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Abstract: Since WorldView-2 (WV-2) images are widely used in various fields, there is a high
demand for the use of high-quality pansharpened WV-2 images for different application purposes.
With respect to the novelty of the WV-2 multispectral (MS) and panchromatic (PAN) bands,
the performances of eight state-of-art pan-sharpening methods for WV-2 imagery including six
datasets from three WV-2 scenes were assessed in this study using both quality indices and
information indices, along with visual inspection. The normalized difference vegetation index,
normalized difference water index, and morphological building index, which are widely used
in applications related to land cover classification, the extraction of vegetation areas, buildings,
and water bodies, were employed in this work to evaluate the performance of different pansharpening
methods in terms of information presentation ability. The experimental results show that the Haze-
and Ratio-based, adaptive Gram-Schmidt, Generalized Laplacian pyramids (GLP) methods using
enhanced spectral distortion minimal model and enhanced context-based decision model methods
are good choices for producing fused WV-2 images used for image interpretation and the extraction
of urban buildings. The two GLP-based methods are better choices than the other methods, if the
fused images will be used for applications related to vegetation and water-bodies.

Keywords: pansharpening; WorldView-2; quality indices; information indices

1. Introduction

The WorldView-2 (WV-2) satellite, launched in October 2009, offers eight multispectral (MS)
bands of 1.84-m spatial resolution and a panchromatic (PAN) band of 0.46 m spatial resolution [1].
The MS bands cover the spectrum from 400 nm to 1050 nm, and include four conventional visible and
near-infrared MS bands: blue (B, 450–510 nm), green (G, 510–580 nm), red (R, 630–690 nm), and near-IR1
(NIR1, 770–895 nm); and four new bands: coastal (C, 400–450 nm), yellow (Y, 585–625 nm), red edge
(RE, 705–745 nm), and near-IR2 (NIR2, 860–1040 nm). The PAN band has a spectral response range of
450–800 nm, which covers shorter NIR spectral range than some common PAN bands of 450–900 nm.
The WV-2 images have been widely used in various fields, e.g., geological structure interpretation [1],
Antarctic land cover mapping [2], bamboo patch mapping [3], high density biomass estimation for
wetland vegetation [4], mapping natural vegetation on a coastal site [5], predicting forest structural
parameters [6], and especially for the detection of urban objects. Since numerous applications need
high-spatial-resolution (HSR) MS images, it is highly desirable to fuse the eight MS bands and the
PAN band to produce HSR MS imagery for better monitoring the Earth’s surface.

Numerous pansharpening methods have been proposed in the last decades to produce spatially
enhanced MS images by fusing the MS and PAN images. These methods are divided into two
categories: the component substitution (CS) family and multi-resolution analysis (MRA) family. The CS
approaches focus on the substitution of a component that is obtained by a spectral transformation of the
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MS bands with the PAN image. The representative CS methods are the intensity-hue-saturation [7,8],
principal component analysis [9], and Gram-Schmidt spectral sharpening (GS) [10,11] methods. The CS
methods are easy to implement, and the generated fused MS images yield high spatial quality. However,
the CS methods suffer from spectral distortions since the local dissimilarities between the PAN and
MS channels, which are caused by different spectral response ranges, are not considered by them.
The MRA-based techniques rely on the injection of the spatial details that are obtained through
a multi-resolution decomposition of the PAN image into the up-sampled MS bands. Multi-resolution
decomposition methods, such as “à trous” wavelet transform [12,13], undecimated or decimated
Wavelet transform [14–16], Laplacian pyramids [17], Contourlet [18–20], and Curvelet [21], are often
employed to extract spatial details of the PAN image. Although the MRA-based methods better
preserve spectral information of the original MS images than the CS methods, they may cause spatial
distortions, such as ringing or aliasing effects, originating shifts or blurred contours and textures [22].
Numerous hybrid schemes combining CS and MRA-based methods are developed to maximize spatial
improvement and minimize spectral distortions [23–26]. In addition, several new pansharpening
methods were proposed for the fusion of WV-2 imagery, i.e., the Hyperspherical Color Sharpening
(HCS) [27] method and the improved Non-subsampled Contourlet Transform (NSCT) method [28].
These methods were proved to be better than early CS methods, such as GS, PCA.

Several studies have performed comparisons and analyses of some widely used state-of-the-art
pansharpening methods, using test images covering different regions from several sensors. Previous
studies showed that a pansharpening method may give different performances for test images from
different sensors [29,30]. A noticeable point for the WV-2 is that the spectral ranges of the PAN band
overlap limited party of the spectral ranges of the C, NIR1, and NIR2 bands. This will result in
relative low correlation coefficients between these bands and the PAN bands, which may lead to
spectral distortions of the fused version of these bands [31]. Regarding the wide use of the fused
WV-2 images, it is urgent to evaluate the performances of different state-of-the-art pansharpening
methods applied to WV-2 imagery. Some of the previous comparisons also used test images recorded
by WV-2 [30,32–35] and other sensors. In these works, the early pansharpening methods, such as
GS, PANSHARP, Ehlers, modified intensity-hue-saturation (M-IHS), high pass filter (HPF), principal
component analysis (PCA), and wavelet-PCA (W-PCA) methods were assessed regarding quality
indexes and visual inspection, usually using one or two test images covering urban areas. However,
a fusion product providing the best performance in terms of quality indexes and visual inspection
may be the best choice for applications such as image interpretation, but it may be not the best choice
for applications related to classification and objects identification, i.e., the extraction of buildings,
vegetation, and water-bodies [29,36,37]. Consequently, it is important to evaluate the widely used
state-of-the-art pansharpening methods from the point of applications, such as land cover classification
and object extraction. The purpose of this study was to assess the performances of the existing
state-of-the-art pansharpening methods applied to WV-2 imagery, using information indices related to
land cover classification and information extraction, as well as quality indexes and visual inspection.
Several test images, presenting typical image scenes covering urban, suburban, and rural regions,
are employed in the experiments. In addition, the newly proposed HCS, and NSCT methods, which are
rarely included in previous comparisons, will be included in this work.

In this study, eight state-of-the-art algorithms, most of which have been demonstrated to
outperform some other methods were assessed using both quality indices and information indices,
along with visual inspection. The selected algorithms include four methods belonging to the CS
family and four methods belonging to the MRA family. The four CS methods including Gram-Schmidt
(GS) [10], adaptive GS (GSA) [38], Haze- and Ratio-based (HR) [39], and HCS [27] were compared.
The four MRA methods include undecimated “à trous” wavelet transform (ATWT) using additive
injection model [40,41], Generalized Laplacian pyramids (GLP) using spectral distortion minimal
model (SDM) and context-based decision model (CBD) [42,43], and the improved NSCT method
introduced in [28]. Traditional image quality indices couple with visual inspection were adopted
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to assess the quality of the fused images. Four comprehensive indices, including Dimensionless
Global Relative Error of Synthesis (ERGAS) [44], Spectral Angle Mapper (SAM) [45], Q2n [46,47],
and spatial correlation coefficient (SCC) [48] were employed to measure the spectral distortion between
the fused and the original MS bands. Regarding the application purpose of the high-resolution
fused images, which includes land cover classification of urban or suburban areas, bamboo and
forest mapping, and so on, some widely used indexes, derived from the fusion products, were
assessed to evaluate the information presentation ability of the fusion products. The employed indexes
include morphological building index (MBI) [49], normalized difference vegetation index (NDVI),
and normalized difference water index (NDWI). The information presentation of a fusion product was
assessed using the correlation coefficient (CC) between an index derived from the fusion product and
the same index derived from the corresponding original MS image. A higher CC value implies a better
information preservation ability of the fusion product.

This paper is organized as follows: the eight selected pansharpening methods are introduced
in Section 2, as well as the quality indexes; the experimental results with visual and quantitative
comparisons with other outstanding fusion methods are presented in Section 3. Discussions are
presented in Section 4, whereas the conclusions are summarized in Section 5.

2. Methodology

2.1. Algorithms

The algorithms used for the comparisons are introduced in the following subsections. MS and P
represent the original low-resolution MS image and high-resolution PAN image, respectively. M̃S and
M̂S represent the up-sampled MS and the fused MS images, respectively. A general formulation of CS
fusion is given by:

M̂Si = M̃Si + gi(P− IL), i = 1, . . . , N (1)

in which the subscript i indicates the ith spectral band; gi is the injection gains of the ith band, while the
intensity image IL is defined by Equation (2):

IL =
N

∑
i=1

wiM̃Si (2)

where wi is the weight of the ith MS band, and N is the number of MS bands.
Similarity, a general formulation for MRA-based methods can be given by Equation (3):

M̂Si = M̃Si + gi(P− PL), i = 1, . . . , N (3)

where PL is the low-frequency component of the PAN band. PL can be obtained by different approaches,
such as low-pass filter, Laplacian pyramid and wavelet decomposition.

