi, c = 7)
is a zero matrix which means that there is no target or background information in the target map,
hence the choice of ρi is superior to σi in the process of target reconstruction. In addition, we found
from Figure 4e–f and the last two rows of Table 3 that there was no diverse difference between
the results obtained by using combinations (ρi, c) and (σi, c) on Sequence 3, and the combination
(ρi, c) obtained a slightly worse result than (σi, c). The reason is that ρi could also suppress the target
when suppressing the background, and the background in Sequence 3 is not as complex as that
in Sequence 1 and Sequence 2. As a whole, the regularization weight ρi is more suitable for more
complex background suppression than σi. As mentioned, c is also an important parameter. As shown
in Table 3, the BSF increased with increasing c value, while the SCRG decreased with increasing c
value. Hence, an intermediate c value could be a good choice. The consistent conclusion can be seen
from Figure 4, because for example the case c = 7 could cause high miss rate while the case c = 1
could result in lots of false alarms.

Table 3. Average scores of the dense reconstruction maps with different combinations.

Sequences Metrics ρi (σi), c = 1 ρi(σi), c = 3 ρi(σi), c = 5 ρi(σi), c = 7

Sequence 1 SCRG 2.86(2.72) 2.60(1.99) 2.27(0.97) 1.77(0.08)
BSF 4.49(2.56) 7.01(3.42) 12.05(5.08) 18.44(8.81)

Sequence 2 SCRG 2.83(1.79) 3.25(1.60) 3.20(1.12) 2.74(0.03)
BSF 1.17(0.50) 1.89(0.77) 4.14(∞) 6.83(∞)

Sequence 3 SCRG 1.37(1.49) 1.33(1.43) 1.25(1.39) 1.18(1.34)
BSF 2.86(3.87) 4.19(4.71) 6.50(6.24) 7.90(6.81)
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Figure 4. Precision, recall, and F-measure bars for the dense reconstruction maps under different
combinations (ρi, c) and (σi, c). (a,b) denote the results on Sequence 1, (c,d) denote the results on
Sequence 2, and (e,f) denote the results on Sequence 3.

For the sparse reconstruction model, the regularization parameter α controlled the prior impact
in the weight matrix. We varied α from 1 to 4 in the experiment, and illustrated the precision, recall,
and F-measure in Figure 5. From the illustration, it could be observed that an intermediate α would give
a better tradeoff between miss rate and false alarms. For example, the precision, recall, and F-measure
of α = 4 showed a high miss rate on Sequence 1 and Sequence 2, because the real targets were
suppressed by the overlarge prior weight. In contrast, when the low miss rate was guaranteed,
the false alarm rate of α = 1 is higher than other settings, suggesting that a too small α is also not
a proper choice.
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Figure 5. Precision, recall, and F-measure bars for the sparse reconstruction maps under different
values α. (a–c) denote the results on Sequence 1, Sequences 2 and Sequence 3 respectively.

As described in subsection of multiple frame target refinement, a trajectory comprises of small
tracklets which mainly depend on the gate size δ of Gk

i . We varied the gate size δ from 5 to 25 in the
experiment, and showed the relationship between the trajectory detection rate and gate size in Figure 6.
It could be observed that a small gate size δ < 10 could result in a low trajectory detection rate
on Sequence 2, a small gate size δ < 15 could cause a low trajectory detection rate on Sequence 3,
and a large gate size δ > 20 could lead to a low trajectory detection rate on Sequence 1, because the
real targets in Sequence 1, Sequence 2, and Sequence 3 have different velocities which can be inferred
from Figure 2. For example, because the target in Sequence 1 has the lowest velocity, a very large gate
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size could lead to false association between the current frame and the former frame, and moreover the
target in Sequence 3 has the highest velocity, thus a very small gate size could result in association
failure between consecutive frames. From the illustration, we can find that the interval [15,20] could
be a proper scope of the gate size for Sequence 1, Sequence 2, and Sequence 3.
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Figure 6. Relationship curve of the trajectory detection rate and gate size.

