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Abstract: This study aims to present an effective VLSI circuit for multi-channel spike sorting.
The circuit supports the spike detection, feature extraction and classification operations. The detection
circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak
detection and area computation operations are adopted for the realization of the hardware architecture
for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning
(CL) neural networks. The CL circuit supports both online training and classification. In the
proposed architecture, all the channels share the same detection, feature extraction, learning and
classification circuits for a low area cost hardware implementation. The clock-gating technique is
also employed for reducing the power dissipation. To evaluate the performance of the architecture,
an application-specific integrated circuit (ASIC) implementation is presented. Experimental results
demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power
dissipation and a high classification success rate for spike sorting.

Keywords: spike sorting; VLSI; competitive learning; brain machine interface

1. Introduction

Multi-electrode arrays (MEAs) [1,2] are sensors capable of recording spike data from a large
number of neurons of the brain simultaneously. The MEAs have been extensively deployed to facilitate
the development of applications such as brain-machine interface (BMI) and/or neuromotor prosthetic
devices [3,4] for the rehabilitation of stroke or paralyzed patients. For the MEA-based applications,
multi-channel spike sorting [5,6] is usually desired. The spike sorting aims to segregate spikes of
individual neurons from the data acquired from each channel. It can be viewed as a clustering process
where the spikes belonging to the same neuron are grouped together. The information of the clustering
results provided by the spike sorting is essential to the subsequent operations such as neural decoding
and control signal generation for prosthetic devices [4].

Data recorded by MEAs may incur a high computational load for spike sorting when real-time
operations are necessary. A dedicated hardware circuit offering high computation performance may be
beneficial for the acceleration of spike sorting operations. Furthermore, circuits with low area costs and
low power density have the additional advantage of bio-implantability for different application needs.
Therefore, hardware circuits may be necessary for spike sorting applications where computation speed
and bio-implantability are the important concerns.

One hardware approach for the implementation of a spike sorting system is based on the field
programmable gate array (FPGA) [7]. A drawback of some FPGA circuits is that they may utilize high
area resources and/or dissipate high power. The FPGA systems are then mainly adopted only for
offline spike sorting systems [8]. An alternative to the FPGA for hardware implementation is based on
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the application-specific integrated circuit (ASIC) [9]. The hardware resources and power consumption
of some ASIC circuits for spike sorting may be lower than their FPGA counterparts. Therefore, the
ASIC implementations may be effective for MEA-based applications in vivo.

A spike sorting system usually provides the operations of spike detection, feature extraction
and classification. Many ASIC architectures, however, are not able to offer all these operations.
Only the feature extraction and/or spike detection operations are provided in the circuits. Studies
in [10–12] present ASIC architectures for feature extraction by the principal component analysis
(PCA) algorithm and its variants such as the generalized Hebbian algorithm (GHA). Although the
PCA-based feature extraction circuits provide feature vectors with high classification success rates,
large hardware costs and power consumption may be required for the covariance matrix calculation
and eigenvalue decomposition.

To reduce the computational complexities for feature extraction, a number of simple algorithms
such as zero crossing [13] and peak detection with area computation (PDAC) [14] are proposed at
the expense of a slight degradation in performance as compared with PCA for spike classification.
The corresponding PDAC hardware circuits are presented in [14]. Although the architectures have
lower area complexities, operations for spike classification are still not included. The incorporation
of spike classification may involve online training operations. For the algorithms such K-means [15]
and fuzzy C-means (FCM) [16], training in batch mode is necessary. A large memory may be desired
to store a training set for the iterative operations of the unsupervised clustering. This may require
high area costs for the hardware implementation. Although it is not necessary to store the training
set for some incremental clustering algorithms such as online sorting (OSORT) [17], the classification
is carried out directly on spike waveforms. Because the algorithm operates without the dimension
reduction, the area complexities may still be large [18].

The objective of this paper is to present a novel spike sorting hardware architecture supporting
spike detection, feature extraction and classification. The architecture is implemented by ASIC. It is able
to achieve accurate classification with low area costs and low power consumption. The spike detection
and feature extraction circuits are based on the nonlinear energy operator (NEO) [19] and PDAC
algorithms, respectively. The NEO and PDAC have the advantages of simplicity and effectiveness for
detection and feature extraction, respectively. To incorporate the hardware classification circuit without
incurring a large area overhead, the competitive learning (CL) neural networks [20–22] are adopted
for spike classification. The CL algorithm is an incremental training algorithm for unsupervised
clustering. The CL algorithm and its variants have been found to be effective in a number of clustering
applications [22–25]. It also has been used as a learning vector quantization for supervised learning for
spike sorting in [26]. The CL algorithm is well suited for hardware classification operations because it
may not be necessary to store training data for the online learning. Furthermore, our experimental
results reveal that the classification success rate of the CL may be comparable to that of K-means and
FCM for spike sorting.

