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Abstract: Time-of-Flight (ToF) cameras, a technology which has developed rapidly in recent years,
are 3D imaging sensors providing a depth image as well as an amplitude image with a high frame rate.
As a ToF camera is limited by the imaging conditions and external environment, its captured data
are always subject to certain errors. This paper analyzes the influence of typical external distractions
including material, color, distance, lighting, etc. on the depth error of ToF cameras. Our experiments
indicated that factors such as lighting, color, material, and distance could cause different influences
on the depth error of ToF cameras. However, since the forms of errors are uncertain, it’s difficult to
summarize them in a unified law. To further improve the measurement accuracy, this paper proposes
an error correction method based on Particle Filter-Support Vector Machine (PF-SVM). Moreover,
the experiment results showed that this method can effectively reduce the depth error of ToF cameras
to 4.6 mm within its full measurement range (0.5–5 m).
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1. Introduction

ToF cameras, which have been developed rapidly in recent years, are a kind of 3D imaging sensor
providing a depth image as well as an amplitude image with a high frame rate. With its advantages of
small size, light weight, compact structure and low power consumption, this equipment has shown
great application potential in fields such as navigation of ground robots [1], pose estimation [2],
3D object reconstruction [3], identification and tracking of human organs [4] and so on. However,
limited by its imaging conditions and influenced by the interference of the external environment,
the data acquired by a ToF camera has certain errors, among which is the fact it has no unified correction
method for any non-systematic errors caused by the external environment. Therefore, different depth
errors must be analyzed, modeled and corrected case by case according to the different causes.

ToF camera errors can be divided into two categories: systematic errors, and non-systematic
errors. A systematic error is triggered not only by its intrinsic properties, but also by the imaging
conditions of the camera system. The main characteristic of this kind of error is that their form is
relatively fixed. These errors can be evaluated in advance, and the correction process is relatively
convenient. Systematic errors which can be reduced by calibration under normal circumstances [5]
and can be divided into five categories.

A non-systematic error is an error caused by the external environment and noise. The characteristic
of this kind of error is that the form is not fixed and random, and it is difficult to establish a unified
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model to describe and correct such errors. Non-systematic errors are mainly divided into four
categories: signal-to-noise ratio, multiple light reception, light scattering and motion blurring [5].

Signal-to-noise ratio errors can be removed by the low amplitude filtering method [6], or an
optimized integration time can be decided by using a complex algorithm as per the area to be
optimized [7]. Other ways generally reduce the impact of noise by calculating the average of data to
determine whether it exceeds a fixed threshold [8–10].

Multiple light reception errors mainly exist at surface edges and depressions of the target object.
Usually, the errors in surface edges of the target object can be removed by comparing the incidence
angle of the adjacent pixels [7,11,12], but there is no efficient solution to remove the errors of depressions
in the target object.

Light scattering errors are only related to the position of a target object in the scene; the closer
it is to the target object, the stronger the interference will be [13]. In [14], a filter approach based
on amplitude and intensity on the basis of choosing an optimum integration time was proposed.
Measurements based on multiple frequencies [15,16] and the ToF encoding method [17] both belong
to the modeling category, which can solve the impact of sparse scattering. A direct light and global
separation method [18] can solve mutual scattering and sub-surface scattering among the target objects.

In [19], the authors proposed detecting transverse moving objects by the combination of a color
camera and a ToF camera. In [20], transverse and axial motion blurring were solved by an optical flow
method and axial motion estimation. In [21], the authors proposed a fuzzy detection method by using
a charge quantity relation so as to eliminate motion blurring.

In addition, some error correction methods cannot distinguish among error types, and uniformly
correct the depth errors of ToF cameras. In order to correct the depth error of ToF cameras, a fusion
method with a ToF camera and a color camera was also proposed in [22,23]. In [24], a 3D depth frame
interpolation and interpolative temporal filtering method was proposed to increase the accuracy of
ToF cameras.

