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Abstract: In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment
have been analyzed for investigating snow characteristics and their effect on backscattering variations.
Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar
(SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow.
The sensitivity of backscattering to snow depth has not always been confirmed, depending on
snow characteristics related to the season. A model based on Dense Media Radiative Transfer
theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from
snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS
and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and
snow density, beside snow depth and snow water equivalent, was pointed out, showing that the
snow features affect the backscatter in different and sometimes opposite ways. Experimental values
of backscattering were correctly simulated by using this model and selected intervals of ground
parameters. The relationship between simulated and measured backscattering for the entire dataset
shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB,
with p-value <0.05.

Keywords: COSMO-SkyMed; Snow Depth; backscattering; electromagnetic model; DMRT-QMS

1. Introduction

Snow, covering up to 50,000,000 km2 of the Earth surface, is an important component of the global
water cycle, being a vital resource of fresh water and influencing atmospheric circulation and climate
at both regional and global scales. Moreover, snow distribution affects carbon cycle and greenhouse
gas exchanges.

The information required by the hydrological models for estimating the seasonal snow cover,
concerns the snow spatial extent; the snowpack properties, such as grain size and albedo; the snow
depth; and the snow water equivalent. These parameters significantly influence the hydrological
cycle and are key elements for the monitoring of cryosphere dynamics, since snow cover changes
very rapidly in time (due to snow precipitation, freeze/thaw, snow accumulation) and in space (i.e.,
different deposition according to the surface type). The monitoring of temporal and spatial evolution
of snow cover is therefore crucial, especially in mountain areas for activities related to water resource
management, the study of climate change, and weather prediction.

Satellite remote sensing allows investigating the cryosphere in remote or inaccessible areas,
where conventional in-situ measurements could be difficultly available. The recent Earth observation
missions as Sentinel-2 and Landsat-8, dedicated to the observation in the optical spectrum,
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and COSMO-SkyMed (CSK) and Sentinel-1 (S1) in the microwave bands, are very interesting for
monitoring the huge temporal and spatial variability of the snow cover, due to the frequent revisit time
and the high spatial resolution. However, mainly optical sensors are used so far for the operational
monitoring of snow parameters from remote sensing data [1–3], in spite of the capability of microwave
sensors to acquire data independently of day light and in adverse weather conditions.

The potential of radars, especially Synthetic Aperture Radar (SAR), in mapping the extent of
wet snow cover was investigated by using both airborne and satellite systems, demonstrating that
penetration of microwaves in the snow pack depends on electromagnetic frequency and on snow
conditions [4–8]. Models and experiments have shown that C-band data are not capable of separating
snow-free areas from dry snow due to their high transmissivity, while, in some cases, the X band
demonstrated sensitivity to snow depth and snow water equivalent [9]. However, wet snow can be
detected by using a change detection approach, because, in this case, the backscattering is of the order
2–3 dB lower than that of dry, snow-covered soil [5–8]. The synergy between optical and SAR sensors
can provide a significant improvement in the comprehension of the snow physical properties.

Recent research pointed out that the best frequency for the monitoring of snow cover seems to be
the Ku band (in the range 12–19 GHz), and an Earth Explorer for observing snow and ice was proposed
to ESA, the Cold Region Hydrology High-resolution Observatory (COREH2O), with the simultaneous
presence of two SAR systems of the X and Ku bands [10]. This mission would take advantage of
the synergy between the two frequencies, since the signal at Ku band is significantly sensitive to
shallow dry snow, whereas the backscatter of the X band provides higher penetration in deep snow
layers and information on the underlying soil. Unfortunately, COREH2O has not been selected so
far as an operational mission and, thus, the currently available SAR frequencies are C and X bands,
only. At these frequencies, penetration is high in dry snow and very low in wet snow, thus making
the estimation of the snow water equivalent a challenge [5,9,11]. Although X band alone is not yet
the most suitable frequency for the retrieval of snow depth (SD) or snow water equivalent (SWE),
some improvements can be expected from the analysis of consistent image datasets of the new X band
SAR systems (CSK and TerraSAR-X).