In the proposed hardware system, the circuits for spike detection, feature extraction and
classification can be operated concurrently for different channels. Controllers/buffers are included for
the coordination of different units. To accommodate multi-channel spike sorting, dedicated buffers
are allocated to each channel for spike detection and feature extraction. Moreover, CL codewords for
different channels are stored separately. Nevertheless, computation circuits for detection, feature
extraction and classification are shared by all the channels. Furthermore, a clock gating (CG)
scheme [27] is adopted so that only the active components acquire the system clock. Both the area
costs and power consumption of the proposed circuit can then be minimized. Comparisons with
existing hardware architectures confirm that the proposed architecture is an effective alternative for
the implementation of implantable multi-channel spike sorting circuit.

The remaining parts of this paper are organized as follows. Section 2 presents the proposed VLSI
architecture. The corresponding algorithms are also discussed in detail in this section. The performance
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evaluation of the proposed circuit is presented in Section 3. Finally, Section 4 includes some
concluding remarks.

2. The Proposed Circuit

Figure 1 shows the block diagram of the proposed circuit. The circuit consists of five components:
spike detection circuit, spike buffer, feature extraction circuit, feature extraction buffer and training
and classification circuit. The spike detection, feature extraction and classification are carried out by
the spike detection circuit, the feature extraction circuit and the learning and classification circuit,
respectively. A buffer, termed the spike buffer in this work, is adopted for the coordination between
the spike detection circuit and feature extraction circuit. Another buffer, termed the feature extraction
buffer, is employed for buffering the extracted feature vectors for the subsequent classification and/or
online learning operations.

Figure 1. The block diagram of the proposed circuit. It contains five components: spike detection circuit,
spike buffer, feature extraction circuit, feature extraction buffer and training and classification circuit.

2.1. Spike Detection Circuit and Spike Buffer

The diagram of the spike detection circuit is shown in Figure 2. The circuit supports M-channel
spike detection by the thresholding operations, where the NEO algorithm is adopted as the
preprocessor before thresholding. As shown in Figure 2, the circuit carries out the sampling operations
of M channels in a round robin fashion. Let rs be the sampling rate for all the channels and Ts = 1/rs

be the sampling period. A mixed mode circuit for the sampling and multiplexing operations is shared
by all the channels. It also distributes spike samples one at a time to the channel buffers. During a
time interval of Ts seconds, the proposed circuit receives M samples from the mixed mode circuit.
Each is from different channels. Let rc be the clock rate of the circuit and Tc = 1/rc the clock period.
Consequently, M, Tc and Ts are related by:

MTc ≤ Ts. (1)

Therefore, the maximum number of channels for a pair of given Tc and Ts, denoted by Mmax,
is given by Mmax = bTs/Tcc.

There are M buffers in the circuit. Each channel has its own dedicated buffer. Let m be the
number of samples of a spike. Each buffer then contains m samples. Each of the M buffers is a serial-in
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parallel-out (SIPO) buffer. Among the M buffers, only the outputs of one buffer are selected at a time
for the NEO detection. The selection is also done in a round robin fashion. This allows all the channels
to share the same computation core for spike detection.

Figure 2. The block diagram of the spike detection circuit. It mainly contains a mixed mode circuit
for spike sampling and multiplexing, a channel buffer for storing the spike samples, an NEO detector
and a circuit for peak alignment.

Let S(j) be the j-th sample of the current channel selected by the multiplexer in the unit for spike
detection. The spike detection circuit will issue a “hit” signal when:

S2(j)− S(j− 1)S(j + 1) > γ, (2)

for some j in the m samples of the buffer, where γ > 0 is a pre-specified threshold. The selection
of γ is based on a scaled version of the standard deviation of training data, as suggested by [28].
Upon receiving the hit signal, the peak alignment circuit will determine the peak of the spike. The m
samples of that spike after the spike alignment, together with the index of the current channel,
are delivered to the spike buffer for subsequent feature extraction operations. For the current
channel, let:

x(n) = [x1, ..., xm] (3)

be the n-th spike detected by the spike detection unit. After the detection, the x(n) will then be stored
in the spike buffer.

The spike buffer contains two stages, as shown in Figure 3. The buffer at the first stage (termed
the input buffer in Figure 3) is an m-sample input, m-sample output first-in-first-out (FIFO) buffer.
The buffer is able to store up to M spikes from different channels. The input buffer is triggered by
the “ready” signal issued from the spike alignment circuit. After the triggering, the input buffer
stores the m samples presented in the input port, together with the corresponding channel index.
The buffer at the second stage is a parallel-in serial-out (PISO) buffer. It is termed the output buffer in
Figure 3. The goal of the output buffer is to fetch the spikes stored in the input buffer, together with
the corresponding channel indices, and then deliver them to the feature extraction unit. The output
buffer is able to read a spike m samples at a time from the input buffer. Because the feature extraction
unit supports only serial transmission, the output buffer sends the spike to the feature extraction unit
on a sample-by-sample basis.
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Figure 3. The block diagram of the spike buffer. It consists of the input buffer and output buffer,
which are FIFO and parallel-in serial-out (PISO) buffers, respectively. The input buffer stores the
detected spikes from the spike detection circuit. The output buffer delivers a detected spike to the
feature extraction circuit.