2.1.1. GS and GSA

GS is a representative method of the CS family, the fusion process of which is described by
Equation (1), with the injection gains gi given by Equation (4):

gi =
cov(MSi, IL)

var(IL)
(4)

where cov (X, Y) is the covariance between the two images X and Y, and var (X) is the variance of X.
Several versions of GS can be achieved by changing the method for generating IL. One way to

obtain IL is simply averaging the MS components (i.e., using Equation (2) with setting wi = 1 for all
i = 1, . . . , N). This modality is referred as GS or GS mode 1. Another way is using the low-pass version
of P as IL. This modality is referred as GS mode 2.
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An enhanced version, called adaptive GS (GSA), is proposed by assigning IL as a weighted
average of the original MS bands, as Equation (2). The weights wi in Equation (2) are calculated with
the minimum mean square error (MSE) solution of Equation (5):

P0 =
N

∑
i=1

wi MSi + ε (5)

where P0 is the degraded version of P, with the same pixel sizes of the original MS bands. P0 is
generated by low-pass filtering of P, followed by decimation. Both the GS and GSA methods are
included in the experiments in this study.

2.1.2. HR

The HR method is based on the assumption that the ratio of a HSR MS band to
a low-spatial-resolution (LSR) MS band is equal to the ratio of a HSR PAN image to an assumed
LSR PAN image a fusion method that considers haze [50–52]. The fused ith MS band M̂Si can be
calculated by using Equation (6) according to HR fusion method:

M̂Si =
(

M̃Si − Hi

) P− Hp

PL − Hp
+ Hi, i = 1, . . . , N (6)

where PL is a low-pass version of P; Hi and Hp denote the haze values in the ith MS band and the PAN
band, respectively. The values of Hi and Hp can be determined using the minimum grey level values
in MSi and P according to an image-based dark-object subtraction method [50–52].

2.1.3. HCS

HCS is a pansharpening method designed for WV-2 imagery based on transforming the MS bands
into hyperspherical color space. The HCS method offers two modes, including the native mode and
the smart mode. The process of the native mode is described as follows:

(a) The squares of the multispectral intensity (I2) and the PAN (P2) are calculated using Equations (7)
and (8), respectively:

I2 =
N

∑
i=1

M̃S
2
i (7)

P2 = (P)2 (8)

(b) Calculate the mean (uP) and standard deviation (σp) of P2, as well as the mean (uI) and standard
deviation (σP) of I2.

(c) The P2 is adjusted to the mean and standard deviation of I2, using Equation (9):

P2 =
σI
σP

(
P2 − uP + σP

)
+ uI − σI (9)

(d) The square root of the adjusted P2 is assigned to Iadj (i.e., Iadj =
√

P2), Iadj is used in the reverse
transform from HCS color space back to the original color space, using Equation (10):

M̃Si =


Iadjcos ϕi, i = 1

Iadjsin ϕ1sin ϕ2 . . . sin ϕi−1cos ϕi, i = 2, . . . , N − 1
Iadjsin ϕ1sin ϕ2 . . . sin ϕi−1, i = N

, (10)

in which ϕi is defined using Equation (11):
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ϕi =


tan−1

(√
∑N

k=2 M̃S
2
k/M̃Si

)
, i = 1

tan−1
(√

∑N
k=i+1 M̃S

2
k/M̃Si

)
, i = 2, . . . , N − 2

tan−1
(

M̃Si+1/M̃Si

)
, i = N − 1

(11)

For the smart case, similarity to P2, a PS2 is calculated by using the low-pass version of the PAN
image (PL), i.e., PS2 = (PL)

2. The PL is generated by an average filtering with size of 7 × 7. Both the
means and standard deviations of PS2 and P2 are adjusted to those of I2. Then, the adjusted intensity
Iadj is assigned by using Equation (12):

Iadj =
√
(P2/PS2)I2 (12)

Finally, the fused image can be generated by using Equations (10) and (11). The HCS method
using the smart mode is considered in the experiment in this study.

2.1.4. ATWT

The ATWT method is a MRA fusion approach that extracting spatial details using “à trous”
wavelet transform. The fusion scheme utilizing the additive injection model can be formulated as:

M̂Si = M̃Si + P− PL, i = 1, . . . , N (13)

where PL is the low frequency component of P and is generated by the “à trous” wavelet.
The “à trous” wavelet is a kind of non-orthogonal wavelet that is different from orthogonal and

biorthogonal. It is a redundant transform, since decimation is not implemented during the process
of wavelet transform while the orthogonal or biorthogonal wavelet can be carried out using either
decimation or undecimation mode.

The whole process of the ATWT fusion can be divided into two steps [40]:

(1) Use the à trous wavelet transform to decompose the PAN image to n wavelet planes. Usually,
n = 2 or 3.

(2) Add the wavelet planes (i.e., spatial details) of the decomposed PAN images to each of the
spectral bands of the MS image to produce fused MS bands.

2.1.5. GLP

The fusion process of GLP can also be formulated as Equation (3). For the GLP method,
the low-frequency component of the PAN band PL is generated by up-sampling the down-sampled
version of the original PAN band P. The down-sampling of P is implemented using a low-pass
reduction filter that matches the MTF of the band, whereas the up-sampling of P is carried out by
using an ideal expansion low-pass filter.

For the GLP fusion, different detail injection models are designed to obtain the injection coefficients
gi. The most used models are the spectral distortion minimizing (SDM) model and the context-based
decision (CBD) model.

For the SDM model, the injection coefficients gi can be obtained using Equation (14):

gi(m, n) = β(m, n)
M̃Si(m, n)
PL(m, n)

, i = 1, . . . , N (14)
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where β(m, n) is equal to 1 for all pixels in the original SDM model [42], whereas β(m, n) is defined
as the ratio between average local standard deviations of resampled MS bands and local standard
deviation of PL , for the enhanced SDM (ESDM) model proposed by Aiazzi [43]:

β(m, n)

√√√√ 1
N ∑N

k=1 var
[

M̃Sk

]
(m, n)

var[PL](m, n)
(15)

In the CBD model, the space-varying coefficients gi is defined as Equation (16):

gi(m, n) =

min
{

σM̃Si
(m,n)

σPL (m,n) , c
}

i f ρi(m, n) ≥ θi,

0 i f ρi(m, n) < θi,
(16)

in which ρi(m, n) is the local correlation coefficient between M̃Si and PL calculated on a square sliding
window of size L × L centered on pixel (m, n).

The CBD model is uniquely defined by the set of thresholds 0 < θi ≤ 1, for i = 1, . . . , N, generally
different for each band, and by the window size L depending on the spatial resolutions and scale ratio
of the images be merged, as well as the landscape characteristics (typically, 7 ≤ L ≤ 11 to avoid loss of
local sensitivity with L > 11 and statistical instability with L < 7). The thresholds may be related to
the spectral content of the Pan image, e.g., θi = 1− ρi, where ρi is the global correlation coefficient
between the kth band and the Pan image spatially degraded to the same resolution. A clipping constant
c was introduced to avoid numerical instabilities (empirically, 2 ≤ c ≤ 3).

For the Enhanced CBD (ECBD) model proposed by Aiazzi [43], the coefficients gi is calculated as
Equation (17):

gi(m, n) = min

{
σM̃Si

(m, n)

σPL(m, n)
· ρi(m, n)

ρi
, c

}
(17)

where ρi is the global correlation coefficient between M̃Si and PL. Both the GLP methods using the
ESDM and the ECBD models are considered in the experiment.

2.1.6. NSCT

The contourlet transform (CT) is proved to be a better approach than the wavelet for
pan-sharpening. CT is implemented by a multiscale decomposition using the Laplacian pyramid
followed by a local directional transform using the directional filter bank (DFB).