4.4. Comparison with State-Of-The-Art Approaches

In order to show the performance of the proposed method, we selected five state-of-the-art
infrared small target detection methods, including two classical methods (MM [18], TH [42]), and three
recent methods (IPI [8], MPC [22], WLD [10]) based on the patch-image model, the multiscale contrast
measure and the local difference measure. As a whole, the adopted comparison approaches are
representatives of the advanced level of infrared small target detection at present. The detailed
parameter settings used in the experiments are described in Table 4 for reproduction. The detection
results of the proposed method and the existing methods are visually shown in Figure 7 in which
the red circles denote the detected real targets, the blue circles denote the false alarms, and the green
circles indicate that the real targets were lost. Note that the results of the existing methods in Figure 7
are obtained using a global threshold µ + 3τ, and the original images corresponding to Figure 7 are
the same as those of Figure 2. In addition, the quantitative evaluation results are provided in Table 5
and Figure 8.

Table 4. Detailed parameter settings of the six test methods.

No. Methods Acronyms Parameter Settings

1 Max-Mean filter MM Support size: 5× 5
2 Top-Hat approach TH Structure element: disk, radius: 6
3 Infrared patch image model IPI Patch size: 50× 50, sliding step: 10, λ = 1/

√
max(m, n)

4 Multiscale patch-based contrast measure MPC N = 2, 3, 4, 5
5 Weighted local difference measure WLD L = 4, entropy neighborhood 5× 5
6 Proposed co-detection method COD λ = 1/

√
max(m, n), entropy neighborhood 5× 5

Table 5. Average scores of the proposed method and other existing methods.

Sequences Metrics MM TH IPI MPC WLD COD

Sequence 1 SCRG 0.80 1.99 1.55 2.45 2.27 2.31
BSF 9.59 5.26 23.34 16.14 9.81 19.12

Sequence 2 SCRG 2.10 2.67 3.13 2.91 2.35 3.60
BSF 2.30 0.77 9.39 7.44 8.36 6.51

Sequence 3 SCRG 0.78 1.51 1.37 1.45 1.01 1.34
BSF 6.08 3.54 8.35 7.54 10.37 7.84
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(a) (b) (c) (d) (e) (f)

Figure 7. Visual illustration of the results of the proposed method and other existing methods. The first
three rows, the middle three rows, and the last three rows illustrate the results of the proposed method
and other existing methods on Sequence 1, Sequences 2 and Sequence 3 respectively. (a) denotes
the detection results of MM method, (b) denotes the detection results of TH method, (c) denotes
the detection results of IPI model, (d) denotes the detection results of MPC method, (e) denotes the
detection results of WLD method, and (f) denotes the detection results of the proposed method.
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Figure 8. Precision, recall, and F-measure bars for the proposed method and other existing methods.
(a–c) denote the results of the proposed method and other existing methods on Sequence 1, Sequences 2
and Sequence 3 respectively.

As depicted in Table 5, the MM achieved higher BSF than TH on Sequence 1, Sequence 2
and Sequence 3, but gave the worst performance in terms of the SCRG and the visual illustration
of Figure 7. In addition, the TH and MPC achieved the top two SCRG on Sequence 3, but gave the
poor detection results as seen from the visual result of Figure 7 that many target pixels were lost in the
detection result of MPC, and that much background cloud was left in the detection of TH. Moreover,
the IPI model exhibited excellent background suppression performance, but the SCRG is very low
when the background was complex in Sequence 1. Furthermore, the WLD achieved the highest
BSF on Sequence 3, but obtained less SCRG which was slightly better than that of MM. As shown
in Figures 7 and 8b–c, for the IPI and WLD methods, the false alarms can be well suppressed with
an appropriate threshold on Sequence 2 and Sequence 3. However, as shown in Figures 7 and 8a, the
existing five state-of-the-art methods still performed poorly on Sequence 1, because a very challenging
test sequence based on an actual application (existence of targe-like false alarms as shown in Figure 7)
was used for the comparative testing in this paper. Thus, the success of the existing five methods based
on only a single image was restricted to its own specific application. Therefore, exploitation of the
motion and appearance cues from the image sequences was necessary to further improve the detection
performance of a single frame. Although the proposed method do not have the highest SCRG and
BSF, based on the visual comparison in Figure 7 and the quantitative comparison in Figure 8, it is
clear that the proposed method consistently performed well on all three sequences and outperformed
other test methods from the view that all false alarms including the target-like ones in each image are
well suppressed.