2.2. Feature Extraction Unit and Feature Extraction Buffer

The feature extraction unit is shared by all the M channels. The unit computes the feature vectors
of spikes one at a time. In the proposed architecture, the PDAC algorithm in [14] is adopted for
the feature extraction. Given a spike x(n) in Equation (3) provided by the spike buffer, the feature
extraction unit first computes a1(n) and a2(n), defined as:

a1(n) =
imin

∑
i=1

(xi − ximin), (4)

a2(n) =
m

∑
i=imin+1

(xi − ximin), (5)

where:
imin = argmin

1≤i≤m
xi. (6)

Therefore, a1(n) and a2(n) are two non-overlapping areas of x above ximin , separated by imin.
An example of a1(n) and a2(n) for a spike x is shown in Figure 4. In the PDAC algorithm, the feature
vector associated with x(n), denoted by X(n), is computed by:

X(n) = [ f1(n), f2(n)], (7)

where:
fi(n) = ai(n)/(imin − imax), i = 1, 2, (8)

and:
imax = argmax

1≤i≤m
xi. (9)

While providing feature vectors with high classification accuracy [14], the PDAC algorithm is
computationally efficient. Figure 5 shows the architecture of the feature extraction unit based on PDAC.
It contains three modules: an accumulator, a min/max detector and a feature computation circuit.
The goal of the accumulator is to compute a1 and a2 in Equations (4) and (5). The min/max detector
is used to find imin and imax. Based on ai, i = 1, 2, imin and imax, the feature computation circuit then
produces fi, i = 1, 2, by Equation (8).
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Figure 4. An example of the feature extraction computation of the PDAC algorithm. The a1(n) and
a2(n) are the areas of the shaded regions shown in the figure. After a1(n) and a2(n) are obtained, the
features f1(n) and f2(n) are obtained by Equation (8).

Figure 5. The block diagram of feature extraction circuit. It contains the min/max detector, accumulator
and feature computation circuit. Both the min/max detector and accumulator are operated concurrently
to expedite the computation.

Both the accumulator and min/max detector are operated one sample at a time. Although the
computation of ai, i = 1, 2, is dependent on imin, a remarkable fact of the PDAC algorithm is that the
accumulator and min/max detector can still be operated concurrently [14]. Furthermore, in the PDAC
algorithm, no pre-processing or training processes are required. By contrast, they are necessary for
PCA and its variant GHA. All these advantages are beneficial for attaining the fast computation time
and low area costs.

After the feature extraction operations are completed, the resulting feature vector X(n) and its
associated channel index are stored in the feature extraction buffer for subsequent training and/or
classification operations. The feature extraction buffer is an FIFO buffer containing a fixed number of
stages. Its output port is connected to the training and classification circuit.

2.3. Training and Classification Circuit

The architecture of the training and classification unit is shown in Figure 6. It contains the winner
selection unit, the memory unit, the winner update unit and the controller. The winner selection unit,
memory unit and winner update unit are all involved in the CL-based online-training for the spike
clustering. After the CL training process is completed, only the winner selection unit and memory unit
are used for the spike classification. The controller is used for the coordination of these units. In the
proposed architecture, all the M channels share the same winner selection unit and winner update unit



Sensors 2017, 17, 2232 7 of 19

for CL training and classification. Furthermore, each channel has its own entries in the memory unit
for storing the CL training results of that channel. In this way, the area costs can be effectively reduced.

Figure 6. The block diagram of the training and classification circuit. In addition to the controller, there
are three modules in the circuit: winner selection unit, memory unit and winner update unit. All the
modules are used for the CL online training. Only the winner selection unit and memory unit are used
for the spike classification.

Because the training process is based on the CL algorithm, before discussing the operations of
the circuit, we first present the CL algorithm. Let K be the number of clusters for the spike clustering.
Let Cp,q be the center of the p-th cluster,p = 1, ..., K, for the spikes from the q-th channel, q = 1, ..., M.
The CL algorithm operates in an incremental manner for the training operations for each channel.
The centers associated with each cluster of a channel may be updated during the online training
process when a spike from that channel is detected, and its feature vector is extracted.

