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1. Formulation of Light Intensity Distribution Problem in Circular Fiber Optic Waveguides

A numerical model of the Polymer Clad Fiber (PCS) fiber system is developed for standard
step-index fibers. Step index fibers are defined as fibers having a constant Refractive Index (RI) in the
core region and a constant RI in the cladding region which is lower than that in the core region.

Electric and magnetic fields that compose the light signal vary in a sinusoidal fashion and it is
therefore justifiable to use the time harmonic form of Maxwell’s equations derived as follows from the
time-dependent Maxwell equations:

∇× E (r, t) = −µ0
∂H (r, t)

∂t
(1)

∇×H (r, t) = ε0
∂E (r, t)

∂t
(2)

∇ · E (r, t) = 0 (3)

∇ ·H (r, t) = 0 (4)

Where µ0 and ε0 are the magnetic and electrical permittivities of free space respectively and E(r, t)
and H(r, t) are the electric and magnetic fields respectively. r is the radial coordinate and t is time. It
can be deduced that:

E (r, t) = E (r, ω) ejωt (5)

∂E (r, ω) ejωt

∂t
= jω E (r, ω) ejωt (6)

When converting a time-dependent signal to a time-harmonic representation in terms of the
angular frequency of light ω. Substituting Equation (5) and Equation (6) into Equations (1) through (4),
the time harmonic Maxwell equations are obtained:

∇× E (r, ω) = −jωµ0H (r, ω) (7)

∇×H (r, ω) = jωε0E (r, ω) (8)

∇ · E (r, ω) = 0 (9)

∇ ·H (r, ω) = 0 (10)

Next the, constraints of traveling guided waves are introduced in order to obtain the governing
relations. The assumption that the RI in the direction of wave propagation (the z-direction) does not
vary is made. However, it may vary transversely in the x and y directions. We hence separate the fields
into transverse (et,ht) and longitudinal (ez,hz) fields as follows:

E (r, ω) = [et (x, y) + ẑez (x, y)] e−jβz (11)

H (r, ω) = [ht (x, y) + ẑhz (x, y)] e−jβz (12)
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Where β is a propagation constant that needs to be determined. Substituting Equation (11) and
Equation (12) into Equation (7) and Equation (8) where (∇ = ∇t − jβẑ) and n (x, y) is the refractive
index transverse profile:

∇t × et (x, y)− jβẑ× et (x, y) +∇tez (x, y)× ẑ = −jωµ0 (ht (x, y) + ẑhz (x, y)) (13)

∇t × ht (x, y)− jβẑ× ht (x, y) +∇thz (x, y)× ẑ = jωε0n2 (x, y) (et (x, y) + ẑez (x, y)) (14)

Equations (13) and (14) can be split into equations in the x− y directions and the z direction as
follows:

−jβẑ× et (x, y) +∇tez (x, y)× ẑ = −jωµ0ht (x, y) (15)

∇t × et (x, y) = −jωµ0hz (x, y) ẑ (16)

−jβẑ× ht (x, y) +∇thz (x, y)× ẑ = jωε0n2 (x, y) et (x, y) (17)

∇t × ht (x, y) = jωε0n2 (x, y) ez (x, y) ẑ (18)

Knowing that ∇tez (x, y)× ẑ = −ẑ×∇tez (x, y), the equations for a wave guide can finally be
expressed as:

−jβẑ× et (x, y)− ẑ×∇tez (x, y) = −jωµ0ht (x, y) (19)

∇t × et (x, y) = −jωµ0hz (x, y) ẑ (20)

−jβẑ× ht (x, y)− ẑ×∇thz (x, y) = jωε0n2 (x, y) et (x, y) (21)

∇t × ht (x, y) = jωε0n2 (x, y) ez (x, y) ẑ (22)

The major assumption made in linearly polarized weakly guiding fibers is that one of the
transverse Cartesian components is much greater than the other i.e (ht ≈ 0 in the case of transverse
electric modes).

The second assumption is that the field varies smoothly in the transverse direction when compared
to the longitudinal direction. This is expressed as:

∇tez (x, y)� βet (x, y)

∇thz (x, y)� βht (x, y)

Using the above assumptions, Equation (19) can be rewritten as:

−jβẑ× et (x, y) ≈ −jωµ0ht (x, y)

ht (x, y) ≈ β

ωµ0
ẑ× et (x, y) (23)

Similarly, Equation (21) can be written as:

−jβẑ× ht (x, y) ≈ jωε0n2 (x, y) et (x, y)

ht (x, y)× ẑ ≈ ωε0n2 (x, y)
β

et (x, y) (24)

Using the identity of the cross-product:

(u× v)× w = (u · w) v− (v · w) u→ (u× v)× v = (u · v) v− (v · v) u

Rearranging:

u =
(u · v) v− (u× v)× v

(v · v)
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For the case u = ht =

ht1
ht2
0

 and v = ẑ =

0
0
1

 , (u · v) = 0 since both vectors are orthogonal and

(v · v) = 1 since ẑ is a unit vector:

u = − (u× v)× v = v× (u× v)