The NSCT is a shift-invariant version of CT and has excellent multilevel and multi-direction
properties. NSCT is built upon the non-subsampled pyramid filter banks (NSPFBs) and the
non-subsampled directional filter banks (NSDFBs). The NSPFB employed by NSCT is a 2-D
two-channel non-subsampled filter bank, whereas the NSDFB employed by NSCT is a shift-invariant
version of the critically sampled DFB in CT. The details of the NSCT can be attended in [28,53].
An improved version of the standard NSCT-based method is introduced in [28]. The process of the
improved NSCT method with mode 2 (NSCT_M2) in [28] is descripted as follows.

(a) Each original MS band MSi, is decomposed using 1-level NSCT to get one coarse level, CMSi
0 ,

and one fine level, CMSi
1 ;

(b) The PAN band is decomposed using3-level NSCT into one coarse level, CPAN
0 , and three fine

levels, which are denoted as CPAN
1 , CPAN

2 , and CPAN
3 , respectively.

(c) The coefficients of each MS band, CMS
0 and CMS

1 , are up-sampled to the scale of the PAN band
using the bi-linear interpolation algorithm.
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(d) The coarse level of the fused ith MS band, CFi
0 , is the up-sampled coarse level of the ith MS band

CMSi
0 , whereas the fine levels 2 (CFi

2 ) and 3 (CFi
3 ) of the fused ith MS band are the fine levels 2

(CPAN
2 ) and 3 (CPAN

3 ) of the PAN band.

(e) The fused fine level 1, CFi
1 , is obtain by fusing the coefficients of the same level obtained from

both the ith MS band and the PAN band. For each pixel (x, y), the coefficients of the fused fine
level 1, CFi

1 (x, y), is determined according to Equation (18):

CFi
1 (x, y) =

{
CMSi

1 (x, y), LEMSi (x, y) > LEPAN(x, y)

CPAN
1 (x, y), otherwise

(18)

where LEMSi (x, y) and LEPAN(x, y) are the local energy of pixel (x, y) for the ith MS band and
the PAN band, respectively, calculated within a (2M + 1) × (2P + 1) window using the formula
shown in Equation (19):

LE(x, y) =
M

∑
i=−M

P

∑
j=−P

(C1(x + i, y + j))2 (19)

The inverse NSCT is applied to the fused coefficients to provide the fused ith MS band.

This improved version was demonstrated to provide pansharpened images with a good
spectral quality.

2.2. Quality Indexes

Quality assessment of fusion products can be performed using two approaches. The first approach
considers fusing images at a spatial resolution lower than the original resolution and uses the original
MS image as a reference to assess the quality of the fused images. Several indexes have been proposed
for evaluating the spatial and spectral distortions of the fused image with respect to an available
reference image. The widely used spectral quality indexes include Root Mean Square Error (RMSE),
Relative Average Spectral Error (RASE) [54], ERGAS, SAM, Universal Image Quality Index (UIQI) [55],
Q4 [46], Q2n, and Peak Signal-to-Noise Ratio (PSNR) [56], whereas the widely used spatial indexes
include SCC and Structural SIMilarity (SSIM) [57]. The second approach uses quality indexes that
do not require a reference image but operate on relationships among the original images and the
fusion products. This approach has the advantage of validating the products at the original scale,
thus avoiding any hypothesis on the behavior at different scales. However, appropriate indexes
requiring no reference should be exploited to assess the quality of the fusion product. The Quality
with no reference index (QNR) was one of the mostly used indexes [58]. It is composed by the product
of two separate values that quantify spectral and spatial distortions, respectively. However, QNR is
proved to be lower reliability than the indexes belonging to the first approach [30], since it can be
affected by slightly mismatches among the original image bands. The acquisition modality of WV-2 can
led to s mall temporal misalignments among the MS bands, since the eight MS bands of are arranged
in two arrays of four bands each. Consequently, the QNR index is not used in this study. Four quality
indexes belong to the first approach, including ERGAS, SAM, Q2n, and SCC, are employed to assess
the quality of fused images at data level. These indexes are chosen due to they are widely used in
literatures related to fusion of remote sensing imagery.

2.2.1. ERGAS

The global index ERGAS is an improved version of the index named Relative Average Spectral
Error (RASE), which is defined based on Root Mean Square Error (RMSE). The formula of ERGAS [44]
is defined as follows:
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ERGAS =
100
R

√√√√√ 1
N

N

∑
k=1

RMSE
(

M̂Sk, MSk

)
u(MSk)

2

(20)

where u(MSk) is the mean of the kth band of the reference image; R is the spatial resolution ratio
between the MS and PAN bands; RMSE is defined as Equation (21):

RMSE
(

M̂Sk, MSk

)
=

√
E
[(

M̂Sk −MSk

)2
]

(21)

The optimal value for ERGAS is 0, since it is defined as a weighted sum of RMSE values.

2.2.2. SAM

SAM expresses the spectral similarity between a fused image and a reference image with the
average spectral angle of all pixels involved [45]. Let two spectral vectors V = {V1, V2, . . . , VN} and
V̂ =

{
V̂1, V̂2, . . . , V̂N

}
present the reference spectral pixel and the fused spectral pixel, respectively,

their spectral angle SAM is defined as in Equation (22):

SAM = arccos


〈

V, V̂
〉

|V| ·
∣∣∣V̂∣∣∣

 (22)

where 〈X, Y〉 stands for the inner-product of the two vectors X and Y, and |X| stands for the modulus
of a vector X.

The smaller the spectral angle, the higher the similarity between the two vectors. Since the
angle is independent of the magnitudes of the two vectors, the index SAM is not affected by solar
illumination factors.

2.2.3. Q2n

Q2n is a generalization of Q index for monoband images [47] and an extension of Q4 [46]. Q2n

is derived from the theory of hypercomplex numbers, particularly of 2n-ones [59,60]. For a 2n-on
hypercomplex random variable z (in boldface) is written in the following form:

z = z0 + i1 · z1 + · · ·+ i2n−1 · z2n−1 (23)

where z0, z1, . . . , z2n−1 are real numbers, and i0, i1, . . . , i2n−1 are hypercomplex unit vectors,
the conjugate z∗ is given by:

z∗ = z0 − i1 · z1 − · · · − i2n−1 · z2n−1 (24)

and the modulus |z| is defined by Equation (25):

|z| =
√

z2
0 + z2

1 + · · ·+ z2
2n−1 (25)

Give two 2n-on hypercomplex random variables z and v, the hypercomplex covariance between z
and v is defined as Equation (26):

cov(z, v) , E[(z− z)(v− v)] = E[zv∗]− z · v∗ = σz,v (26)

The hypercomplex CC between the two 2n-on random variables are defined as the
normalized covariance:

q(z, v) ,
σz,v

σzσv
(27)
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in which σz and σv are the square roots of the variances of z and v, and are obtained by Equations (28)
and (29), respectively:

σz = E
[
|z|2
]
− |z|2 (28)

σv = E
[
|v|2

]
− |v|2 (29)

The index Q2n can be computed from Equation (30):

Q2n
M×M =

σz,v

σzσv
· 2zv

(z)2 + (v)2 ·
2σzσv

σz2 + σv2 (30)

where M is the size of the local window used to calculate Q2n.
Finally, Q2n is obtained by averaging the magnitudes of all Q2n

M×M over the whole image,
according to Equation (31):

Q2n = E[|Q2n
M×M|] (31)

According to [46], the value of M is suggested to be 32.

2.2.4. SCC

To assess the spatial quality of the fusion products, the spatial details presented in the fused
images will be compared with those presented in the reference image by calculating the correlation
coefficient between the spatial details extracted from the two images. Similar to the procedure proposed
by Otazu et al. [48], the spatial information presented in the two images to be compared is extracted by
using a Laplacian filter, then, the correlations between the two filtered images are calculated band by
band. However, an overall correlation coefficient of the two edge images with eight bands is calculated
in this study. A high SCC value indicates that many of the spatial details of the reference image are
presented in the fused image.

2.3. Information Indexes

In order to assess the ability of information extraction of the fusion products employed in
specific remote sensing applications, we assessed the quality of fused images by the use of a series
of information indices, which are proved to be useful in land cover classification and information
extraction in previous studies. Three indices are employed in this study: MBI, NDVI, and NDWI.
The accuracy of an information index derived from a fusion product is assessed using the CC between
the information index and the same information index derived from the corresponding reference MS
image. A higher CC value implies a better information preservation ability of the fusion product in
terms of the information index. Henceforth, the CC values calculated for MBI, NDVI, and NDWI
are denoted as CMBI, CNDVI, and CNDWI, respectively. The employed three information indices are
introduced in this subsection.