The two-fold purpose of this investigation consists of confirming the ability of integrated optical
and SAR (X band) data for mapping snow cover extent, by separating snow from no-snow areas
and detecting wet snow, and of evaluating the potential of CSK in providing information on snow
characteristics in different physical conditions. A consistent dataset of CSK and Landsat-8 images was
collected on the Cordevole basin, in the Italian Dolomites. One of the assets of this research consists
of the presence of a significant amount of detailed in-situ data, which are not frequently available on
snow cover areas and allowed an accurate modelization of backscatter in different snow conditions.

From the analysis of these images, the capability of X band in detecting wet snow was
confirmed, as well as the synergy between CSK and Landsat-8 images for snow classification purposes.
The experimental sensitivity of backscattering coefficient (σ◦) to SD and SWE was then investigated
during several winter seasons. Subsequently, in order to better characterize the dependence of σ◦ to
snow parameters, a model based on the Dense Media Radiative Transfer theory was used for simulating
snow cover characteristics [12–14]. The model (DMRT-QMS) is an implementation of the Dense Media
Radiative Transfer (DMRT) theory, based on the Quasi-Crystalline Approximation (QCA) of Mie
scattering of densely-packed Sticky spheres [14,15]. The model is a free code in MATLAB® that
was developed in the Laboratory of Applications and Computations in Electromagnetics and Optics
(LACEO) at University of Washington (UW), United States and was downloaded from the site of
the University of Michigan [15].

Model simulations have been carried out for interpreting the experimental results in different
snow conditions characterized by various SD, snow density, and grain size. The model was applied on
data collected on the selected test areas of Cherz plateau and Monti Alti di Ornella in the Cordevole
basin (Veneto region, Italy), where, beside a meteorological station, detailed snow measurements were
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collected by the Avalanche Center in Arabba. Finally, measured σ◦ was correctly simulated by using
appropriate intervals of ground parameters, selected in the range of the measured ones.

2. Materials and Methods

Test Areas and Satellite Images

The test area identified for this research (Cordevole basin) is located in Northeast of Italy
on the Dolomites (Italian Alps) and it was selected because of the availability of historical
and topographic data, and, in some cases, detailed in-situ measurements of snow cover [16,17]
(Figure 1). Snow is usually present in the area from mid-November to mid-April; the beginning of
melting/refreezing cycles usually occurs in March. Maximum snow depth in the area even reaches
250 cm. In-situ measurements are collected by automatic weather stations (AWS) displaced all
over the territory of Veneto region, and the parameters acquired by each station mainly consist
of snow depth and typical meteorological measurements acquired hourly (air temperature and
humidity, rainfall, wind speed and direction, solar radiation). Detailed in-situ snow measurements (i.e.,
snow depth—SD—in cm; snow water equivalent—SWE—in mm; liquid water content, and grain shape
and size, in mm) were provided by the Avalanche Center (Arabba) through conventional approaches
on two homogeneous areas in the Cordevole Basin (Cherz Plateau, 2010 m a.s.l., and Monti Alti di
Ornella, 2187 m a.s.l.), by digging several pits [18]. The direct measurements of snow parameters were
performed periodically (weekly) and simultaneously to satellite passes, as well as every time the snow
cover underwent significant changes. Snow density, ρ, in kg/m3, was indirectly retrieved from SWE
and SD and represents a mean density of the entire snow layer. These data are processed in order to
extract the correspondent ground data during the satellite passes. Other ancillary information, such as
the digital elevation model (DEM) and land cover, is also available. DEM was derived from ASTER
GDEM V2 product [19] and land cover from both the Coordination of Information on the Environment
(CORINE) database [20] and NDVI computed from Landsat-8 images.
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Figure 1. Cordevole basin in the North-eastern Italian Alps. Yellow placemarks indicate the meterological
stations present on the area: (1) Col dei Baldi (1900 m a.s.l.); (2) Casera Coltrondo (1899 m a.s.l.);
(3) Cima Pradazzo (2200 m a.s.l.); (4) Faverghera (1605 m a.s.l.); (5) Monti Alti di Ornella (2250 m a.s.l.);
(6) Cherz (2100 m a.s.l.); (7) Ravales (2615 m a.s.l.); (8) Monte Piana (2265 m a.s.l.); (9) Malga Losch
(1735 m a.s.l.). The red line represents the borders of the Cordevole basin.
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A significant satellite SAR and optical images dataset was acquired on the test area, consisting of
a series of Cosmo-SKyMed [21] and Landsat-8 [22] images. Cosmo-SKyMed (CSK) acquisitions
collected in different seasons by CSK1, CSK2, CSK3, and CSK4 satellite from 2012 to 2015 (for a total of
68 scenes) were delivered by the Italian Space Agency (ASI) in the framework of the COSMO-SkyMed
Open Call for Science. The images were all in HH polarization and with an incidence angle (θ)
between 30◦ and 40◦. Landsat-8 images for 2013/2014 and 2014/2015 (for a total of four scenes) were
available from the U.S. Geological Survey, from the online browser GloVis [23].