Hence by rearranging Equation (24) using the above:

ht (x, y) ≈ ωε0n2 (x, y)
β

ẑ× et (x, y) (25)

Equations (23) and (24) hold if and only if:

ωε0n2 (x, y)
β

=
β

ωµ0

β2 = ω2µ0ε0n2 (x, y)→ β = ωn (x, y)
√

µ0ε0 = kn (x, y)

where k = ω
√

µ0ε0

Looking at Equation (23),
β

ωµ0
=

ωn (x, y)
√

µ0ε0

ωµ0
= n(x,y)/η0 where η0 =

√
µ0 /ε0

Hence:

ht (x, y) ≈ n (x, y)
η0

ẑ× et (x, y) (26)

Now that the relation between ht (x, y) and et (x, y) has been established, the other field
components can be expressed in terms of et (x, y).

From Equation (20) we can deduce the following:

ẑ · ∇t × et (x, y) = −jωµ0hz (x, y)

ẑ · ∇t × et (x, y) = −jωµ0hz (x, y)

Knowing that j = −1/j

hz (x, y) ≈ j
ωµ0

ẑ · ∇t × et (x, y) (27)

Similarly, by substituting Equation (26) in Equation (22) we can deduce the following:

∇t × ht (x, y) = jωε0n2 (x, y) ez (x, y) ẑ

∇t × n(x,y)
η0

ẑ× et (x, y) = jωε0n2 (x, y) ez (x, y) ẑ

∇t × ẑ× et (x, y) = jβez (x, y) ẑ

Using the identity a× (b× c) = b (a · c)− c (a · b):

∇t × ẑ× et (x, y) = ẑ (∇t · et (x, y))− et (x, y) (∇t · ẑ) where ∇t · ẑ = 0

ẑ (∇t · et (x, y)) = jβez (x, y) ẑ

∇t · et (x, y) = jβez (x, y)

ez (x, y) = − j
β
∇t · et (x, y) (28)

From the above field Equations (26), (27) and (28) it can be seen that the only unknown variable
in the case of transverse electric field fibers (where transverse magnetic fields, ht ≈ 0) is et from which
all other field components can be determined.
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The light intensity field problem is given in terms of the solution for this unknown transverse
electric field et. The following discussion provides two theoretical methods that are well established
for two kinds of fibers featuring a step index profile and a graded index profile which will be explained
as part of the discussion. A numerical method is then developed and verified against the two
solutions to test its validity when applied to the fiber in question used for the detection of hydrocarbon
environments.

2. General Index profile problem definition

The governing differential equation for a fiber with an arbitrary index profile will be derived
first. The principle behind its derivation is that each component of the electric E (r, t) and magnetic
H (r, t) fields should satisfy Maxwell’s equations including the transverse field et being solved for.
The condition for satisfying Maxwell’s equations is known as the wave equation which can be derived
from Maxwell’s equations as follows:

Taking the derivative of the first Maxwell Equation (1):

∇× (∇× E (r, t)) = −µ0

(
∂

∂t
∇×H (r, t)

)
Using the identity: ∇× (∇× E) ≡ ∇ (∇ · E)−∇2E where ∇2 is the Laplacian operator

∇ (∇ · E)−∇2E = −µ0

(
∂

∂t
∇×H

)
From Equation (3):

∇ · E = 0

∇2E = µ0

(
∂

∂t
∇×H

)
Substituting Equation (2) in the previous equation yields:

∇2E = µ0ε0n2
(

∂2E
∂t2

)

∇2E− µ0ε0n2
(

∂2E
∂t2

)
= 0 (29)

Equation (29) is commonly known as the wave equation in the time domain. In the frequency
domain, it is derived by using Equation (5) and (6) on Equation (29).

∇2E (r, ω) ejωt − µ0ε0n2
(
(jω)2 E (r, ω) ejωt

)
= 0

∇2E (r, ω) ejωt + µ0ε0ω2n2 (E (r, ω) ejωt) = 0

∇2E (r, ω) + µ0ε0ω2n2E (r, ω) = 0 (30)

Substituting the definition of a guided wave given by Equation (11), E (r, ω) =

[et (x, y) + ẑez (x, y)] e−jβz:

∇2 [et (x, y) + ẑez (x, y)] e−jβz + µ0ε0ω2n2 [et (x, y) + ẑez (x, y)] e−jβz = 0

Considering only the transverse components of the electric field:

∇2 [et (x, y)] e−jβz + µ0ε0ω2n2 [et (x, y)] e−jβz = 0 (31)

Where ∇2 is the laplacian operator defined as:
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[
1
r

∂

∂r

(
r

∂

∂r

)
1
r2

(
∂2

∂φ2

)
∂2

∂z2

]
Equation (30) is known as the Helmholtz equation. By considering the above Helmholtz equation

that is in terms of the transverse components, a form of the solution for et must be assumed in order
to apply the Laplacian operator to the components. From the earlier definition of the fields varying
sinusoidally around the axis of the fiber; i.e there is a sinusoidal variation in the field in the azimuthal
direction φ as defined by the following Figure S1:

Figure S1. Optical fiber in a cylindrical coordinate system [1]

The assumed form of the solution for et is as follows in the core and cladding regions respectively:

et (r, φ) = eco (r) cos lφx̂ f or r ≤ acore (32)

et (r, φ) = ecl (r) cos lφx̂ f or r > acore (33)

Where r,φ and l are the radial distance, the azimuthal angle and the azimuthal number defining
the mode designation of the different possible modes for each non-negative integer value of l = 0, 1, 2....
eco and ecl are the radial electric field intensity solutions in the core and cladding regions respectively.

substituting the assumed solutions; Equations (32) and (33) into Equation (31):

1
r

∂

∂r

(
r

∂et (r, φ)

∂r

)
e−jβz +

1
r2

(
∂2et (r, φ)

∂φ2

)
e−jβz + et (r, φ) (jβ)2e−jβz + µ0ε0ω2n2et (r, φ) e−jβz = 0

1
r

∂

∂r

(
r

∂

∂r
eco (r) cos lφ

)
+

1
r2

(
∂2

∂φ2 eco (r) cos lφ
)
+ eco (r) cos lφ(jβ)2 + µ0ε0ω2n2eco (r) cos lφ = 0

1
r

∂

∂r

(
r

∂eco (r)
∂r

)
cos lφ− l2

r2 eco (r) cos lφ− eco (r) β2 cos lφ + µ0ε0ω2n2eco (r) cos lφ = 0
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1
r

∂

∂r

(
r

∂eco (r)
∂r

)
− l2

r2 eco (r)− eco (r) β2 + µ0ε0ω2n2eco (r) = 0

1
r

∂

∂r

(
r

∂eco (r)
∂r

)
+

(
µ0ε0ω2n2 − β2 − l2

r2

)
eco (r) = 0

1
r

∂

∂r

(
r

∂eco (r)
∂r

)
+

(
k2n(r)2 − β2 − l2

r2

)
eco (r) = 0 (34)

A similar approach can be followed for the derivation of the governing equation for the field in
the cladding region by substituting Equation (33) into the Helmholtz equation in place of the transverse
electric field component et yielding:

1
r

∂

∂r

(
r

∂ecl (r)
∂r

)
+

(
k2n(r)2 − β2 − l2

r2

)
ecl (r) = 0 (35)

Where k2 = µ0ε0ω2.
according to Ref. [2], the term k2n2 − β2 is defined as follows for the core region:

k2nco
2 − β2 =

V2

acore2 (1− b)

Where V is the modal capacity of the fiber defined as V = kacore
√

nco2 − ncl
2, acore is the fiber

core radius and b is the unknown generalized guide index parameter which will be solved for through
the application of boundary conditions to the governing equations.

Equation (34) is left in terms of n (r) to accommodate an arbitrary core RI profile and the following
manipulation is used to eliminate the propagation constant β:

1
r

∂

∂r

(
r

∂eco (r)
∂r

)
+

(
k2n(r)2 − β2 + k2nco

2 − k2nco
2 − l2

r2

)
eco (r) = 0

1
r

∂

∂r

(
r

∂eco (r)
∂r

)
+

(
k2n(r)2 − k2nco

2 +
V2

acore2 (1− b)− l2

r2

)
eco (r) = 0

1
r

∂

∂r

(
r

∂eco (r)
∂r

)
+

(
k2
(

n(r)2 − nco
2
)
+

V2

acore2 (1− b)− l2

r2

)
eco (r) = 0 (36)

where n (r) denotes the arbitrary profile of the RI in the core region of the fiber and nco denotes the
nominal RI of the core at the central axis of the fiber.

A similar manipulation is performed on the cladding differential equation knowing that the term
k2n2 − β2 is defined as follows for the cladding region:

k2ncl
2 − β2 = − V2

acore2 b

Similarly, Equation (35) is left in terms of n (r) to accommodate an arbitrary cladding RI profile
and the following manipulation is used to eliminate the propagation constant β:

1
r

∂

∂r

(
r

∂ecl (r)
∂r

)
+

(
k2n(r)2 − β2 + k2ncl

2 − k2ncl
2 − l2

r2

)
ecl (r) = 0

1
r

∂

∂r

(
r

∂ecl (r)
∂r

)
+

(
k2n(r)2 − k2ncl

2 − V2

acore2 b− l2

r2

)
ecl (r) = 0

1
r

∂

∂r

(
r

∂ecl (r)
∂r

)
+

(
k2
(

n(r)2 − ncl
2
)
− V2

acore2 b− l2

r2

)
ecl (r) = 0 (37)

where n (r) denotes the arbitrary profile of the RI in the cladding region of the fiber and ncl denotes
the nominal RI of the core at the central axis of the fiber.

Equations (36) and (37) represent the general differential equations governing the solution to the
radial tangential field which defines the intensity distribution for any particular mode.
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