Focusing on the non-systematic errors of ToF cameras, this paper starts with the analysis of the
impacts of varying external distractions on the depth errors of ToF cameras, such as materials, colors,
distances, and lighting. Moreover, based on the particle filter to select the parameters of a SVM error
model, an error modeling method based on PF-SVM is proposed, and the depth error correction of ToF
cameras is realized as well.

The reminder of the paper is organized as follows: Section 2 introduces the principle and
development of ToF cameras. Section 3 analyzes the influence of lighting, material properties, color and
distance on the depth errors of ToF cameras through four groups of experiments. In Section 4, a PF-SVM
method is adopted to model and correct the depth errors. In Section 5, we present our conclusions and
discuss possible future work.

2. Development and Principle of ToF Cameras

In a broad sense, ToF technology is a general term for determining distance by measuring the flight
time of light between sensors and the target object surface. According to the different measurement
methods of flight time, ToF technology can be classified into pulse/flash, continuous wave,
pseudo-random number and compressed sensing [25]. The continuous wave flight time system
is also called ToF camera.

ToF cameras were firstly invented at the Stanford Research Institute (SRI) in 1977 [26]. Limited by
the detector technology at that time, the technique wasn’t used widely. Fast sampling of receiving
light didn’t come true until the lock-in CCD technique was invented in the 1990s [27]. Then, in 1997
Schwarte, who was at the University of Siegen (Germany), put forward a method of measuring
the phases and/or magnitudes of electromagnetic waves based on the lock-in CCD technique [28].
With this technique, his team invented the first CCD-based ToF camera prototype [29]. Afterwards,
ToF cameras began to develop rapidly. A brief development history is shown in Figure 1.
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Figure 1. Development history of ToF cameras. 

In Figure 2, the working principle of ToF cameras is illustrated. The signal is modulated on the 
light source (usually LED) and emitted to the surface of the target object. Then, the phase shift 
between the emitted and received signals is calculated by measuring the accumulated charge 
numbers of each pixel on the sensor. Thereby, we can obtain the distance from the ToF camera to 
the target object. 
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The received signal is sampled four times at equal intervals for every period (at 1/4 period). 
From the four samples (ϕ0, ϕ1, ϕ3, ϕ4) of phase ϕ, offset B and amplitude A can be calculated as 
follows: 
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where D is the distance from ToF camera to the target object, c is light speed and f is the modulation 
frequency of the signal,   is phase difference. More details on the principle of ToF cameras can 
be found in [5]. 
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In Figure 2, the working principle of ToF cameras is illustrated. The signal is modulated on the
light source (usually LED) and emitted to the surface of the target object. Then, the phase shift between
the emitted and received signals is calculated by measuring the accumulated charge numbers of each
pixel on the sensor. Thereby, we can obtain the distance from the ToF camera to the target object.
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The received signal is sampled four times at equal intervals for every period (at 1/4 period).
From the four samples (ϕ0, ϕ1, ϕ3, ϕ4) of phase ϕ, offset B and amplitude A can be calculated as follows:
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where D is the distance from ToF camera to the target object, c is light speed and f is the modulation
frequency of the signal, ∆ϕ is phase difference. More details on the principle of ToF cameras can be
found in [5].

We list the exterior and parameters of several typical commercial ToF cameras on the market in
Table 1.
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Table 1. Parameters of typical commercial ToF cameras.

ToF Camera

Maximum
Resolution
of Depth
Images

Maximum
Frame

Rate/fps

Measurement
Rage/m

Field of
View/◦ Accuracy Weight/g Power/W

(Typical/Maximum)

MESA-SR4000
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3. Analysis on Depth Errors of ToF Cameras  
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conditions on the depth errors of the SR4000. Red, green and blue are three primary colors that can 
be superimposed into any color. White is the color for measuring error [32,37,38], while reflective 
papers (tin foil) can reflect all light. Therefore, this experiment mainly considers the influence of 
these five conditions on the depth errors of the SR4000. 