2.3.1. NDVI

Based on the principle that vegetation has a strong reflectance in the near-infrared (NIR) channel
but a strong absorption in the red (Red) channel, the NDVI is defined as Equation (32):

NDVI =
NIR− Red
NIR + Red

(32)

2.3.2. NDWI

The NDWI is defined using the spectral value of the Green band (G) and the NIR band as
Equation (33):

NDWI =
G− NIR
G + NIR

(33)
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2.3.3. MBI

The MBI is proposed by Huang et al. [49], aiming to represent spectral and spatial characteristics
of buildings using a series of morphological operators. The MBI is calculated according to the
following steps:

(a) A brightness image b is generated by setting the value of each pixel p to be the maximum digital
number of the visible bands. Only the visible channels are considered due to they have the most
significant contributions to the spectral property of buildings.

(b) The directional white top-hat (WTH) reconstruction is employed to highlight bright structures
that have a size equal to or smaller than the size of the structure element (SE), and meanwhile
suppresses other dark structures in the image. WTH with linear SE is defined as Equation (34):

WTH(s, θ) = b− γSE(s, θ) (34)

in which γSE(s, θ) is an opening by reconstruction operator using a linear SE with a size of s and
a direction of θ.

(c) The difference morphological profiles (DMP) of white top-hat transforms are employed to model
building structures in a multi-scale manner:{

DMPWTH = {DMPWTH(s, θ) : smin ≤ s ≤ smax, θ ∈ D}
DMPWTH(s, θ) = |WTH(s + ∆s, θ)−WTH(s, θ)|

(35)

(d) Finally, MBI is defined based on DMP using Equation (36):

MBI =
∑s,dir DMPWTH(s, θ)

ND × Ns
(36)

where ND and NS are the directionality and the scale of the DMPs, respectively. The definition
of the MBI is based on the fact that building structures have high local contrast and, hence,
have larger feature values in most of the directions of the profiles. Accordingly, buildings will
have large MBI values.

3. Experimental Results

3.1. Datasets

Six datasets clipped from three WV-2 scenes were considered in this study. One scene covers
Beijing City, China, whereas the other two scenes cover Pingdingshan City, Hebei Province, China.
The Bejing scene was acquired on 21 September 2013, with an off-nadir angle of 13.7◦. One of the
Hebei scenes was acquired on 29 April 2014, with an average off-nadir angle of 12.5◦, whereas the
other was obtained on 21 August 2014, with an average off-nadir angle of 8.6◦. The locations of the
three scenes are shown in Figure 1. The red rectangles in the figure indicate the locations of the six
datasets. Two datasets covering urban areas were selected from the Beijing scene, whereas the other
four datasets were obtained from the other two WV-2 scenes. Two of them cover suburb areas, whereas
the other two cover rural areas. For all the datasets, the radiometric resolution is 16 bits, whereas the
spatial resolution ratio R is 4. Each dataset has a size of 256 × 256 pixels at MS scale. The two urban
images are henceforth referred as I1 and I2, respectively, whereas the two suburban images are referred
as I3 and I4, respectively. The two rural images are referred as I5 and I6, respectively. The typical
image objects shown in the six images are listed in Table 1; the six images are shown in Figure 2.
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The degraded images were generated using averaging in this study [61]. The spatial resolution ratio 
R in this study is 4 for all the tested images. 
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whereas the fusion products of the two rural images were assessed using only CNDVI and CNDWI. 

Figure 1. The locations of the three WV-2 scenes employed in this work. The locations of the six test
images used in the experiments are marked by the rectangles in red.

To evaluate the quality of the fusion products with respect to the original MS images, the degraded
datasets were produced by reducing the original MS and PAN images to a spatial resolution of 8 m
and 2 m, respectively. All the fusion experiments were performed on the degraded datasets. The fused
2-m images were compared with the 2-m true MS images to assess their quality. The degraded images
were generated using averaging in this study [61]. The spatial resolution ratio R in this study is 4 for
all the tested images.

According to the image objects included in the six test images, different information indices were
chosen for each of the images (Table 1). The fusion products of the two urban images were assessed
with respect to CMBI and CNDVI, due to no water bodies can be observed from these two images.
The fusion products of the two suburban images were assessed using all the three indices, whereas the
fusion products of the two rural images were assessed using only CNDVI and CNDWI.



Sensors 2017, 17, 89 12 of 30
Sensors 2017, 17, 89 12 of 30 

 

Figure 2. The selected six dataset used in the experiments. (a) I1; (b) I2; (c) I3; (d) I4; (e) I5; (f) I6.  

Table 1. The description of the selected six datasets. 

Image Location Type Objects Information Indices
I1 Beijing Urban High buildings, squares, roads, vegetation, shadows MBI, NDVI 
I2 Beijing Urban Moderate buildings, squares, roads, vegetation, shadows MBI, NDVI 
I3 Pingdingshan Suburban Low buildings, squares, roads, vegetation, shadows, water bodies MBI, NDVI, NDWI 
I4 Pingdingshan Suburban Low buildings, squares, roads, vegetation, shadows, water bodies MBI, NDVI, NDWI 
I5 Pingdingshan Rural Building, roads, farms, water bodies NDVI, NDWI 
I6 Pingdingshan Rural Vegetation, water bodies, bare soils NDVI, NDWI 

3.2. Fusing Using the Selected Algorithms 

All the fusion algorithms were implemented in MATLAB version 2014b. For all the selected 
eight fusion methods, the up-sampled MS images were produced using the bi-cubical interpolation 
approach. For the HR method, the low-spatial-resolution version of PAN image (PL) was obtained 
by averaging the PAN pixels in an R × R window, followed by the bi-cubically up-sampled to the 
resolution of the original PAN image. The GLP methods using the ESDM model and the ECBD 
model were used in the fusion experiment; the two methods are referred as GLP_ESDM and 
GLP_ECBD, respectively, in this study. For the HR method, the haze values for the MS and PAN 
bands were determined using the values of the pixel that offering the lowest value in the PAN 
image.  

3.3. Quality Indexes 

3.3.1. Assessment for the Two Urban Images 

The image quality indices of the fusion products of the two urban images are shown in Table 2. 
The fusion products of these two images are partly shown in Figures 3 and 4, respectively, in order 
to facilitate the observation of the details of the fused images. The images in each figure in this work 
are stretched by using an identical histogram obtained from the corresponding reference MS images.  

Figure 2. The selected six dataset used in the experiments. (a) I1; (b) I2; (c) I3; (d) I4; (e) I5; (f) I6.

Table 1. The description of the selected six datasets.

Image Location Type Objects Information Indices

I1 Beijing Urban High buildings, squares, roads, vegetation, shadows MBI, NDVI
I2 Beijing Urban Moderate buildings, squares, roads, vegetation, shadows MBI, NDVI
I3 Pingdingshan Suburban Low buildings, squares, roads, vegetation, shadows, water bodies MBI, NDVI, NDWI
I4 Pingdingshan Suburban Low buildings, squares, roads, vegetation, shadows, water bodies MBI, NDVI, NDWI
I5 Pingdingshan Rural Building, roads, farms, water bodies NDVI, NDWI
I6 Pingdingshan Rural Vegetation, water bodies, bare soils NDVI, NDWI

3.2. Fusing Using the Selected Algorithms

All the fusion algorithms were implemented in MATLAB version 2014b. For all the selected
eight fusion methods, the up-sampled MS images were produced using the bi-cubical interpolation
approach. For the HR method, the low-spatial-resolution version of PAN image (PL) was obtained
by averaging the PAN pixels in an R × R window, followed by the bi-cubically up-sampled to the
resolution of the original PAN image. The GLP methods using the ESDM model and the ECBD model
were used in the fusion experiment; the two methods are referred as GLP_ESDM and GLP_ECBD,
respectively, in this study. For the HR method, the haze values for the MS and PAN bands were
determined using the values of the pixel that offering the lowest value in the PAN image.

3.3. Quality Indexes

3.3.1. Assessment for the Two Urban Images

The image quality indices of the fusion products of the two urban images are shown in Table 2.
The fusion products of these two images are partly shown in Figures 3 and 4, respectively, in order to
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facilitate the observation of the details of the fused images. The images in each figure in this work are
stretched by using an identical histogram obtained from the corresponding reference MS images.

Table 2. Quality indices of the fused images generated by the selected algorithms for the two
urban images.