The database of SAR and optical acquisitions over the test area covers different seasons in order
to observe no-snow soils and snow cover in various conditions. The SAR images were fully calibrated
by taking into account the real size of the scattering area in each pixel according to terrain slope.
The ground resolution of CSK images used for this experiment ranged from 10 to 50 m.

In the case of SAR images acquired on mountainous zones, the physical size of the scattering
area for each pixel varies according to the topography, and this effect should be taken into account
in the radiometric calibration procedures. The data processing was carried out by using standard
calibration procedures provided by the space agencies, implemented by commercial software (i.e.,
SARSCAPE®). The SAR data processing was carried out preliminarily on each image and it first
concerned the radiometric calibration, which was performed by taking into account the local incidence
angle (LIA) obtained through the DEM and the orbital parameters. These parameters were also used for
generating maps of layover/shadow to be excluded from the images. Other calibration factors, such as
antenna gains and specific calibration variables, were then applied to the images. The despeckling
was carried out by using a multilook filter of 4 × 4 pixels, and the geocoding applying a pixel size
of 10 m. Later on, all the images have been co-registered in a stack file, to allow a “pixel by pixel”
comparison among the various images [24]. The cross-calibration among different images was verified
by extracting the backscatter coefficients (σ◦) over some natural surfaces (i.e., forests, rocks, and bare
soils) used as reference targets, and successively comparing these values. Since these target areas are
characterized by rather stable temporal trends of backscattering, they can be used as a reference for
the cross-calibration of the images.

The backscatter was afterward averaged over two homogeneous areas in the Cordevole Basin,
namely the Cherz Plateau and the Monti Alti di Ornella sites having a surface area of 150 × 150 m2

and 180 × 150 m2, respectively, and where detailed in-situ snow measurements were available.

3. Results

3.1. Preliminary Image Classification

A preliminary multi-temporal analysis was performed on CSK and Landsat-8 images,
when simultaneous acquisitions are available, with the aim of confirming the results obtained at C band
in previous works for the identification of different surface classes (i.e., snow/no-snow/wet-snow).
Snow is usually defined as “‘wet’ in case that it holds free liquid water, and ‘dry’ when it doesn’t” as it
has been specified in [25].

The classification of the surface cover as “snow”/”no snow” was obtained by using Landsat-8
image and the NDSI approach [1–3], and subsequently, the estimate of wet snow was performed by
applying the well-known Nagler threshold algorithm [6]. The latter classifies snow as wet, due to
the presence of liquid water, when the backscattering coefficient, σ◦, is 3 dB lower than a reference value
collected in no-snow conditions. This procedure was mainly applied so far to ERS1-2, RADARSAT,
and ENVISAT/ASAR data (i.e., C-band sensors) [6,26,27].