As the measurment target, the white wall is then covered by red, blue, green, white and 
reflective papers, respectively, as examples of backgrounds with different colors. Since the wall is 
not completely flat, laser scanners are used to build a wall model. Then we used a 25HSX laser 
scanner from Surphaser (Redmond, WA, USA) to provide a reference value, because its accuracy is 
relatively high (0.3 mm). The SR4000 camera is set on the right side of the bracket, while the 3D 
laser scanner is on the left. The bracket is mounted in the middle of two tripods and the tripods are 
placed parallel to the white wall. The distances between the tripods and the wall are measured with 
two parallel tapes. The experimental scene is arranged as shown in Figure 3 below. 
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3. Analysis on Depth Errors of ToF Cameras

The external environment usually has a random and uncertain influence on ToF cameras, therefore,
it’s difficult to establish a unified model to describe and correct such errors. In this section, we take the
MESA SR4000 camera (Zurich, Switzerland, a camera with good performance [30], which has been
used in error analysis [31–33] and position estimation [34–36]) as an example to analyze the influence
of the external environment transformation on the depth error of ToF cameras. The data we get from
the experiments provide references for the correction of depth errors in the next step.

3.1. Influence of Lighting, Color and Distance on Depth Errors

During the measurement process of ToF cameras, it seems that the measured objects tend to have
different colors, different distances and may be under different lighting conditions. Then, the following
question arises: will the difference in lighting, distances and colors affect the measurement results?
To answer this question, we conduct the following experiments.

As we know, there are several natural indoor lighting conditions, such as light-sunlight,
indoor light-lamp light and no light. This experiment mainly considers the influence of these three
lighting conditions on the depth errors of the SR4000. Red, green and blue are three primary colors that
can be superimposed into any color. White is the color for measuring error [32,37,38], while reflective
papers (tin foil) can reflect all light. Therefore, this experiment mainly considers the influence of these
five conditions on the depth errors of the SR4000.

As the measurment target, the white wall is then covered by red, blue, green, white and reflective
papers, respectively, as examples of backgrounds with different colors. Since the wall is not completely
flat, laser scanners are used to build a wall model. Then we used a 25HSX laser scanner from Surphaser
(Redmond, WA, USA) to provide a reference value, because its accuracy is relatively high (0.3 mm).
The SR4000 camera is set on the right side of the bracket, while the 3D laser scanner is on the left.
The bracket is mounted in the middle of two tripods and the tripods are placed parallel to the white wall.
The distances between the tripods and the wall are measured with two parallel tapes. The experimental
scene is arranged as shown in Figure 3 below.
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The distances from the tripods to the wall are set to 5, 4, 3, 2.5, 2, 1.5, 1, 0.5 m respectively. At each
position, we change the lighting conditions and obtain one frame with the laser scanner and 30 frames
with the SR4000 camera. To exclude the influence of the integral time, the SR_3D_View software of the
SR4000 camera is set to “Auto”.

In order to analyze the depth error, the acquired data are processed in MATLAB. Since the target
object can’t fill the image, we select the central region of 90 × 90 pixels of the SR4000 to be analyzed
for depth errors. The distance error is defined as:

hi,j =

n
∑

f=1
mi,j, f

n
− ri,j, (5)

g =

a
∑

i=1

b
∑

j=1
hi,j

s
(6)

where hi,j is the mean error of pixel i,j, f is the frame number of the camera, mi,j,f is the distance
measured at pixel i,j in Frame f, n = 30, ri,j is the real distance, a and b are the row and column number
of the selected region respectively and s is the total number of pixels. The real distance ri,j is provided
by the laser scanner.

Figure 4 shows the effects of different lighting conditions on the depth error of the SR4000.
As shown in Figure 4, the depth error of the SR4000 is on slightly affected by the lighting conditions
(the maximum effect is 2 mm). The depth error increases approximately linearly with distance, and the
measurement error value complies with the error test of other Swiss Ranger cameras in [37–40]. Besides,
as seen in the figure, SR4000 is very robust against light changes, and can adapt to various indoor
lighting conditions for the lower accuracy requirements.