Suppose x(n) is the n-th spike detected from the channel q by the spike detection circuit and X(n)
is its feature vector computed by the feature extraction unit. In the CL algorithm, X(n) is used for the
updating of cluster centers. Let Cp,q(n) and Cp,q(n + 1) be the center of the p-th cluster before and
after the updating by X(n), where Cp,q(0) is the initial cluster center. They can be obtained by random
selection from the training set. Moreover, let Ck,q(n) be the cluster center closest to X(n) among all the
centers Cp,q(n), p = 1, ..., K. That is, the index k of Ck,q(n) should satisfy:

k = argmin
1≤p≤K

d(Cp,q(n), X(n)), (10)

where d(Cp,q(n), X(n)) is the squared distance between Cp,q(n) and X(n). We call Ck,q(n) the winner
of the competition. After the winner is identified, the winner-take-all updating scheme is then carried
out. In the scheme, the Cp,q(n) and Cp,q(n + 1) are related by:

Ck,q(n + 1) = Ck,q(n) + η(X(n)− Ck,q(n)), (11)

Cp,q(n + 1) = Cp,q(n), when p 6= k, (12)

where η > 0 is the learning rate. Algorithm 1 shows the CL algorithm for the on-line training of spikes
from channel q. It is clear from Algorithm 1 that an advantage of the CL algorithm is its simplicity. It is
not necessary to store the training vectors. They can be obtained online and then immediately used
for the incremental updating of cluster centers. We can view the cluster centers after updating as the
current training results of the CL algorithm.
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Algorithm 1 CL algorithm for spike clustering of channel q by N training spikes

Require: Learning rate η.

Require: Number of training spikes N.

Require: Initial centers Cp,q(0), p = 1, ..., K.

1: for n = 0 to N − 1 do

2: Obtain X(n) from the feature extraction buffer.

3: Compute k from X(n) and Cp,q(n), p = 1, ..., K, by (10).

4: Update Cp,q(n + 1), p = 1, ..., K, by (11) and (12).

5: end for

The major advantage of the CL algorithm is the low computational complexity. When the number
of classes K is known and the dimension of the feature vector is two, the computational complexity
of CL and K-means during the training phase is O(2KT) and O(2KTt), respectively, where T is the
number of training vectors and t the number of iterations for K-means. The K-means algorithm
may have higher computational complexity because it operates in an iterative fashion. For the FCM
algorithm, the computational complexity would become O(2K2Tt) because of the requirement for
the computation of membership functions. The computational complexity of OSORT is O(mKT).
Because the number of samples of a spike m is usually larger than two, the OSORT also has higher
computational complexity than that of CL.

In the proposed CL circuit, the cluster centers for each channel are stored in the memory unit
of the training and classification circuit shown in Figure 7. The circuit contains M modules, where
each module is dedicated to a different channel. The module q stores the cluster centers associated
with channel q. As shown in Figure 7, the circuit is able to provide K centers Cp,q(n), p = 1, ..., K, of a
channel specified by the channel number q in parallel. All the K centers can be used for the winner
competition process for CL learning or the classification process after learning. During the learning
phase, the circuit is also able to provide the winner Ck,q(n) after the competition process is completed
and the winner index k is available. Furthermore, after the winner is identified and the corresponding
center is updated, the circuit is able to store the updated center Ck,q(n + 1) to the corresponding
module specified by the channel number q.

Figure 7. The block diagram of the memory unit. There are M modules in the circuit, where the module
q, q = 1, ..., M, is dedicated to channel q for CL training and classification. Each module contains K
centers associated with its dedicated channel.

Figure 8 shows the architecture of each module of the memory unit. It can be observed from the
figure that there are K cells in each module. The content of the K cells can be fetched concurrently for
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winner competition and classification. Nevertheless, because of the winner-take-all updating scheme,
only one of the cells will be updated, which is specified by the winner index k.

Based on the cluster centers stored in the memory unit, the winner selection unit in the proposed
training and classification circuit can be employed for winner competition or classification. When the
proposed circuit operates in CL training mode, the output of the circuit indicates the index of the
winner. Otherwise, it reveals the class to which the detected spike belongs. Figure 9 shows the
architecture of the winner selection unit. It contains two components: the distance computation unit
and the comparator. The distance computation unit computes the squared distance d(Cp,q(n), X(n))
in parallel for all p, p = 1, ..., K. The unit contains adders and multipliers for the distance calculation.
The computation results are then delivered to the comparator for finding k satisfying Equation (10).

Figure 8. The block diagram of each module of the memory unit. It consists of K cells, where each cell
stores a center associated with its dedicated channel.

Figure 9. The block diagram of the winner selection unit. There are two modules in the circuit: distance
computation unit and distance comparator. The circuit fetches K centers associated with a channel q
and produces the classification results and winner index.

After winner index k is identified by the winner selection unit, the winner updated unit is activated
to compute Ck,q(n + 1) from Ck,q(n) by Equation (11), where Ck,q(n) is provided by the memory unit.
The architecture of the winner update unit is revealed in Figure 10, which contains only adders and a
shift operator. From Equation (11), it follows that multiplication may be desired to take the learning
rate η into account for the CL training. Nevertheless, by restricting the learning rate to be a power of
two, the multiplication can be reduced to a shift operation. This is beneficial for the reduction of the
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area costs. After the computation is completed, the updated center, Ck,q(n + 1), is then delivered back
to the memory unit. This completes the training process for the feature vector X(n).