Image Method ERGAS SAM Q8 SCC

I1

GS 1.64 2.19 0.957 0.911
GSA 1.28 1.92 0.974 0.908
HR 1.26 1.76 0.977 0.911

HCS 1.95 2.58 0.897 0.881
ATWT 2.09 2.72 0.879 0.863

GLP_ESDM 1.56 2.05 0.956 0.898
GLP_ECBD 1.93 2.36 0.956 0.888
NSCT_M2 2.22 3.66 0.849 0.861

EXP 1.64 2.19 0.857 0.582

I2

GS 2.70 3.79 0.909 0.844
GSA 2.22 3.45 0.946 0.839
HR 2.20 3.14 0.951 0.849

HCS 2.87 3.99 0.850 0.809
ATWT 2.76 4.02 0.861 0.799

GLP_ESDM 2.51 3.47 0.916 0.824
GLP_ECBD 3.14 4.26 0.905 0.785
NSCT_M2 3.04 5.03 0.831 0.795

EXP 3.84 3.99 0.797 0.499

The HR method offers the highest Q8 and SCC values and the lowest ERGAS and SAM values for
the two urban images, indicating that the HR method gives the best performances in both spectral
and spatial quality indices. The NSCT_M2 methods yields the lowest Q8 and SCC values, the highest
ERGAS and SAM values, indicating the poorest performance in spectral preservation. The GSA
method provides Q8 values slight lower than the highest values provided by the HR method, followed
by the GS, GLP_ESDM, GLP_ECBD, ATWT, and HCS methods. The GLP_ESDM performs the best
among the MRA methods in terms of both spectral and spatial quality indices. The HCS method yields
the poorest performance among the CS methods, in terms of all the four quality indices for the two
urban images.

Visual comparisons for the fusion products of the two urban images (Figures 3 and 4) show
that the fusion products generated by the GS, HCS, and NSCT_M2 methods show significant
spectral distortions in shadow covered regions; this is especially obvious for the fusion products
of I2. In addition, the fused image generated by the GLP_ECBD method for I2 also show significant
spectral distortions in shadow covered regions, which is consistent with the poor performance of the
GLP_ECBD method in terms of quality indexes. Although the fused images generated by the ATWT
and GLP_ECBD methods show more sharpened boundaries between different objects than the other
fusion products, they seem to be over sharpened and show spectral distortions. This is very obvious
for the fusion products of I2. The two HCS-fused images are more blurred than other fusion products.
It also can be observed that the fusion products generated by GSA, HR, and GLP_ESDM methods yield
lower spectral distortions and more sharpened boundaries between different objects than other fusion
products. In addition, the HR-fused images provide more texture details in vegetation covered areas.

According to the quality indexes and visual inspection, the HR, GSA, and GLP_ESDM methods
give better performances than the other methods, whereas the NSCT_M2 and HCS methods offer the
poorest performances, for the two urban images.
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Figure 3. The degraded and 2-m fused images of I1, shown in band 5-7-2 composition. (a) 8-m MS, 
(b) 2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) 
GLP_ECBD; and (k) NSCT_M2. 

Figure 3. The degraded and 2-m fused images of I1, shown in band 5-7-2 composition. (a) 8-m
MS; (b) 2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM;
(j) GLP_ECBD; and (k) NSCT_M2.
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Figure 4. The degraded and 2-m fused images of I2, shown in band 5-7-2 composition. (a) 8-m MS; 
(b) 2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) 
GLP_ECBD; and (k) NSCT_M2. 

Figure 4. The degraded and 2-m fused images of I2, shown in band 5-7-2 composition. (a) 8-m
MS; (b) 2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM;
(j) GLP_ECBD; and (k) NSCT_M2.
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3.3.2. Assessment for the Two Suburban Images

The image quality indices of the fusion products of the two suburban images are shown in Table 3.
Similarly, parts of the fusion products of the two images are shown in Figures 5 and 6, respectively.

Table 3. Quality indices of the fused images generated by the selected algorithms for the two
suburban images.

Image Method ERGAS SAM Q8 SCC

I3

GS 1.31 1.90 0.908 0.885
GSA 1.03 1.76 0.942 0.883
HR 1.38 2.23 0.927 0.849

HCS 1.28 1.98 0.881 0.871
ATWT 1.21 1.93 0.907 0.872

GLP_ESDM 1.39 1.91 0.902 0.835
GLP_ECBD 1.33 1.91 0.921 0.856
NSCT_M2 1.39 2.41 0.887 0.869

EXP 1.62 1.98 0.837 0.796

I4

GS 1.74 2.85 0.871 0.841
GSA 1.43 2.74 0.919 0.831
HR 1.84 3.25 0.893 0.779

HCS 1.74 3.01 0.850 0.817
ATWT 1.66 2.98 0.868 0.821

GLP_ESDM 1.82 2.82 0.876 0.796
GLP_ECBD 1.79 2.88 0.892 0.805
NSCT_M2 1.88 3.64 0.843 0.818

EXP 2.21 3.01 0.759 0.669

The GSA method offers best performances in terms of ERGAS, SAM, and Q8, whereas the GS
method provides the highest SCC values, for the two suburban images. The NSCT_M2 method gives
the poorest performances in terms of ERGAS, SAM, and Q8. Among the MRA methods, the GLP_ECBD
method offers the highest Q8 value, whereas the ATWT method provides the highest SCC values.
Although the HR method provides Q8 values slightly lower than the highest value provided by
the GSA method, the former offers the lowest SCC value among the CS methods. The HR method
also provides the highest SAM values among the CS methods. Although the HR method gives
the best performances for the two urban images, it offers relative poor performances for the two
suburban images.

Visual comparisons of the fusion products of the two suburban images show that obvious spectral
distortions can be found from the water-body and shadow covered regions in the fused images
generated by GS, HCS, ATWT, and NSCT_M2 methods. In addition, the fusion products of the HCS
and NSCT_M2 methods are significant more blurred than other products, due to few spatial details are
injected into the fused images. The fusion products generated by HR, GLP_ESDM, and GLP_ECBD
methods are more sharpened and yield lower spectral distortions than other fusion products. Although
the GSA method gives the best performance in terms of Q8, the corresponding fusion products seem
to be more blurred than the fusion products generated by the HR, GLP_ESDM, GLP_ECBD methods.
Although the GS method offers the highest SCC values, the two GS-fused images show significant
spectral distortions. The two HR-fused images also show very blurred boundaries between vegetation
and non-vegetation objects, which may contribute to the relative low SCC values and high SAM values
provided by this method. According to the quality indexes and visual inspection, the GLP_ECBD
method gives better performances than other methods for the two suburban images.
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Figure 5. The original and 2-m fused images of I3, shown in band 5-7-2 composition. (a) 8-m MS; (b) 
2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) 
GLP_ECBD; and (k) NSCT_M2. 

Figure 5. The original and 2-m fused images of I3, shown in band 5-7-2 composition. (a) 8-m MS; (b) 2-m
PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) GLP_ECBD;
and (k) NSCT_M2.
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Figure 6. The original and 2-m fused images of I4, shown in band 5-7-2 composition. (a) 8-m MS; (b) 
2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) 
GLP_ECBD; and (k) NSCT_M2. 

Figure 6. The original and 2-m fused images of I4, shown in band 5-7-2 composition. (a) 8-m MS; (b) 2-m
PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) GLP_ECBD;
and (k) NSCT_M2.
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3.3.3. Assessment for the Two Rural Images

The image quality indices of the fusion products of the two rural images are shown in Table 4,
whereas the sub-images of fusion products of the two images are shown in Figures 7 and 8, respectively.

Table 4. Quality indices of the fused images generated by the selected algorithms for the two
rural images.