Sensors 2017, 17, 92 6 of 18
Sensors 2017, 17, 92 6 of 18 

 

 
Figure 4. Influence of lighting on depth errors. 

Figure 5 shows the effects of various colors on the depth errors of the SR4000 camera. As 
shown in Figure 5, the depth error of the SR4000 is affected by the color of the target object, and it 
increases linearly with distance. The depth error curve under reflective conditions is quite different 
from the others. When the distance is 1.5–2 m, the depth error is too large, while at 3–5 m, it is small. 
When the distance is 5 m, the depth error is 15 mm less than when the color is blue. When the 
distance is 1.5 m, the depth error when the color is white is 5 mm higher than when the color is 
green. 

 
Figure 5. Influence of color on depth errors. 

3.2. Influence of Material on Depth Errors 

During the measurement process of ToF cameras, it seems that the measured objects tend to be 
of different materials. Then, will this affect the measurement results? For this question, we 
conducted the following experiments: to analyze the effects of different materials on the depth 
errors of the SR4000, we chose four common materials in the experiment: ABS plastic, stainless steel, 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-0.005

0

0.005

0.01

0.015

0.02

0.025

measured distance[m]

de
vi

at
io

n[
m

]

light

 

 
dark
natural
indoor

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

measured distance[m]

de
vi

at
io

n[
m

]

color

 

 
green
white
red
blue
reflect

Figure 4. Influence of lighting on depth errors.

Figure 5 shows the effects of various colors on the depth errors of the SR4000 camera. As shown
in Figure 5, the depth error of the SR4000 is affected by the color of the target object, and it increases
linearly with distance. The depth error curve under reflective conditions is quite different from the
others. When the distance is 1.5–2 m, the depth error is too large, while at 3–5 m, it is small. When the
distance is 5 m, the depth error is 15 mm less than when the color is blue. When the distance is 1.5 m,
the depth error when the color is white is 5 mm higher than when the color is green.
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Figure 5. Influence of color on depth errors.

3.2. Influence of Material on Depth Errors

During the measurement process of ToF cameras, it seems that the measured objects tend to be of
different materials. Then, will this affect the measurement results? For this question, we conducted the
following experiments: to analyze the effects of different materials on the depth errors of the SR4000,
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we chose four common materials in the experiment: ABS plastic, stainless steel, wood and glass.
The tripods are arranged as shown in Figure 3 of Section 3.1, and the targets are four 5-cm-thick
boards of the different materials, as shown in Figure 6. The tripods are placed parallel to the
target and the distance is set to about 1 m, and the experiment is operated under natural light
conditions. To differentiate the boards on the depth image, we leave a certain distance between them.
Then we acquire one frame with the laser scanner and 30 consecutive frames with the SR4000 camera.
The integral time in the SR_3D_View software of the SR4000 camera is set to “Auto”.
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For the SR4000 and the laser scanner, we select the central regions of 120 × 100 pixels and
750 × 750 pixels, respectively. To calculate the mean thickness of the four boards, we need to measure
the distance between the wall and the tripods as well. Section 3.1 described the data processing method
and Figure 7 shows the mean errors of the four boards.

Sensors 2017, 17, 92 7 of 18 

 

wood and glass. The tripods are arranged as shown in Figure 3 of Section 3.1, and the targets are 
four 5-cm-thick boards of the different materials, as shown in Figure 6. The tripods are placed 
parallel to the target and the distance is set to about 1 m, and the experiment is operated under 
natural light conditions. To differentiate the boards on the depth image, we leave a certain distance 
between them. Then we acquire one frame with the laser scanner and 30 consecutive frames with 
the SR4000 camera. The integral time in the SR_3D_View software of the SR4000 camera is set to 
“Auto”. 

 
Figure 6. Four boards made of different materials. 

For the SR4000 and the laser scanner, we select the central regions of 120 × 100 pixels and  
750 × 750 pixels, respectively. To calculate the mean thickness of the four boards, we need to 
measure the distance between the wall and the tripods as well. Section 3.1 described the data 
processing method and Figure 7 shows the mean errors of the four boards. 