With the launch of COSMO-SkyMed (CSK) and TerraSAR-X (TSX) in 2007, data from spaceborne
X band sensors are largely available, and some studies regarding snow monitoring by using these
data begun to be published. Venkataraman et al. [28] applied the ratio method, using a threshold of
3 dB, to TSX images to obtain wet snow maps in the Gangotri glacier region (Himalaya), as well as
Schellenberger et al. [29], which used CSK images on a test site in South Tyrol (Italian Alps).
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We, in our turn, have applied this threshold algorithm to CSK images [6,8] collected on Cordevole
area. Both the optical and SAR images have been acquired by the same period, very close in time,
as it can be observed in Table 1, where also the reference summer images are listed. No snowfall
occurred between the two observations. The maps represented in Figure 2 show that in November and
December 2013 most snow cover was dry (white zones), whereas in April and October 2014, most snow
cover was wet (magenta zones). These results are in line with the season and the temperature measured
at the meteorological stations present on the area, confirming that X band σ◦ also is able to provide
the identification of wet snow, as it was already pointed out in the C band [6,8,17].
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Figure 2. Four overlapped couples of CSK and L8 images of the Cordevole area acquired in different
seasons, identifying the snow cover area and separating dry from wet snow. (a) November 2013;
(b) December 2013; (c) April 2014; (d) October 2014. The size of the images is roughly 40 km × 40–50 km,
except in (c) where the dimensions are smaller, 20 km × 40 km. Legend: white = dry snow,
magenta = wet snow, brown = snow-free soil, yellow = clouds.

Table 1. Couples of CSK and L8 images acquired in the Cordevole area. Also reference summer CSK
images are listed. Dates and hours of acquisition are shown.

CSK Images Reference CSK Images L8 Images

CSK2 08/11/2013 – 17:06 CSK2 24/09/2012 07/11/2013 – 10:00
CSK2 10/12/2013 – 17:06 CSK2 24/09/2012 09/12/2013 – 9:59
CSK4 21/04/2014 – 17:05 CSK4 19/07/2012 16/04/2014 – 9:58
CSK4 20/10/2014 – 17:16 CSK4 19/07/2012 25/10/2014 – 9:58

3.2. Sensitivity of Backscatter to Snow Characteristics

After this analysis, which confirmed the sensitivity of σ◦ at X band to wet snow areas, the behavior
of backscatter at X band (CSK) as a function of snow depth (SD, in cm) was investigated. In the diagram
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of Figure 3a, σ◦ in HH polarization is directly related to SD measured at several snow stations on the
Cordevole basin (Cherz and Monti Alti di Ornella) in winter seasons between 2011 and 2015. Only data
collected in dry snow conditions have been considered, according to the air temperature (Tair < 0◦)
measured at the meteorological stations. The increasing trend of σ◦ is clear, especially at SD ≥ 50 cm,
with a determination coefficient (R2) of about 0.65. The slight difference between the two datasets
in terms of average backscattering values can be attributed to variations in the local incidence angle.
Similar trends have also been confirmed by observations carried out at VV polarization in previous
winter seasons [9], and in another Italian snow area (Bardonecchia) in the Northwest Italian Alps in
2011–2012 [30].

However, the sensitivity of X band backscatter to SD has not always been observed, since it
depends not only on SD but also on other parameters, such as grain size, snow density, and temperature.
An example of this controversial behavior is shown in Figure 3b, where σ◦ at X band in HH polarization,
still acquired on Cordevole area in winter 2013–2014, is represented vs. SD. We can note that, in spite
of the presence of consistent snow depth values derived from the local snow stations, the variations of
σ◦ on the area is almost negligible.
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Figure 3. (a) σ◦ at X band in HH polarization vs. SD collected in Cordevole basin (Cherz and Monti
Alti di Ornella) during winter seasons, 2012–2013 and 2014–2015. The obtained regression line is
σ◦ = 0.027SD – 10.24 with R2 = 0.65. (b) σ◦ at X band in HH polarization vs. SD collected in Cordevole
area during winter 2013–2014.