Image Method ERGAS SAM Q8 SCC

I5

GS 1.66 2.41 0.822 0.838
GSA 1.56 2.66 0.887 0.799
HR 1.32 2.06 0.914 0.882

HCS 1.61 2.23 0.837 0.861
ATWT 1.59 2.37 0.853 0.857

GLP_ESDM 1.49 1.99 0.875 0.874
GLP_ECBD 1.90 2.45 0.874 0.845
NSCT-M2 1.71 2.83 0.829 0.855

EXP 2.30 2.23 0.748 0.665

I6

GS 1.88 2.95 0.762 0.756
GSA 1.16 1.75 0.857 0.785
HR 1.08 1.60 0.873 0.812

HCS 1.05 1.51 0.735 0.848
ATWT 0.97 1.49 0.858 0.868

GLP_ESDM 1.12 1.52 0.857 0.809
GLP_ECBD 0.99 1.44 0.868 0.854
NSCT-M2 1.10 1.77 0.820 0.865

EXP 1.09 1.51 0.818 0.849

The eight fusion methods give different performances for I5 and I6, which may due to the fact
that the land cover types of the two scenes are obviously different. For I5, the HR and GLP_ESDM
methods give the highest Q8 and SCC values; the GS and NSCT_M2 methods provide the lowest
Q8 values; the GSA method yields the lowest SCC values. However, for I6, the HR, GLP_ECBD,
and ATWT methods offer the highest Q8 values, whereas the ATWT, NSCT_M2, and GLP_ECBD
methods provide the highest SCC values. The HCS and GS methods provide the lowest Q8 and SCC
values, respectively, for I6. The GLP_ESDM gives a slightly better performance than the GLP_ECBD
method for I5. In contrast, the former offers a poorer performance than the latter for I6.

Obvious spectral distortions can be observed from the fused images generated by the GS, GSA,
and HCS methods for I5, especially for the water-body covered regions and rooftop regions. The fusion
products generated by the GS, GSA, and HCS methods for I5 are also more blurred than other fusion
products. Conversely, the fused image generated by GLP_ECBD for I5 seems to be too sharpened,
due to over injection of the spatial details. Consequently, the HR and GLP_ESDM methods give the
best performances for I5, with respect to both the quality indexes and visual inspection.

The eight fusion products for I6 show no significant differences. Among the eight fusion
products for I6, the product generated by the NSCT_M2 method is the most blurred; whereas pixels
corresponding to vegetation in the product generated by the GLP_ESDM method seem to be too light
colored. The HR-fused image shows slightly more details than other products, especially in vegetation
covered regions. With respect to the quality indexes and visual inspection, the HR, GLP_ECBD,
and ATWT methods yield the best performances for I6.
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Figure 7. The original and 2-m fused images of I5, shown in band 5-7-2 composition. (a) 8-m MS; (b) 
2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) 
GLP_ECBD; and (k) NSCT_M2. 

Figure 7. The original and 2-m fused images of I5, shown in band 5-7-2 composition. (a) 8-m MS; (b) 2-m
PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) GLP_ECBD;
and (k) NSCT_M2.
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Figure 8. The original and 2-m fused images of I6, shown in band 5-7-2 composition. (a) 8-m MS; (b) 
2-m PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) 
GLP_ECBD; and (k) NSCT_M2. 

3.4. Information Preservation 

Figure 8. The original and 2-m fused images of I6, shown in band 5-7-2 composition. (a) 8-m MS; (b) 2-m
PAN; (c) True 2-m MS; (d) GS; (e) GSA; (f) HR; (g) HCS; (h) ATWT; (i) GLP_ESDM; (j) GLP_ECBD;
and (k) NSCT_M2.
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3.4. Information Preservation

For each of the fusion products, a CC between an information index derived from the fused image
and the same index derived from the corresponding reference MS image was calculated. The CC
values for MBI (CMBI), NDVI (CNDVI) and NDWI (CNDWI) for fusion products of the six test datasets
are listed in Table 5.

Table 5. The CC values for the information indices for the fused images generated by the selected
eight algorithms.

Method
CMBI CNDVI CNDWI

I1 I2 I3 I4 I1 I2 I3 I4 I5 I6 I3 I4 I5 I6

GS 0.973 0.972 0.969 0.934 0.922 0.877 0.929 0.891 0.912 0.946 0.915 0.858 0.876 0.950
GSA 0.975 0.979 0.981 0.959 0.915 0.855 0.924 0.879 0.884 0.966 0.908 0.853 0.830 0.977
HR 0.976 0.978 0.977 0.950 0.923 0.885 0.899 0.816 0.927 0.969 0.876 0.780 0.895 0.981

HCS 0.962 0.949 0.923 0.848 0.926 0.883 0.917 0.880 0.940 0.974 0.911 0.859 0.917 0.986
ATWT 0.965 0.956 0.934 0.882 0.911 0.849 0.928 0.890 0.928 0.975 0.912 0.851 0.915 0.986

GLP_ESDM 0.965 0.960 0.945 0.899 0.928 0.887 0.915 0.871 0.942 0.972 0.901 0.841 0.922 0.984
GLP_ECBD 0.964 0.957 0.961 0.926 0.892 0.811 0.925 0.876 0.906 0.977 0.909 0.851 0.860 0.988
NSCT_M2 0.965 0.948 0.905 0.842 0.860 0.778 0.898 0.862 0.896 0.968 0.873 0.800 0.871 0.982

EXP 0.825 0.798 0.829 0.783 0.926 0.883 0.917 0.880 0.940 0.974 0.911 0.859 0.917 0.986

3.4.1. CMBI

The fused products generated from the two urban (I1 and I2) and tow suburban (I3 and I4) images
were assessed in terms of CMBI. All the fusion products of the two urban images offer CMBI values that
are significant higher than those of the up-sampled MS images (EXPs), indicating that all the fusion
products show obvious improvements in terms of CMBI. This is due to the fact that spatial details
extracted from the PAN bands were injected to produce these images. Generally, the performances of
the eight methods in terms of CMBI are consistent with those in terms of Q8 and SCC. The HR, GSA,
and GS methods offer the highest CMBI values, whereas the NSCT_M2 and HCS methods offer the
lowest CMBI values, for both the urban and suburban test images. The CS methods give slightly better
performances than the MRA methods in terms of CMBI, for the four test images. This is consistent with
the performances of the eight methods in terms of quality indexes, for the four test images. This is also
consistent with the conclusion of previous studies, which imply that the fusion products generated by
the CS methods offer good visual and geometrical impression [31].

Among the MRA methods, the GLP_ESDM method offers the best performance for the two urban
images, whereas the GLP_ECBD method performs the best for the two suburban images, in terms of
CMBI. This is also consistent with the performances of the two methods in terms of quality indexes.
According to the assessment results with respect to the quality indexes and visual inspection, the HR,
GSA, and GLP_ESDM methods outperform other methods for the two urban images, whereas the
GLP_ECBD method gives the best performances for the two suburban images. Actually, although
the four method give different performances vary different image scenes, they outperform the other
methods for all the four images, in terms of CMBI, as well as the quality indexes and visual inspection.
Consequently, the HR, GSA, GLP_ESDM, and GLP_ECBD methods may be the best choice for
producing fused urban/suburban WV-2 images used for image interpretation and buildings extraction.

3.4.2. CNDVI and CNDWI

The fusion products of all the six images were assessed using CNDVI, whereas only the fusion
products for the two suburban images and the two rural images were assessed using CNDWI. We discuss
the two indexes together because both of the two indexes measure the differences between inter-band
relationships of the fused image and those of the reference MS image. In addition, both of them are
related to the NIR bands.

It can be observed that some of the fusion products offer CNDVI or CNDWI values that are lower
than those of provided by the corresponding up-sampled MS images (EXPs), and the highest CNDVI
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values are just slightly higher than those of the EXPs. This indicates that the fusion products show
limited improvements of in terms of CNDVI and CNDWI, which may be caused by the spectral distortions
of the fused NIR bands.

The HCS method offers relative high CNDVI and CNDWI values for all the test images. This may
due to the fact that the inter-band relationships of up-sampled LSR MS bands are preserved in the
corresponding HCS-fused images. Since the HCS-fused images show significant spectral distortions in
terms of both quality indexes and visual inspection, it is regarded as offering poor performance for
specific applications. Hence, we do not discuss about the performance of this method henceforth in
this section.

For the two urban images, the GLP_ESDM, HR, and GS methods offer the highest CNDVI and
CNDWI values. With respect to the fact the GS-fused images show obvious spectral distortions and
only the GLP_ESDM method offers higher CNDVI and CNDWI values than those of the corresponding
EXPs, the GLP_ESDM method is a better choice for producing fusion products that will be used in
applications related to urban vegetation and water-bodies.

For I3 and I4, the GS, ATWT, and GLP_ECBD methods provide the highest CNDVI and CNDWI

values, whereas the HR and NSCT_M2 methods offer the lowest CNDVI and CNDWI values. With respect
to the fact that the GS and ATWT methods give poor performances in terms of quality indexes and
visual inspection, the GLP_ECBD method give the best performances for the two suburban images in
terms of NDVI and NDWI information preservation, as well as quality indexes and visual inspection.