 
Figure 7. Depth data of two sensors. 

As shown in Figure 7, the material affects both the depth errors of the SR4000 and the laser 
scanner. When the material is wood, the absolute error of the ToF camera is minimal and only 1.5 mm. 
When the target is the stainless steel board, the absolute error reaches its maximum value and the 
depth error is 13.4 mm, because, as the reflectivity of the target surface increases, the number of 
photons received by the light receiver decreases, which leads to a higher measurement error. 

3.3. Influence of a Single Scene on Depth Errors 

The following experiments were conducted to determine the influence of a single scene on 
depth errors. The tripods are placed as shown in Figure 3 of Section 3.1, and as shown in Figure 8, 
the measuring target is a cone, 10 cm in diameter and 15 cm in height. The tripods are placed 
parallel to the axis of the cone and the distance is set to 1 m. The experiment is operated under 
natural light conditions. We acquire one frame with the laser scanner and 30 consecutive frames 

wood plastic glass metal
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

texture

st
an

da
rd

 d
ev

ia
tio

n/
m

 

 
Laser scanner
SR-4000

Figure 7. Depth data of two sensors.

As shown in Figure 7, the material affects both the depth errors of the SR4000 and the laser scanner.
When the material is wood, the absolute error of the ToF camera is minimal and only 1.5 mm. When the
target is the stainless steel board, the absolute error reaches its maximum value and the depth error is
13.4 mm, because, as the reflectivity of the target surface increases, the number of photons received by
the light receiver decreases, which leads to a higher measurement error.

3.3. Influence of a Single Scene on Depth Errors

The following experiments were conducted to determine the influence of a single scene on
depth errors. The tripods are placed as shown in Figure 3 of Section 3.1, and as shown in Figure 8,
the measuring target is a cone, 10 cm in diameter and 15 cm in height. The tripods are placed parallel
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to the axis of the cone and the distance is set to 1 m. The experiment is operated under natural light
conditions. We acquire one frame with the laser scanner and 30 consecutive frames with the SR4000
camera. The integral time in the SR_3D_View software of the SR4000 camera is set to “Auto”.
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As shown in Figure 9, we choose one of the 30 consecutive frames to analyze the errors,
extract point cloud data from the selected frame and compare it with the standard cone to calculate the
error. The right side in Figure 9 is a color belt of the error distribution, of which the unit is m. As shown
in Figure 9, the measurement accuracy of SR4000 is also higher, where the maximal depth error is
0.06 m. The depth errors of the SR4000 mainly locate in the rear profile of the cone. The measured
object deformation is small, but, compared with the laser scanner, its point cloud data are sparser.
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3.4. Influence of a Complex Scene on Depth Errors

The following experiments were conducted in order to determine the influence of a complex
scene on depth errors. The tripods are placed as shown in Figure 3 of Section 3.1 and the measurement
target is a complex scene, as shown in Figure 10. The tripods are placed parallel to the wall, and the
distance is set to about 1 m. The experiment is operated under natural light conditions. We acquire
one frame with the laser scanner and 30 consecutive frames with the SR4000 camera. The integral time
in the SR_3D_View software of the SR4000 camera is set to “Auto”.
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We then choose one of the 30 consecutive frames for analysis and, as shown in Figure 11, obtain the
point cloud data of the SR4000 and the laser scanner. As shown in Figure 11, there is a small amount
of deformation in the shape of the target object measured by the SR4000 compared to the laser
scanner, especially on the edge of the sensor where the measured object is clearly curved. However,
distortion exists on the border of the point cloud data and artifacts appear on the plant.
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3.5. Analysis of Depth Errors

From the above four groups of experiments, the depth errors of the SR4000 are weakly affected
by lighting conditions (2 mm maximum under the same conditions). The second factor is the target
object color. Under the same conditions, this affects the depth error by a maximum of 5 mm. On the
other hand, the material has a great influence on the depth errors of ToF cameras. The greater the
reflectivity of the measured object material, the greater the depth error, which increases approximately
linearly with the distance between the measured object and ToF camera. In a more complex scene,
the depth error of a ToF camera is greater. Above all, lighting, object color, material, distance and
complex backgrounds could cause different influences on the depth errors of ToF cameras, but it’s
difficult to summarize this in an error law, because the forms of these errors are uncertain.