A clear interpretation of the behavior of σ◦ is in this case problematic, considering the difficulties
in obtaining in-situ detailed snow parameters for each date, and the extrapolation of σ◦ trend on
a large scale cannot be so trivial. At a first glance, one of the reasons for this different behavior of σ◦ vs.
SD in subsequent winter seasons could rely on the snow temperature. Winter 2013–2014 was indeed
a rather mild winter, characterized by heavy snowfalls and relatively high air temperatures, i.e., close to
0◦, measured at the local meteorological stations. This fact could have produced a slight melting of
the very first snow layer, causing, therefore, a σ◦ behavior similar to wet snow, although the in-situ
measurements of air temperature did not point out this phenomenon. Such high temperatures could
have nevertheless also affected other characteristics of snow cover, such as grain size, snow density,
and so forth. In the case of a warm winter, in fact, the snow grains increase in size due to the melting
and refreezing cycles, and ice crusts could be formed within the snow cover (with snow density even
higher than 500 kg/m3), both factors definitely affecting the backscattering [31].

Therefore, in order to investigate more in-depth the behavior of backscattering related to snow
characteristics, and to confirm these preliminary considerations, a model based on Dense Medium
Radiative Transfer theory (DMRT) was used for simulating backscattering and the results are shown in
the following sections.
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3.3. DMRT Model Simulations with Experimental Data

The model is an implementation of the dense media radiative transfer (DMRT) theory,
applying the scattering model of QCA (Quasi-Cristalline Approximation) Mie of densely packed
Sticky spheres (DMRT-QMS). The DMRT describes the scattering in a medium with particle fractional
volume >10% (independent scattering is not valid). DMRT equations are derived from Dyson’s
equation under the QCA approximation and from the Bethe Salpeter equations under the ladder
approximation of correlated scatterers. The correlation of particle position was described by the pair
distribution function of the Percus–Yevick approximation. To solve the DMRT equations, the diffuse
intensities have been decomposed into Fourier series in the azimuthal direction. Each harmonic
is solved by the eigenquadrature approach. No particle size distribution is used in this work [12].
The model is a free code in MATLAB® that has been developed in the Laboratory of Applications and
Computations in Electromagnetics and Optics (LACEO) at University of Washington (UW), Seattle,
WA, USA [15]. The model was used for investigating the dependence on σ◦ to snow parameters in
different conditions of snow cover and it was run for a single snow layer [12–14].

The physical input parameters of the model are grain radius (r, in mm), snow density (ρ, in kg/m3),
and stickiness of particles (0.1), soil permittivity, and surface roughness parameters (height standard
deviation, in cm), some of which derived from in-situ measurements. The soil contribution was
accounted for by using the Oh model [32]. The dielectric constant of soil has been assumed equal
to the one of frozen soil (dielectric constant ≈ 6 + j2) depending on the air temperature measured at
the meteorological stations.

Two key problems of the DMRT model are the estimate of the actual values of grain radius
and stickiness, which contribute to the total scattering from snow. The stickiness was found to have
a smaller influence on the model than the grain radius and was therefore assumed to be constant
and equal to 0.1. Variations of stickiness between 0.1 and 0.3 provide in fact negligible variations in
backscatter. Since the relationship between measured grain size and equivalent radius, required as
model input, is challenging, the grain radius, along with the snow temperature (Tsnow), was kept free in
the interval of experimental data (i.e., grain radius 0.05–1.5 mm, Tsnow 230–273 K). The values of grain
radius, which allowed the minimization of the error between measured and simulated backscatter
(rmod), were compared with the in-situ measurements (rmeas), in order to check if a clear scaling
relationship could be retrieved. The diagram of Figure 4 was obtained, with the following relationship:
rmod = 0.41rmeas + 0.18 (R2 = 0.53). Although the correlation between the two parameters does not
show a very high determination coefficient, the trend is clear and makes the assumption of using
the grain radius as a free parameter in the model reliable, taking into account an almost constant
scaling between the two radiuses.

The list of parameters and their range, used as inputs to model simulations, are shown in Table 2.
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Table 2. List of the DMRT-QCA model inputs.