Figure 10. The architecture of winner update unit. The value of learning rate is η = 2−5 in the circuit.

The goal of the controller of the training and classification circuit is to coordinate different
components of the circuit depending on its operation mode. When the circuit is in the classification
mode, only the memory unit and winner selection unit are activated by the controller. In this mode,
the memory unit first provides centers Cp,q(n), p = 1, ..., K, to the winner selection unit. According to
the centers and the input feature vector X(n), the winner selection unit produces the class index k.
When the circuit is in the CL training mode, there are two phases. The first phase is identical to
the classification mode, where the output k is regarded as the winner index. In the second phase,
the controller activates the memory unit and winner update unit. After the completion of this phase,
the updated center Ck,q(n + 1) is obtained. This completes the training for one iteration. The controller
may continue the CL training until a sufficient number of iterations has been carried out for
each channel.

An advantage of the proposed training and classification circuit is that it provides a high degree
of flexibility for the online training. Because it is based on CL, the training process is inherently
incremental. It is not necessary to store training data before training operations. The spikes recorded
by MEAs can be directly used as the training data, and there is no need to retain them after they
have been used by the circuit. Because no dedicated memory circuits for storing the training sets
are required, there will be no constraints on the size of training sets. When high classification
accuracy is desired, larger training sets may be necessary at the expense of a longer training time for
collecting training data from MEAs. Alternatively, smaller training sets can be adopted for a shorter
training time.

The flexibility of the CL algorithm also allows the number of clusters K to be determined
adaptively. Although K can be pre-specified before the training, an OSORT-like technique can be
adopted to compute K adaptively during the training process. Starting from K = 2, the algorithm
compares the distance between the current training vector and its closest center. If the distance is
above a threshold, a new cluster may be created to accommodate the current training vector. In this
case, the controller in the architecture shown in Figure 6 is responsible for the determination of K.

Finally, due to the flexibility, it is possible to extend the proposed circuit to the spike trains
acquired by tetrodes. In this case, the circuit contains four channels for each tetrode. Each channel has
dedicated spike detection and feature extraction circuits. Because the spikes from the four channels
can be jointly trained and classified [29], they can share the same CL training and classification circuit.
The area costs in this case therefore may be lower than those of its MEA counterpart.

3. Experimental Results

We evaluate the performance of the proposed circuit in this section. Because the area of the circuit
is dependent on the numbers of hardware arithmetic operators and resisters, they are considered
as the area complexities of the circuit. The area complexities are presented as the big O function,
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describing the asymptotic behavior of the complexities. The training and classification circuit is the
most important part of the circuit. Therefore, the area complexities of the training and classification
circuit are first considered, as shown in Table 1. We can observe from Table 1 that all types of area
costs grow with the number of classes K. Only the number of registers increases with the number of
channels M. The area complexities for arithmetic operations are not dependent on M because all the
channels share the same computation core for CL training and classification.

Table 1. The area complexities of the training and classification circuit.

Comparators Adders/Subtractors Multipliers/Dividers Registers

Memory Unit 0 0 0 O(MK)
Winner Selection Unit O(K) O(K) O(K) O(K)
Winner Update Unit 0 O(1) 0 O(1)

Total O(K) O(K) O(K) O(MK)

In addition to the training and classification circuit, the area complexities of the other circuits
are also independent of M. Table 2 reveals the area complexities of all the circuits in the proposed
architecture. As shown in the figure, the number of hardware arithmetic operators is dependent on
the number of classes K and is independent of the number of channels M for all the circuits. As M
increases, only the number of registers grows in these circuits.

Table 2. The area complexities of the proposed architecture.

Comparators Adders/Subtractors Multipliers/Dividers Registers

Spike Detection Circuit O(1) O(1) O(1) O(Mm)
Spike Buffer 0 0 0 O(Mm)
Feature Extraction Circuit O(1) O(1) O(1) O(1)
Training and Classification Circuit O(K) O(K) O(K) O(MK)

Total O(K) O(K) O(K) O(MK + Mm)

The actual area of the proposed circuit is also considered. We carry out the ASIC implementation
of the circuit for the measurement of the area. The Taiwan Semiconductor Manufacturing Company
(TSMC) 90-nm technology is adopted for the implementation. The Synopsys Design Compiler is used
as the platform for gate level design. The dimension of spikes is set to m = 64. The impact of the
number of classes K and the number of channels M on the area (µm2) is revealed in Table 3. We can
see from the table that the area increases with K and M. These facts are consistent with those revealed
in Table 2.

Table 3. The area (µm2) of the proposed circuit for different numbers of channels M and classes K.