4. Depth Error Correction for ToF Cameras

In the last section, four groups of experiments were conducted to analyze the influence of several
external factors on the depth errors of ToF cameras. The results of our experiments indicate that
different factors have different effects on the measurement results, and it is difficult to establish a unified
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model to describe and correct such errors. For a complex process that is difficult to model mechanically,
an inevitable choice is to use actual measurable input and output data to model. Machine learning is
proved to be an effective method to establish non-linear process models. It maps the input space to
the output space through a connection model, and the model can approximate a non-linear function
with any precision. SVM is a new generic learning method developed on the basis of a statistical
learning theory framework. It can seek the best compromise between the complexity of the model
and learning ability according to limited sample information so as to obtain the best generalization
performance [41,42]. Also in the last section of this paper, we learn and model the depth errors of ToF
cameras by using a LS-SVM [43] algorithm.

Better parameters generate better SVM recognition performance to build the LS-SVM model.
We need to determine the penalty parameter C and Gaussian kernel parameter γ. Cross-validation [44]
is a common method which suffers from large computation demands and long running times.
A particle filter [45] can be used to approximate the probability distribution of parameters in the
parameter state space by spreading a large number of weighted discrete random variables, based on
which, this paper puts forward a parameter selection algorithm, which can fit the depth errors of
ToF cameras quickly and meet the requirements of correcting the errors. The process of the PF-SVM
algorithm is shown in Figure 12 below.
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4.1. PF-SVM Algorithm

4.1.1. LS-SVM Algorithm

According to statistical theory, during the process of black-box modeling for non-linear systems,
training set {xi,yi}, i = 1,2, . . . ,n is generally given and non-linear function f is established to minimize
Equation (8):

f (x) = wT ϕ(x) + b, (7)

minw,b,δ J(w, δ) =
1
2

wTw +
1
2

C
n

∑
i=1

δ2, (8)
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where ϕ(x) is a nonlinear function, and w is the weight. Moreover, Equation (8) satisfies the constraint:

yi = wT ϕ(xi) + b + δi, i = 1, 2 · · · n, (9)

where δi ≥ 0 is the relaxation factor, and C > 0 is the penalty parameter.
The following equation introduces the Lagrange function L to solve the optimization problem in

Equation (8):

L =
1
2
‖w‖2 +

1
2

C
n

∑
i=1

δ2
i −

n

∑
i=1

αi(ϕ(xi) · w + b + δi − yi), (10)

where αi is a Lagrange multiplier.
For i = 1,2, . . . n by elimination of w and δ, a linear equation can be obtained:[

0 eT

e GGT + C−1 I

]
(n+1)×(n+1)

[
b
α

]
=

[
0
y

]
, (11)

where e is an element of one n-dimensional column vector, and I is the n × n unit matrix:

G =
[

ϕ(x1)
T ϕ(x2)

T · · · ϕ(xn)
T
]T

, (12)

According to the Mercer conditions, the kernel function is defined as follows:

K
(

xi, xj
)
= ϕ(xi) · ϕ

(
xj
)
, (13)

We substitute Equations (12) and (13) into Equation (11) to get a linear equation from which α

and b can be determined by the least squares method. Then we can obtain the non-linear function
approximation of the training data set:

y(x) =
n

∑
i=1

αiK(x, xi) + b, (14)

4.1.2. PF-SVM Algorithm

The depth errors of ToF cameras mentioned above are used as training sample sets
{xi,yi}, i = 1,2, . . . n, where xi is the camera measurement distance, and yi is the camera measurement
error. Then the error correction becomes a black-box modeling problem of a nonlinear system. Our goal
is to determine the nonlinear model f and correct the measurement error with it.