Snow Parameters Min Max

Snow Density (ρ, kg/m3) 200 350
Snow Depth (SD, cm) 40 200
Grain Radius (r, mm) 0.05 1.5

Tsnow (K) 230 273
Incidence angle (θ, ◦) ∼=33

Soil Parameters

Soil permittivity 6 + j2
Height standard deviation (cm) 0.5

A sensitivity analysis was carried out at X band (9.6 GHz) by using the DMRT-QCA model, in order
to check the importance of snow parameters on the main model parameters, i.e., scattering, extinction,
and absorption coefficients. The extinction coefficient, κe, which represents the total loss of dry snow,
is defined as the sum of the absorption and scattering loss: κe = κa + κs, where κa is the absorption
and κs the scattering coefficient. The absorption coefficient κa is defined as: κa = 2k0Im[(εg/ε0)

1/2],
where k0 is the wave number of free space; εg is the quasi-static value of the dielectric constant of dry
snow, and κs is deduced from the phase matrix components [33]. At high microwave frequencies,
scattering generally dominates over absorption, according to Mie theory [34].

In Figure 5, the scattering and the absorption coefficients were shown as a function of grain
radius (in mm) for different values of snow density (ρ = 150–400 kg/m3). In the same figures,
the extinction coefficient was shown vs. snow density for different values of grain radius (0.05–1.5 mm).
The scattering coefficient tends to increase as the grain radius increases, more for low than for high
snow densities. It can be noted that at ρ > 300 kg/m3 κs becomes almost insensitive to grain radius,
whereas the absorption coefficient seems to be insensitive to grain size and increases as the snow
density increases. The extinction coefficient represented in Figure 5 vs. ρ, shows a decreasing
trend only for high values of grain radius (>0.7 mm), while low values of grain radius are almost
constant. This sensitivity analysis confirms that the behavior of σ◦ can change dramatically as grain
radius and snow density—which affect the absorption, scattering, and extinction coefficients in
opposite ways—vary.
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Figure 5. (a,b): Scattering and absorption coefficients, respectively, as a function of grain radius (in 
mm) for different values of snow density (150–400 kg/m3); (c) extinction coefficient vs. snow density 
for different values of grain radius (0.1–1.5 mm). 

After this theoretical sensitivity analysis, the experimental snow measurements (SD, SWE, and 
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simulate the actual σ° (at HH polarization and incidence angle θ = 33°) vs. both ρ and grain radius. 
Since the average local incidence angle of the site was about 33°, this value was used into the DMRT. 
The snow temperature (Tsnow, 230–273 K) and grain radius (r, 0.05–1.5 mm) are kept free in the 
interval of experimental data. 

In Figure 6, σ° values were generated vs. ρ derived from different SD values of the dataset 
collected on Monti Alti di Ornella (a) and grain radius (r) (b). We can note that, although with a great 
spread of data, σ° tends to decrease with increasing ρ, and increase with increasing r, although the 
latter parameter seems to influence the backscatter in a more consistent way with respect to ρ, as it is 
pointed out by the higher slope and determination coefficient (R2 > 0.75) of the regression line 
(Figure 6b). By using selected values of both grain radius (i.e., 0.05 mm, 0.75 mm, and 1.5 mm) and ρ 
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and are well separated for each selected value, thus confirming the theoretical trends of Figure 5. At 
smaller grain size (0.05 mm) and higher ρ (500 kg/m3), the trend of σ° is instead rather flat (Figure 7a,b). 

Figure 5. (a,b): Scattering and absorption coefficients, respectively, as a function of grain radius (in mm)
for different values of snow density (150–400 kg/m3); (c) extinction coefficient vs. snow density for
different values of grain radius (0.1–1.5 mm).

After this theoretical sensitivity analysis, the experimental snow measurements (SD, SWE,
and ρ), collected on Cherz plateau and Monti Alti di Ornella, were used as inputs to the model
to simulate the actual σ◦ (at HH polarization and incidence angle θ = 33◦) vs. both ρ and grain radius.
Since the average local incidence angle of the site was about 33◦, this value was used into the DMRT.
The snow temperature (Tsnow, 230–273 K) and grain radius (r, 0.05–1.5 mm) are kept free in the interval
of experimental data.