Number of Classes K
Number of Channels M

2 4 8 16 32 64

2 82,667 133,402 233,766 433,482 834,448 1,644,525

3 93,355 145,429 248,966 455,372 869,329 1,705,028

4 103,675 157,539 264,414 477,274 903,921 1,766,590

To further study the impact of the number of channels M on the area costs, the normalized area
per channel is considered. We define the normalized area of a circuit as the total area of the circuit
divided by the number of channels M. The normalized area can be viewed as the average area cost
per channel. Table 4 shows the corresponding results. From Table 4, it can be concluded that the
normalized area decreases as M increases. This is because spike sorting for different channels in
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the proposed circuit shares the same computation cores. Because of the hardware resource sharing
implementation, better efficiency in area costs for a larger M is observed.

Table 4. The normalized area per channel (µm2/channel) of the proposed circuit for different numbers
of channels M and classes K.

Number of Classes K
Number of Channels M

2 4 8 16 32 64

2 41,333 33,350 29,220 27,092 26,076 25,695
3 46,677 36,357 31,120 28,460 27,166 26,641
4 51,837 39,384 33,051 29,829 28,247 27,602

Although the area of some components of the proposed circuit are dependent on the number of
channels M, their dependency may vary. Table 5 shows the area of each component of the proposed
circuit for different numbers of channels M. The number of classes K is three. It can be observed
from the table that the spike detection circuit and spike buffer have high growth rates in area for the
number of channels M. In fact, when M increases from 2–64, the percentage of the area of the spike
detection circuit out of total area of the proposed circuit grows from 25–45%. Similarly, when M = 64,
the spike buffer consumes 43% of the total area of the proposed circuit. On the contrary, the training
and classification circuit only consumes 11% for M = 64.

Both the spike detection circuit and spike buffer have high areas when the number of channels is
large because the circuits need to store sampled data and detected spikes for the subsequent operations.
The length of the sampled data for each channel in the spike detection circuit is m = 64. Furthermore,
the length of detected spikes is also m = 64 in the spike buffer. Therefore, the increment in area would
be large. On the contrary, in the training and classification circuit, it is only necessary to store K = 3
centers for each channel. The increment in area by increasing M in the training and classification
circuit may then be smaller than that in the spike detection circuit and spike buffer. The area of the
feature the extraction circuit is independent of channel number M. The percentage of the area of the
feature extraction circuit out of the total area therefore decreases with M. In particular, when M = 64,
the feature extraction circuit consumes only 1% of the total area, as shown in Table 5.

Table 5. The area (µm2) of each component of the proposed circuit for different numbers of
channels M.

Number of Number of Spike Detection Spike Feature Extraction Training and
TotalChannels M Classes K Circuit Buffer Circuit Classification Circuit

2 3 23,149 (25%) 23,458 (25%) 14,524 (16%) 32,224 (34%) 93,355
4 3 47,498 (33%) 46,611 (32%) 14,524 (10%) 36,796 (25%) 145,429
8 3 95,359 (38%) 92,674 (37%) 14,524 (6%) 46,409 (19%) 248,966
16 3 189,931 (42%) 185,079 (41%) 14,524 (3%) 65,838 (14%) 455,372
32 3 380,117 (44%) 370,015(42%) 14,524 (2%) 104,673 (12%) 869,329
64 3 759,136 (45%) 749,894 (43%) 14,524 (1%) 181,474 (11%) 1,705,028

Another important performance measurement of a circuit is the power consumption. Table 6
reveals the normalized power consumption of the proposed circuit for various numbers of channels
M, where the normalized power (mW per channel) is defined as the division of the total power
(mW) of the circuit by M. In the experiment, the clock rate rc is 1 MHz. Synopsis Prime Time is
employed as the CAD tool for the power consumption measurement. Note from Table 4 that the
normalized area decreases for larger numbers of channels M. Therefore, it can be observed from
Table 6 that the proposed circuit has smaller normalized power consumption for larger M. Moreover,
from Table 6, we see that the power consumption can be further reduce by the employment of clock
gating (CG). This is because the dynamic power consumption of inactive components of the circuit
can be reduced by not supplying the clock signal to the components. The reduction in power (as a
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percentage) due to the employment of CG is also included in Table 6. When M = 64, we see that a 41%
reduction in normalized power consumption can be achieved for the proposed circuit operating with
CG. In addition to area and power consumption, the power density may also be an important concern.
Studies in [30] recommend that the power density should be below 80 mW/cm2 to avoid potential
brain damage. In the proposed circuit with CG, the power density is 68.35 mW/cm2 for M = 64 and
K = 3. The circuit may then be effective as an implantable device.

Table 6. The normalized power consumption per channel (µW/channel) of the proposed circuit for
various numbers of channels M.