The error model of ToF cameras obtained via the LS-SVM method is expressed in Equation (14).
In order to seek a group of optimal parameters for the SVM model to approximate the depth errors in
the training sample space, we put this model into a Particle Filter algorithm.

In this paper, the kernel function is:

k(x, y) = exp

(
−‖x− y‖2

2γ2

)
, (15)

(1) Estimation state.

The estimated parameter state x at time k is represented as:

xj
0 =

[
Cj

0 γ
j
0

]T
, (16)

where xj
0 is j-th particle when k = 0, C is the penalty parameter and γ is the Gauss kernel parameter.
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(2) Estimation Model.

The relationship between parameter state x and parameter α,b in non-linear model y(x) can be
expressed by state equation z(α,b):

z(α, b) = F(γ, C), (17)
b
α1
...

αn

 =


0 1 · · · 1
1 K(x1, x1) · · · K(x1, xn)

...
...

. . .
...

1 K(xn, x1) · · · K(xn, xn) +
1
C



−1
0
y1
...

yn

, (18)

where Equation (17) is the deformation of Equation (11).
The relationship between parameter α,b and ToF camera error y(x) can be expressed by observation

equation f :

y(x) = f (α, b), (19)

y(x) =
n

∑
i=1

αiK(x, xi) + b, (20)

where Equation (20) is the non-linear model derived from LS-SVM algorithm.

(3) Description of observation target.

In this paper, we use yi of training set {xi,yi} as the real description of the observation target,
namely the real value of the observation:

z = {yi}, (21)

(4) The calculation of the characteristic and the weight of the particle observation.

This process is executed when each particle is under characteristic observation. Hence the error
values of the ToF camera are calculated according to the sampling of each particle in the parameter
state x:

zj
(

αj, b
j
)
= F

(
γj, Cj

)
, (22)

yj(x) = f
(

αj, b
j
)

, (23)

Here we compute the similarity between the ToF camera error values and the observed target
camera values of each particle. The similarity evaluation RMS is defined as follows:

RMS =

√√√√ 1
n

n

∑
i=1

(
yj − yi

)2

, (24)

where yj is the observation value of particle j and yi is the real error value. The weight value of each
particle is calculated according to the Equation (24):

w(j) =
1√
2πσ

e−
RMS2

2σ , (25)

Then the weight values are normalized:

wj =
wj

m
∑

j=1
wj

, (26)
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(5) Resampling

Resampling of the particles is conducted according to the normalized weights. In this process,
not only the particles with great weights but also a small part of particles with small weights should
be kept down.

(6) Outputting particle set xj
0 =

[
Cj

0 γ
j
0

]T
. This particle set is the optimal LS-SVM parameter.

(7) The measurement error model of ToF cameras can be obtained by introducing the parameter into
the LS-SVM model.

4.2. Experimental Results

We’ve performed three groups of experiments to verify the effectiveness of the algorithm.
In Experiment 1, the depth error model of ToF cameras was modeled with the experimental data in [32],
and the results were compared with the error correction results in the original text. In Experiment 2,
the depth error model of ToF cameras was modeled with the data in Section 3.1, and the error correction
results under different test conditions were compared. In Experiment 3, the error correction results
under different reflectivity and different texture conditions were compared.

4.2.1. Experiment 1

In this experiment, we used the depth error data of the ToF cameras which was obtained from
Section 3.2 of [32] as the training sample set. The training set consists of 81 sets of data, where x is
the distance measurement of the ToF camera and y is the depth error of the ToF camera, as shown
in Figure 13 by blue dots. In the figure, the solid green line represents the error modeling results by
using the polynomial given in [32]. It shows that the fitting effect is better when the distance is 1.5–4 m,
and the maximum absolute error is 8 mm. However, when the distance is less than 1.5 m or more
than 4 m, the error model deviated from the true error values. By using our algorithm, we can obtain
the results C = 736 and γ = 0.003. By substituting these two parameters into the abovementioned
algorithm, we can also obtain the depth error model of the ToF camera as shown in the figure by the
red solid line. For this, it can be seen that the error model can match the real errors well.
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In order to verify the validity of the error model, we use the ToF camera depth error data obtained
from Section 3.3 of [32] as a test sample set (the measurement conditions are the same as Section 3.2