4.5. Computational Complexity

The computational complexity and time for the proposed method and other existing methods
were given in Table 6. All the experiments were carried out on a computer with a 3.2 GHz Intel
CPU and 4-GB memory. The image size is m × n, the patch-image size in the IPI model is m × n,
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β denotes the iteration number of the algorithm, and p denotes the pixel number in the support region.
As depicted in Table 6, the six test methods differed greatly in running time, though there existed
a little difference in the computational complexity. For the MM and TH methods, the time difference
is mainly caused by the max operation in MM. For the MPC and WLD methods, the time difference
lies in the sort operation in the computation of local entropy. In addition, the IPI method took the
longest time in the test methods, the cost is mainly caused by the vectorization and median operations.
However, the running time of the proposed method is only about one-fiftieth the time of IPI method.
The essential reason is that the non-patch scheme and local prior weight contribute to improving
convergence speed. Although the proposed method took more time than the MM, TH and MPC
methods did, it is acceptable from the view of detection performance.

Table 6. Algorithm complexity and running time of the proposed method and other existing methods.

MM TH IPI MPC WLD COD

Complexity O(4mn) O(2pmn) O(βkmnlog(mn) + mnp) O((p + 1)Lmn) O((L + p)mn) O(mn(p + k + βklog(mn)))
Time (s) 8.30 0.17 503.65 0.28 18.20 9.2

5. Conclusions

In this paper, a novel infrared target co-detection model, which combines the self-correlation
features of backgrounds and the commonality features of targets in the spatio-temporal domain,
is proposed to detect small targets in a sequence of images with complex backgrounds. On one
hand, the nonlinear weights has been constructed based on the logistic sigmoid function, and has
more advantages than weights of singular values in suppressing background and keeping small
targets. On the other hand, the entry-wise weight has been designed based on the local weighted
entropy, and can extract real targets accurately and suppress background clutters efficiently. Finally,
the location correlation of the dense and sparse reconstruction maps for a single frame and tracklet
association of the location correlation maps for successive frames are performed to suppress false
alarms and confirm suspected targets. The experiments have testified the effectiveness of the proposed
co-detection model.
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Appendix A

With X = (B, D)T, g(X) = ‖B‖∗ + λ‖W ◦ D‖1, and f (X) = 1
2µ‖F − B − D‖2

F in (11),

thus ∇B f (X) = ∇D f (X) = 1
µ (B + D− F), and ∇ f (X) = (∇B f (X),∇D f (X))T, we can obtain

‖∇ f (X1)−∇ f (X2)‖F =
1
µ

∥∥∥∥∥
[

B1 + D1 − F
B1 + D1 − F

]
−
[

B2 + D2 − F
B2 + D2 − F

]∥∥∥∥∥
F

=
1
µ

∥∥∥∥∥
[

B1 − B2

D1 − D2

]
+

[
D1 − D2

B1 − B2

]∥∥∥∥∥
F

≤ 1
µ

∥∥∥∥∥
[

B1 − B2

D1 − D2

]∥∥∥∥∥
F

+
1
µ

∥∥∥∥∥
[

D1 − D2

B1 − B2

]∥∥∥∥∥
F

=
2
µ
‖X1 − X2‖F

(A1)

So f is Lipschitz continuous, and the Lipschitz constant L f = 2
µ . According to the proximal

gradient approach, we could approximate f (X) locally as a quadratic function
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(Bk+1, Dk+1) =Xk+1 = arg min
X
{g(X) + f (Yk)+ < ∇ f (Yk), X−Yk > +

L f

2
‖X−Yk‖2

F}

= arg min
X
{g(X) +

1
µ
‖X−Yk +

µ

2
∇ f (Yk))‖2

F}

= arg min
B,D
{‖B‖∗ + λ‖W ◦ T‖1 +

1
µ

∥∥∥∥∥
[

B
D

]
−
[

YB
k −

µ
2∇B f (Yk)

YD
k −

µ
2∇D f (Yk)

]∥∥∥∥∥
2

F

}

= arg min
B,D
{‖B‖∗ +

1
µ
‖B−YB

k +
µ

2
∇B f (Yk))‖2

F + λ‖W ◦ D‖1

+
1
µ
‖D−YD

k +
µ

2
∇D f (Yk))‖2

F},

(A2)

and then solve (A2) to update the solution X. It can conclude that the problem (A2) is separable and
can be decomposed into two subproblems (12) and (13).
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