Number of Number of Clock Rate Normalized Power Power

Channels M Classes K rc Without CG With CG Reduction

2 3 1 MHz 59.85 45.64 24%
4 3 1 MHz 44.70 31.27 30%
8 3 1 MHz 37.56 24.42 35%

16 3 1 MHz 33.66 20.82 38%
32 3 1 MHz 31.65 18.91 40%
64 3 1 MHz 30.70 18.18 41%

After evaluating the area and power consumption, we next compare the proposed circuit with
other ASIC architectures for spike sorting in Table 7. In the proposed implementation, only the case that
the number of channels M = 64 and the number of classes K = 3 is considered. A direct comparison
of these ASIC circuits may be difficult because they may be the hardware implementation of different
spike sorting algorithms. Moreover, they may be based on different technologies and operating clock
rates. However, it can be seen from Table 7 that some existing implementations [11,12,14] do not
support learning or classification functions. Furthermore, as compared with implementations offering
online classification, the proposed architecture has superior area-power performance. In particular, the
normalized area of the proposed architecture is lower than those of [10,18]. This is because the PCA
algorithm used by [10] may impose high area costs for constructing the covariance matrix. Furthermore,
the OSORT classification technique adopted by [18] carries out the classification directly on waveforms
without dimension reduction. A large memory may be required for storing the waveforms, resulting
in large area and/or power consumption.

Table 7. Comparisons of various ASIC implementations for spike sorting.

Number of Power Area Technology Spike Feature Classification
Channels (µW/ch.) (mm2/ch.) Detection Extraction

[10] 16 256.875 1.770 350 nm NEO PCA Table look-up
[11] 16 8.59 0.268 130 nm No SPIRIT No
[12] 64 85.82 0.0805 90 nm NEO GHA No
[14] 64 20.53 0.0211 90 nm NEO PDAC No
[18] 1 14.60 0.077 45 nm Thresholding No OSORT

Proposed 64 18.18 0.0266 90 nm NEO PDAC CL

Although the proposed architecture has low area costs, it is effective for spike classification.
The comparisons of the classification success rate (CSR) of the CL algorithm, K-means algorithm [15],
FCM algorithm [16] and OSORT algorithm [17] for spike sorting are shown in Table 8. The feature
vectors for the clustering are produced by the PCA [10], GHA [12] and PDAC [14] algorithms for
the CL algorithm, K-means algorithm and CL algorithm. We define the CSR as the division of the
number of spikes receiving correct classification by the total number of spikes. The spike trains
for the experiments in Table 8 are obtained from the database provided in [28] and the simulator
developed in [31], respectively. For the spike trains acquired from the database in [28], the number
of classes is K = 3. They are labeled by the file names: C_Easy1_noise01, C_Easy2_noise01 and
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C_Difficult2_noise005, respectively. For the spike trains obtained by the simulator in [31], they are
specified in terms of the SNR levels: 1 dB, 4 dB, 6 dB and 8 dB, respectively. The number of classes
is K = 2. The ground truth about the spiking activity for all the spike trains can be accessed for CSR
assessment. An example of a spike train with two classes produced by the simulator in [31] with
SNR = 8 dB is shown in Figure 11.

Table 8. The classification success rates (CSRs) (%) of various feature extraction and classification
algorithms for spike sorting. The spike trains are obtained from the database in [28] or by the simulator
in [31]. For the spike trains acquired from the database in [28], they are labeled by the file names:
C_Easy1_noise01, C_Easy2_noise01 and C_Difficult2_noise005, respectively. For the spike trains
obtained by the simulator in [31], they are specified in terms of the SNR levels: 1 dB, 4 dB, 6 dB and
8 dB, respectively.

Algorithms

Database in [28] Simulator in [31]

C_Easy1 C_Easy2 C_Difficult2 SNR

_noise01 _noise01 _noise05 1 dB 4 dB 6 dB 8 dB

CL 99.32 96.65 98.60 99.70 99.76 99.82 99.82
PCA K-means 99.32 96.70 98.57 99.79 99.80 99.76 99.76

FCM 99.32 96.68 98.57 99.73 99.75 99.82 99.88

CL 99.32 94.12 82.02 99.82 99.83 99.86 99.74
GHA K-means 99.32 94.26 81.51 99.76 99.82 99.70 99.76

FCM 99.32 94.35 81.78 99.80 99.82 99.82 99.81

CL 93.38 90.57 83.06 95.71 96.56 96.75 96.67
PDAC K-means 93.38 90.57 82.85 95.92 95.77 96.73 96.65

FCM 93.36 90.43 83.03 96.32 96.45 96.71 96.73

OSORT 99.32 98.01 98.72 99.37 99.06 99.58 99.68

Figure 11. A segment of the waveform of a spike train produced by the simulator in [31]. There are
two classes of spikes (i.e., K = 2). Spikes belonging to the first class and the second class are marked by
black rectangles and orange rectangles, respectively.