For I5, the GLP_ESDM, ATWT, and HR methods offer higher CNDVI and CNDWI values than other
methods. With respect to the fact that the ATWT method gives poor performances in terms of quality
indexes and visual inspection and only the GLP_ESDM method offers higher CNDVI and CNDWI values
than those of the corresponding EXPs, the GLP_ESDM method is the better choice for rural WV-2
images with similar image objects with I5, in terms of NDVI and NDWI information preservation,
as well as quality indexes and visual inspection.

For I6, the GLP_ECBD, ATWT, and GLP_ESDM methods provide higher CNDVI and CNDWI

values than the other methods. With respect to the fact that the HR, GLP_ECBD, and ATWT methods
outperform the other methods in terms of quality indexes and visual inspection only the GLP_ECBD
method offers higher CNDVI and CNDWI values than those of the corresponding EXPs, the GLP_ECBD
method is the best choice for rural WV-2 images with similar image objects with I6, in terms of NDVI
and NDWI information preservation, as well as quality indexes and visual inspection.

4. Discussion

Generally, the comparisons of different pansharpening methods are performed by assessing
fusion products using spectral and spatial quality indexes, as well as visual inspection. However,
a good performance in terms of quality indexes and visual inspection does not always result in a good
choice for different application purposes. The NDVI, NDWI, and MBI index, which are widely used in
applications related land cover classification, the extraction of vegetation area, buildings, and water
bodies, were employed in this study to evaluate the performances of the selected pansharpening
methods in terms of the information presentation ability. In this study, the performances of eight
selected state-of-art pan-sharpening methods were assessed using information indices (NDVI, NDWI
and MBI), along with current image quality indices (ERGAS, SAM, Q2n and SCC) and visual inspection,
with six datasets from two WV-2 scenes.

4.1. General Performances of the Selected Pansharpening Methods

Generally, the HR, GSA, GLP_ESDM, and GLP_ECBD methods give better performances than the
other methods, whereas the NSCT and HCS methods offer the poorest performances, for most of the test
images, in terms of quality indexes and visual inspection. The four methods also give slightly different
performances for images including different image objects. For example, the HR, GSA, GLP_ESDM
methods give the best performances for the two urban images, whereas the GLP_ECBD provides
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the best performances for the two rural images. However, the fusion products of the four methods
offer good visual quality for most images. Consequently, the HR, GSA, GLP_ESDM, and GLP_ECBD
methods are good choices if the fused WV-2 images will be used for image interpretation.

The results of the assessments using the three information indices show that the rank of the
selected eight fusion methods in terms of CMBI is a little similar with those in terms of Q8 and
SCC. This may indicate that the assessment using only the quality indexes and visual inspection
is sufficient for selecting a best fusion method for producing fused urban WV-2 images used for
image interpretation and applications related to urban buildings. The order of eight methods for in
terms of CNDVI is similar with that in terms of CNDWI. This is due to the fact that both CNDVI and
CNDWI measure the differences between the inter-band relationships of a fused image and those of the
corresponding reference MS image. In contrast, the orders of the eight methods in terms of CNDVI and
CNDWI are significant different from those in terms of Q8 and SCC. This indicates that a fusion method
offering the best performance for a certain image in terms of quality indexes and visual inspection
does not always provide the highest CNDVI and CNDWI values. Generally, the GLP_ESDM method
outperforms the other methods for I1, I2 and I5, whereas the GLP_ECBD method provides the best
performances for I3, I4 and I6, in terms of CNDVI and CNDWI, as well as quality indexes and visual
inspection. This indicates that the GLP_ESDM is the best choice for images with similar objects with I1,
I2 and I5, whereas the GLP_ECBD is the best choice for images with similar objects with I3, I4 and I6,
for producing fusion products used for applications related to vegetation or water-bodies. In addition,
the fusion products show limited improvements in terms of CNDVI and CNDWI. This indicates that
it is hard for the fusion products to preserve the NDVI and NDWI information obtained from the
corresponding up-sampled MS images. Consequently, it is necessary to evaluate fusion products using
information indices (i.e., NDVI and NDWI) if fused WV-2 images will be used for applications related
to vegetation and water-bodies.

4.2. Effects for Different Spectral Ranges between the PAN and MS Bands

A noticeable point for the WV-2 is that the spectral range of the PAN band covers limited portion of
the spectral ranges of the C, NIR1 and NIR2 bands. This results in relative low correlation coefficients
between these bands and the PAN band. It is interesting to see the performances of the selected
pansharpening methods on the two NIR bands and the C band of WV-2. In order to assess the spectral
distortion of each fused band, the CC value between each fused band and the corresponding reference
band was calculated for each fusion product. The CC values for the fusion products of I1, I3, I5 and I6
are shown in Table 6. The CC values of I2 and I4 are not presented because they are similar with those
of I1 and I3, respectively.

It can be seen from Table 6 that the CC values of the two NIR bands are significantly lower than
those of the other bands for all the fusion products, indicating that the fused NIR bands show more
spectral distortions than the other bands. This is caused by the relative low correlation coefficients
between the two NIR bands and the PAN band. This is also revealed by previous studies, the higher the
correlation between the PAN band and each MS band, the better the success of fusion [31]. Generally,
the four CS methods offer higher CC values for the two NIR bands than the four MRA methods for
most of the test images. This is consistent with the result of visual inspection of these fusion products.
However, the two GLP-based methods, which provide good performances in terms of NDVI and
NDWI information preservation, offer relative low CC values for the fused NIR1 band, due to the low
CC between the PAN and the NIR1 band. This proves again that it is necessary to evaluate fusion
products using information indices (i.e., NDVI and NDWI) if fused WV-2 images will be used for
applications related to vegetation and water-bodies.
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Table 6. The CC values for the fused bands for I1, I3, I5 and I6.

Image Method
CC

C B G Y R RE NIR1 NRI2 Avg

I1

GS 0.985 0.985 0.988 0.992 0.990 0.990 0.978 0.978 0.986
GSA 0.987 0.987 0.991 0.995 0.993 0.992 0.978 0.977 0.988
HR 0.990 0.990 0.993 0.996 0.994 0.993 0.977 0.977 0.989

HCS 0.819 0.945 0.982 0.989 0.987 0.984 0.970 0.969 0.956
ATWT 0.849 0.931 0.985 0.991 0.986 0.987 0.974 0.971 0.959

GLP_ESDM 0.959 0.979 0.986 0.990 0.990 0.988 0.975 0.973 0.980
GLP_ECBD 0.982 0.982 0.986 0.989 0.986 0.985 0.967 0.959 0.980
NSCT_M2 0.805 0.906 0.985 0.993 0.987 0.988 0.971 0.965 0.950

EXP 0.952 0.948 0.944 0.942 0.939 0.928 0.917 0.916 0.936

I3

GS 0.958 0.957 0.962 0.967 0.962 0.952 0.899 0.903 0.945
GSA 0.977 0.977 0.986 0.990 0.984 0.977 0.906 0.906 0.963
HR 0.976 0.975 0.983 0.986 0.980 0.969 0.830 0.823 0.940

HCS 0.836 0.946 0.977 0.979 0.969 0.968 0.892 0.893 0.933
ATWT 0.918 0.932 0.980 0.982 0.975 0.971 0.900 0.898 0.945

GLP_ESDM 0.919 0.964 0.978 0.985 0.980 0.966 0.842 0.844 0.935
GLP_ECBD 0.962 0.963 0.975 0.982 0.975 0.965 0.876 0.861 0.945
NSCT_M2 0.886 0.906 0.980 0.978 0.969 0.968 0.872 0.863 0.928

EXP 0.922 0.921 0.921 0.923 0.920 0.910 0.886 0.885 0.911

I5

GS 0.958 0.951 0.945 0.947 0.953 0.908 0.868 0.875 0.926
GSA 0.969 0.964 0.963 0.962 0.967 0.981 0.949 0.957 0.964
HR 0.968 0.966 0.974 0.968 0.967 0.984 0.954 0.965 0.968

HCS 0.739 0.892 0.954 0.966 0.967 0.984 0.962 0.973 0.930
ATWT 0.901 0.924 0.976 0.967 0.965 0.987 0.966 0.975 0.958

GLP_ESDM 0.913 0.962 0.975 0.970 0.970 0.984 0.949 0.963 0.961
GLP_ECBD 0.942 0.935 0.959 0.967 0.968 0.985 0.964 0.974 0.962
NSCT_M2 0.858 0.888 0.970 0.960 0.957 0.981 0.957 0.968 0.943