In Figure 6, σ◦ values were generated vs. ρ derived from different SD values of the dataset
collected on Monti Alti di Ornella (a) and grain radius (r) (b). We can note that, although with a great
spread of data, σ◦ tends to decrease with increasing ρ, and increase with increasing r, although the latter
parameter seems to influence the backscatter in a more consistent way with respect to ρ, as it is pointed
out by the higher slope and determination coefficient (R2 > 0.75) of the regression line (Figure 6b).
By using selected values of both grain radius (i.e., 0.05 mm, 0.75 mm, and 1.5 mm) and ρ (i.e., 124 kg/m3,
300 kg/m3, and 500 kg/m3), respectively, the diagrams are transformed into those of Figure 7a,b.
The trends of σ◦ definitely decrease as a function of ρ, and increasing as a function of r and are well
separated for each selected value, thus confirming the theoretical trends of Figure 5. At smaller grain
size (0.05 mm) and higher ρ (500 kg/m3), the trend of σ◦ is instead rather flat (Figure 7a,b).
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Hence, the variations of grain size significantly affect the backscatter simulations, as it can be 

noted from the obtained regression lines, which show rather high determination coefficients:  
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Figure 6. (a) σ◦ (HH) values vs. ρ derived from different SD values of the dataset collected on Monti
Alti di Ornella. The obtained regression line is σ◦= −0.017ρ − 1.16, R2 = 0.14; (b) σ◦ vs. grain radius, r.
The regression line is σ◦ = 7.1r − 12.4, R2 = 0.78.
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Figure 7. (a) σ◦ values vs. ρ for selected values of r (diamonds: 0.05 mm; triangles: 0.075 mm;
asterisks: 0.15mm); (b) σ◦ vs. grain radius (r) for three values of ρ (diamonds: 124 kg/m3;
triangles: 300 kg/m3; asterisks: 500 kg/m3).

For better assessing the effect of grain radius on model simulations, a more in-depth analysis
was carried out by generating values of σ◦ as a function of SD and ρ by increasing or decreasing
the grain radius (Figure 8). Simulations have been carried out for a subset of data with respect to
the dataset of Figure 3, since snow in-situ measurements were available in some dates only. In the first
two diagrams (and b) the simulations were performed assuming r linearly increasing with SD (left)
and ρ (right), within the selected intervals of experimental data, by using the following relationships:
r = 0.0045ρ − 0.7817 (a), and r = −0.0045ρ + 2.3642 (b). In the last two diagrams, r was assumed to
be linearly decreasing as both SD (c) and ρ (d) increase, according to the following relationships:
r = 0.0069SD − 0.3911 (c) and r = −0.0069SD − 1.9863 (d).

From the analysis of these diagrams, we can see that σ◦ definitely increases with both SD and
ρ, when the grain radius increases. On the other hand, we observe a systematically opposite trend
of σ◦ if the grain radius decreases as SD and ρ increase. These behaviors could explain the different
trends of σ◦ vs. SD shown in Figure 3. The insensitivity of σ◦ as SD increases can be attributed indeed
to a corresponding decrease of average r and/or an increase of ρ.

Hence, the variations of grain size significantly affect the backscatter simulations, as it can be
noted from the obtained regression lines, which show rather high determination coefficients:
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• By increasing grain radius: σ◦ = −0.058SD + 2.89 (R2 = 0.78); σ◦ = −0.025ρ − 15.64 (R2 = 0.58);
• By decreasing grain radius: σ◦ = 0.051SD − 15.43 (R2 = 0.77); σ◦ = −0.049ρ + 10.64 (R2 = 0.89).
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Figure 8. σ◦ (HH pol.) as a function of SD and ρ obtained by assuming a grain radius, r, increasing or
decreasing with SD (a,c) and ρ (b,d), respectively.

Finally, a direct comparison between simulated and measured σ◦ is shown in Figure 9, where it
can be observed that most of the σ◦ values are correctly simulated in various snow cover conditions,
although the model only considers dry snow over frozen soil, and it is not able to take into account
ice crusts inside the snow cover. σ◦ values, which did not show any correlation to SD (i.e., Figure 3b),
are marked in red.