Based on the feature vectors produced from the same feature extraction algorithm, it can be
observed from Table 8 that the CL algorithm has comparable CSR to that of the K-means and FCM
algorithms. For example, for the waveforms from “C_Easy2_noise01” in the database in [28], we can
see from Table 8 that the CSRs of the CL, K-means and FCM are 96.65%, 96.70% and 96.68% for the
feature vectors produced by the PCA algorithm, respectively. Furthermore, for the spike trains with
SNR = 1 dB shown in Table 8, the CSRs of the CL, K-means and FCM are 95.71%, 95.92% and 96.32%
for the feature vectors produced by the PDAC algorithm, respectively. For the same sources, the CL,
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K-means and FCM also attain CSRs of 99.70%, 99.79% and 99.73% for the feature vectors produced by
PCA, respectively.

Figures 12 and 13 show the distribution of PCA and PDAC feature vectors of the spike trains
form [31] with SNR = 1 dB and the classification results of the CL, K-means and FCM algorithms.
We can observe from the figures that all the algorithms produce similar centers for classification for
PCA and PDAC feature vectors. Therefore, they have similar CSR values. Because the CL algorithm
is based on incremental training operations, its hardware implementation may impose less resource
consumption than its batch training counterparts such as K-means and FCM. Therefore, the CL
algorithm may be an effective alternative for the hardware implementation of spike classification.

(a) (b)

(c) (d)

Figure 12. The distribution of PCA feature vectors of spikes and the results of CL, K-means and FCM
clustering for SNR = 1 dB. (a) Ground truth of neuron spikes; (b) clustering results produced by CL;
(c) clustering results produced by K-means; (d) clustering results produced by FCM.
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(a) (b)

(c) (d)

Figure 13. The distribution of PDAC feature vectors of spikes and the results of CL, K-means and FCM
clustering for SNR = 1 dB. (a) Ground truth of neuron spikes; (b) clustering results produced by CL; (c)
clustering results produced by K-means; (d) clustering results produced by FCM.

From Table 8, we can also observe that the employment of PDAC and CL (i.e., PDAC + CL) has
comparable CSR to other combinations of feature extraction and classification techniques. In particular,
for the spike trains with SNR = 1 dB shown in Table 8, the CSRs of PDAC + CL, PCA + FCM and
OSORT are 95.71%, 99.73% and 99.37%, respectively. The combination of PDAC and CL produces only
a small degradation in CSR as compared with its counterpart with PCA + FCM and OSORT.

The performance of the CL may be dependent on the selection of the initial centers. Therefore,
it would be beneficial to investigate the robustness of the CL algorithm to the initial centers for the
spike sorting. Figure 14 reveals the distribution of CSRs of 300 independent CL clustering operations
for K = 2 based on the feature vectors produced by the PDAC algorithm. The training vectors
are produced by the simulator [31] with SNR = 1 dB. Each clustering operation is based on initial
centers randomly selected from the same training set. It can be observed from Figure 14 that all the
CL clustering operations result in similar CSRs even with different initial centers. In fact, the CSR
values are concentrated in a small interval ranging from 94.8–97.0%. The robustness of the CL to
the selection of initial centers is beneficial because the random selection of initial centers from the
MEA-recorded spikes may be sufficient for the training. All these results reveal the effectiveness of the
proposed architecture.
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Figure 14. The distribution of the CSRs of 300 independent clustering operations for K = 2 based
on the feature vectors produced by the PDAC algorithm. The training vectors are produced by the
simulator [31] with SNR = 1 dB.

4. Conclusions

We have implemented the proposed architecture for spike sorting by ASIC with 90-nm technology.
The architecture supports spike detection, feature extraction and classification, which are based on the
NEO, PDAC and CL algorithms, respectively. The algorithms have the advantages of effectiveness and
simplicity for the hardware implementation. When the number of channels is 64, the normalized area
of the proposed architecture is 0.0266 mm2/ch, which is lower than that of the other implementations
considered in this paper supporting spike classification. The proposed circuit has a normalized power
dissipation of 18.18 µW/channel when the clock rate is 1 MHz. The CL algorithm also has CSR values
comparable to those of the K-means and FCM algorithms. Consequently, the proposed circuit exhibits
the advantages of low hardware resource and power consumption and high classification accuracy for
the implementation of implantable multi-channel spike sorting systems.
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Abbreviations

The following abbreviations are used in this manuscript:

ASIC Application-specific integrated circuit
BMI Brain machine interface
CG Clock gating
CL Competitive learning
FCM Fuzzy C-means
FIFO First-in-first-out
FPGA Field programmable gate array
GHA Generalized Hebbian algorithm
MEA Multi-electrode array
NEO Nonlinear energy operator
OSORT Online sorting
PCA Principal component analysis
PDAC Peak detection with area computation
SPIRIT Streaming pattern discovery in multiple time-series
TSMC Taiwan Semiconductor Manufacturing Company
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