EXP 0.940 0.932 0.923 0.925 0.931 0.976 0.966 0.974 0.946

I6

GS 0.957 0.959 0.967 0.967 0.966 0.948 0.802 0.800 0.921
GSA 0.970 0.974 0.985 0.982 0.980 0.963 0.750 0.747 0.919
HR 0.979 0.980 0.987 0.987 0.985 0.969 0.858 0.854 0.950

HCS 0.879 0.966 0.978 0.971 0.964 0.936 0.848 0.846 0.924
ATWT 0.896 0.924 0.980 0.979 0.971 0.950 0.858 0.862 0.928

GLP_ESDM 0.905 0.962 0.976 0.978 0.979 0.955 0.869 0.848 0.934
GLP_ECBD 0.956 0.960 0.972 0.971 0.967 0.945 0.790 0.829 0.924
NSCT_M2 0.873 0.905 0.982 0.978 0.968 0.953 0.801 0.829 0.911

EXP 0.904 0.899 0.893 0.899 0.900 0.788 0.747 0.748 0.848

4.3. How to Extend the Selected Pansharpening Methods to Other HSR Satellite Images

As introduced in the previous sections, the HR, GSA, GLP_ESDM, and GLP_ECBD methods are
good choices for producing fused WV-2 images used for image interpretation and applications related
to urban buildings. The two GLP-based methods outperform other methods for generating fused
WV-2 images used for applications related to vegetation and water-bodies. It is interesting for the
readers that whether these methods give similar performances to the sensors having a similar PAN
spectral range with WV-2, such as GeoEye-1, and WorldView-3/4.

Actually, the selected pansharpening methods can be categorized into two groups, according
to the approaches employed to generate the synthetic PAN band PL, which mainly contains the
low-frequency component of the original PAN band. For the first group, PL is generated by applying
filters to the original PAN band, or by up-sampling the degraded version of the original PAN band.
In contrast, for the second group, the intensity image IL, which can be seen as another approach for
generating the synthetic PAN band PL, is generated using the weighted combination of the LSR MS
bands. The methods belong to the first group include HR, ATWT, NSCT and the two GLP-based
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methods, whereas the methods belong to the second group include GS, GSA and HCS methods. For the
first group, the low-frequency component of PL has relative low correlations with the C, NIR1 and
NIR2 bands, but has relative high correlations with the other spectral bands. This result in the fact
that the details of the PAN band have relative high correlations with the B, G, Y, R and RE bands,
but relative low correlations with the C, NIR1 and NIR2 bands. This may result in the fact that a large
amount of spatial details are injected into the B, G, Y, R and RE bands, but only a small amount of
the spatial details are injected into the C, NIR1 and NIR2 bands, especial for the case the injection
gains are determined considering the relationship between each MS band and the PAN band. For the
second group, the low-frequency component of the intensity image is related or partly related to the C,
NIR1 and NIR2 bands. This may result in the fact that the low-frequency component of the C, NIR1
and NIR2 bands may be injected into the B, G, Y, R and RE bands, and hence may lead to spectral
distortions of these bands. An exception occurs for GSA, since the intensity image IL employed the
GSA method have low CC with the C, NIR1 and NIR2 bands, due to the weights wi obtained using
Equation (5) are very low for these bands.

According to the introduction about the algorithms of the selected methods, different injection
gains gi are employed by these methods. The GS and GSA methods use a band-dependent model
considering the relationship between each MS band and the PAN band. The GSA method outperform
the GS method due to the intensity image IL employed the former have low CC values with the C, NIR1
and NIR2 bands. It can be seen from Table 6 that the CC values for the B, G, Y, R, and RE bands of the
GSA-fused images are significantly higher than those of the GS-fused image. The HR method uses the
SDM model, which is also band-dependent. The ATWT method employs a simple additive injection
model with weights for each band equal to 1, whereas the two GLP-based methods use the ESDM and
ECBD models, respectively. Among these models, only the ESDM and ECBD models consider the
local dissimilarity between the MS and PAN bands. According to the experimental results, the two
GLP-based methods give good performances in terms of NDVI and NDWI information preservation.
This may due to the fact that only the ESDM and ECBD models consider the local dissimilarity between
the MS and PAN bands. It is also demonstrated by previous studies that local dissimilarity between the
MS and PAN bands should be considered by pansharpening methods to reduce spectral distortions.

As a result of the above analyses about the algorithms of the selected pansharpening methods,
we can obtain the following conclusions. Firstly, for the spectral bands with relative high correlations
with the PAN band, the synthetized PAN band should be obtained using the original PAN band and
the injection gains should considering the relationship between each MS band and the PAN band.
Secondly, for the spectral bands with relative low correlations with the PAN band, further experiments
should be designed to evaluate which approach is better for generating the synthetized PAN band.
However, there is no doubting that local dissimilarity between the MS and PAN bands should be
considered for the fusion of these bands, i.e., the NIR band, especially for the case that the fused images
will be used in applications related to vegetation and water-bodies.

According to the analysis, we can conclude that the GSA, HR, GLP_ESDM, and GLP_ECBD
methods can also provide good performances for similar sensors, such as GeoEye-1, WorldView-3,
WorldView-4, for the cases that the fusion products will be used in image interpretation or urban
buildings. Actually, it is proved by previous studies that the performances of these newly proposed
methods are sensor independent [30]. However, for the case that the fusion products will be used in
applications related to vegetation or water-bodies, the GLP-ESDM and GLP_ECBD methods or other
fusion methods consider local dissimilarity between the MS and PAN bands are better choices.

5. Conclusions

The performances of eight state-of-art pan-sharpening methods for WV-2 imagery were assessed
using information indices (NDVI, NDWI, and MBI), along with current image quality indices (ERGAS,
SAM, Q2n, and SCC) and visual inspection, with six WV-2 datasets. The main findings and conclusions
derived from our analyses are as follows:
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(1) Generally, the HR, GSA, GLP_ESDM and GLP_ECBD methods give better performances than the
other methods, whereas the NSCT and HCS methods offer the poorest performances, for most of
the test images, in terms of quality indexes and visual inspection. Some of the fusion products
generated by the GS and ATWT methods show significant spectral distortions. In addition,
the performances of the eight methods in terms of CMBI are consistent with those in terms of Q8
and SCC. Consequently, the HR, GSA, GLP_ESDM, and GLP_ECBD methods are good choices if
the fused WV-2 images will be used for image interpretation and applications related to urban
buildings. The four methods can also provide good performances for other WV-2 image scenes,
for producing fused images used for image interpretation.

(2) The order of the pansharpening methods in terms of CNDVI is consistent with that in terms of
CNDWI. This is because both of the two indexes measure the differences between inter-band
relationships of the fused image and those of the reference MS image, and both of them are related
to the quality of the fused NIR1 bands. The GLP_ESDM method offers higher CNDVI and CNDWI

values for I1, I2 and I5, whereas the GLP_ECBD method provides higher CNDVI and CNDWI values
for I3, I4 and I6, as well as good performances in terms of quality indexes and visual inspection.
Consequently, the GLP_ESDM and GLP_ECBD methods are better than other methods, if the
fused WV-2 images will be used for applications related to vegetation and water-bodies. However,
for this case, it is better to select a best method by comparing the indexes CNDVI and CNDWI,
as well as quality indexes and visual inspection, since the GLP_ESDM and GLP_ECBD methods
may give different performances for images with different land cover objects.

(3) According to the experimental results of this work and the analyses the algorithms of the selected
pansharpening methods, we can offer two suggestions for the fusion of images obtained by
sensors similar with WV-2, such as Geoeye-1 and Worldview-3/4. Firstly, for the spectral bands
with relative high correlations with the PAN band, the synthetized PAN band should be obtained
using the original PAN band and the injection gains should considering the relationship between
each MS band and the PAN band. The HR, GSA, GLP_ESDM, and GLP_ECBD method also can
offer good performances for scenes obtained by GeoEye-1 and Worldview-3/4, for producing
fused images used for interpretation and applications related to urban buildings. Secondly, for
the spectral bands with relative low correlations with the PAN band, local dissimilarity between
the MS and PAN bands should be considered for the fusion of these bands, i.e., the NIR band,
especially for the case that the fused images will be used in applications related to vegetation
and water-bodies.
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