Sensors 2017, 17, 92 14 of 18

of [32]). The test sample set consists of 16 sets of data, as shown in Figure 14 by the blue line. In the
figure, the solid green line represents the error modeling results by using the polynomial in [32].
It shows that the fitting effect is better when the distance is 1.5–4 m, and the maximum absolute error is
8.6 mm. However, when the distance is less than 1.5 m or more than 4 m, the error model has deviated
from the true error value. The results agree with the fitting effect of the aforementioned error model.
The model correction results obtained by using our algorithm are shown by the red solid line in the
figure. It shows that the results of the error correction are better when the distance is in 0.5–4.5 m,
and the absolute maximum error is 4.6 mm. Table 2 gives the detailed performance comparison results
of these two error corrections. From Table 2, we can see that, while expanding the range of error
correction, this method can also improve the accuracy of the error correction.
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Table 2. Analysis of depth error correction results.

Comparison
Items

Maximal Error/mm Average Error/mm Variance/mm Optimal
Range/m

Running
Time/s1.5–4 0.5–4.5 1.5–4 0.5–4.5 1.5–4 0.5–4.5

This paper’s
algorithm 4.6 4.6 1.99 2.19 2.92 2.4518 0.5–4.5 2

Reference [32]
algorithm 4.6 8.6 2.14 4.375 5.34 29.414 1.5–4 -

4.2.2. Experiment 2

The ToF depth error data of Section 3.1 on the condition of blue background is selected as the
training sample set. As shown in Figure 15 by blue asterisks, the training set consists of eight sets of
data. The error model established by our algorithm is shown by the blue line in Figure 15. The model
can fit the error data well, but the training sample set should be as rich as possible in order to build
the accuracy of the model. To verify the applicability of the error model, we use white, green and
red background ToF depth error data as test samples, and the data after correction is shown in the
figure by the black, green and red lines. It can be seen from the figure that the absolute values of the
three groups of residual errors is less than the uncorrected error data after the application of the blue
distance error model. The figure also illustrates that this error model is very applicable to the error
correction of ToF cameras for different color backgrounds.
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4.2.3. Experiment 3

The experimental process similar to that of Section 3.1 hereof was adopted in order to verify the
validity of the error modeling method under different reflectivity and different texture conditions.
The sample set, including 91 groups of data, involved the depth errors obtained from the white wall
surfaces photographed with a ToF camera at different distances, as shown with the blue solid lines
in Figure 16. The error model established by use of the algorithm herein is shown with the red solid
lines in Figure 16. The figure indicates that this model fits the error data better. With a newspaper
fixed on the wall as the test target, the depth errors obtained with a ToF camera at different distances
are taken as the test data, as shown with the black solid lines in Figure 16, while the data corrected
through the error model created here are shown with the green solid lines in the same figure. It can be
seen from the figure that the absolute values of residual errors is less than the uncorrected error data
after the application of the distance error model. The figure also illustrates that this error model is very
applicable to the full measurement range of ToF cameras.
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5. Conclusions

In this paper, we analyzed the influence of some typical external distractions, such as material
properties and color of the target object, distance, lighting and so on on the depth errors of ToF cameras.
Our experiments indicate that lighting, color, material and distance could cause different influences
on the depth errors of ToF cameras. As the distance becomes longer, the depth errors of ToF cameras
increase roughly linearly. To further improve the measurement accuracy of ToF cameras, this paper
puts forward an error correction method based on Particle Filter-Support Vector Machine (PF-SVM).
Then, the best parameters with particle filter algorithm on the basis of learning the depth errors of ToF
cameras are selected. The experimental results indicate that this method can reduce the depth error
from 8.6 mm to 4.6 mm within its full measurement range (0.5–5 m).
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