The statistical parameters of the regression for the entire dataset are slope >0.9, R2 = 0.77,
RMSE = 1.1 dB, with p-value <0.05. This general relationship has been obtained considering both cases
in which σ◦ values increasing with SD and σ◦ values are insensitive to SD. These data refer to a subset
for which in-situ snow measurements were available and therefore do not overlap completely with
the dataset shown in Figure 3. The minimization between simulated and experimental σ◦ values was
carried out on the basis of the best value of grain size, which has been considered as a free parameter.
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Figure 9. Simulated σ◦ (HH pol.) as a function of measured σ◦. The obtained regression equation is
σ◦sim = 0.93σ◦meas − 0.96 (R2 = 0.77, RMSE = 1.1 dB, p-value < 0.05). The backscattering values not
sensitive to SD are shown in red (see Figure 3b).

4. Discussion and Conclusions

Simultaneous image acquisitions from optical and SAR satellites (Landsat-8 and Cosmo-SkyMed)
on Italian Alps (Cordevole basin) confirmed the capability of these sensors in classifying snow cover,
by identifying snow-free and snow cover areas and in detecting wet snow. These preliminary results
showed the potentiality of synergy between different satellite sensors in detecting snow conditions
and the possibility of equally using X or C band SAR.

The sensitivity of X band σ◦ to the dry snow depth is instead controversial, showing different
behaviors depending on the snow characteristics related to the winter season.

Thus, theoretical model simulations, based on DMRT-QMS model, have been carried out
for interpreting the experimental results. Ancillary information (i.e., digital elevation model,
meteorological and in-situ snow data, the latter collected by the Avalanche center in Arabba, Italy)
have been used to correctly implement the theoretical model. By using DMRT-QMS and snow in-situ
data, the effect of grain size and snow density—which affect the backscatter in an opposite way,
beside SD and SWE—were investigated. As expected, grain size significantly affects the backscattering
variations. Although the grain radius was considered a free parameter in the interval of experimental
data (i.e., 0.05–1.5 mm), we have found a good correlation between measured and simulated grain
radius, with a constant scaling.

Simulations showed that measured σ◦ values have been correctly simulated, with R2 > 0.7 and
RMSE = 1.1 dB, in both cases of backscattering decreasing and increasing with snow depth, by using
selected intervals of ground parameters, in the range of the measured ones. Although the model is not
able to take into account ice crusts inside the snow cover, and it only considers dry snow over frozen
soil, backscattering was correctly simulated in most cases.

From the results presented in the paper, one of the crucial points observed is that X band σ◦

is significantly influenced by grain radius and density in an opposite way. The behaviors of these
two parameters could explain the different trends of σ◦ vs. SD shown in Figure 3. The insensitivity of
σ◦ as SD increases can be attributed indeed to a corresponding decrease of average grain radius or/and
an increase of density. Metamorphism processes occurring in the snow cover due to sudden variations
of air temperature and heavy snowfalls can lead to these concurrent variations of snow parameters.
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This brings us to the conclusion that, in order to minimize the uncertainties on the correct σ◦

trend retrieval, at least one these two unknowns (i.e., snow density and grain size) should be measured
or derived from other observations. Actually, an attempt to retrieve snow grain size from optical
satellite data was performed in [35], while the retrieval of snow density maps seems harder to perform.
This confirms that the synergy between optical and SAR sensors should be enhanced, taking advantage
from the different observation capabilities of each sensor.

Further investigations will be carried out on the basis of SAR images and available snow data to
interpret more in-depth the different sensitivities of backscatter to snow depth and to better quantify
how snow depth, density, and grain size affect the σ◦. The final goal should be to exploit the synergy
of optical and SAR data (at X band) to investigate snow characteristics and retrieve snow parameters,
by providing indications for operational use of CSK and optical sensors on snow. Thus, since each
sensor has its own capabilities in snow monitoring, these aptitudes could be used in a synergic way,
by using optical sensors for identifying snow cover area and providing indications on the grain
size, although in cloud free conditions only, SAR sensors (at both C and X band) for discriminating
between wet and dry snow/soil, and, finally, X band backscatter for retrieving snow parameters in dry
snow conditions.
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