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Abstract: The spatial resolution of a hyperspectral image is often coarse as the limitations on the
imaging hardware. A novel super-resolution reconstruction algorithm for hyperspectral imagery
(HSI) via adaptive projection onto convex sets and image blur metric (APOCS-BM) is proposed in this
paper to solve these problems. Firstly, a no-reference image blur metric assessment method based
on Gabor wavelet transform is utilized to obtain the blur metric of the low-resolution (LR) image.
Then, the bound used in the APOCS is automatically calculated via LR image blur metric. Finally, the
high-resolution (HR) image is reconstructed by the APOCS method. With the contribution of APOCS
and image blur metric, the fixed bound problem in POCS is solved, and the image blur information
is utilized during the reconstruction of HR image, which effectively enhances the spatial-spectral
information and improves the reconstruction accuracy. The experimental results for the PaviaU,
PaviaC and Jinyin Tan datasets indicate that the proposed method not only enhances the spatial
resolution, but also preserves HSI spectral information well.

Keywords: image blur metric; Gabor wavelet transform; weighted POCS; hyperspectral imagery;
super-resolution

1. Introduction

Hyperspectral imagery (HSI) containing about 200 spectral bands in the visible and infrared
wavelength regions is an efficient way to describe and store visual information [1,2]. HSI also has a wide
range of applications such as terrain classification, mineral detection and exploration, environmental
studies, pharmaceutical counterfeiting, and military surveillance, etc. [3–7]. Our focus in this paper
will be on the remote sensing field, wherein the spectral images are typically gained by airborne
or spaceborne sensors. However, due to high sensitivity in the spectral domain when designing
the imaging hardware device, the spatial resolution of the hyperspectral image is often coarser [8].
Therefore, the image super-resolution reconstruction (SRR) technique is utilized to improve the spatial
resolution of hyperspectral images. A high-resolution (HR) image is gained from a sequence of
observed low-resolution (LR) images through the SRR technique.

The SRR technique was first achieved in the frequency domain by Tsai and Huang [9], who
proposed a formulation for the reconstruction of an HR image from LR images. SRR methods based
on discrete cosine transform (DCT) [10] or wavelet transform were subsequently proposed [11,12].
However, the frequency domain approaches are hard to combine with the information in the spatial
domain. The spectral information of the HR image is also usually difficult to reserve via the DCT-
or wavelet transform-based methods. Therefore, many spatial domain-based methods have been
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developed to overcome these weaknesses in the frequency domain. Interpolation [13], iterative back
projection (IBP) [14], Bayesian/maximum a posteriori (MAP) [15] and adaptive filtering [16] methods
are typical spatial domain reconstruction methods. Projection onto convex sets (POCS) [17,18] and
SRR methods are another spatial domain-based method, but these methods suffer from the fixed
bound problem, which affects the accuracy of the HR reconstruction image. Another kind of method
is compressive sensing (CS)-based image super-resolution approaches. Kim et al. [19] achieved the
SRR via example-based learning and Kernel ridge regression. Yang et al. [20] proposed an SRR
approach based on sparse signal representation, whereby a sparse representation for each patch of the
low-resolution input is utilized, and then the coefficients of this representation are used to generate the
high-resolution output. However, the CS-based methods [21,22] suffer from the data problem, and the
SRR results are usually based on the training data scale and image type. The SRR accuracy of CS-based
methods is usually low and unstable when the training data scale is small.

In order to overcome these weaknesses, a novel super-resolution reconstruction algorithm for
hyperspectral imagery by APOCS and image blur metric (APOCS-BM) is proposed in this paper.
A no-reference image blur metric assessment method [23,24] based on Gabor wavelet transform is
utilized to automatically obtain the blur metric of each LR image and patches. Then, the bound in the
APOCS is automatically calculated via image blur metric, and the fixed bound problem is solved at the
same time. With the contribution of APOCS and image blur metric, the image blur information is also
utilized during the reconstruction of the HR image, which improves the accuracy of the reconstructed
HR image. The experimental results indicate that the proposed method not only enhances the spatial
resolution, but also preserves the HSI spectral information well.

The remainder of the paper is organized as follows. In Section 2, the algorithm steps of the
POCS-based SRR method is introduced, and the limitations are discussed. The proposed APOCS-BM is
presented in Section 3, and the image blur metric assessment method based on Gabor wavelet transform
is also presented in that section. Experimental results are provided in Section 4, and Section 5 concludes
the paper.

2. Projection onto Convex Set-Based Super-Resolution Reconstruction (SRR)

In mathematics, projections onto convex sets (POCS) is a method to find a point in the
intersection of two closed convex sets. Stark and Oskoui [17] first proposed the POCS formulation
of super-resolution reconstruction, and the method was also extended by [18]. The POCS-based SRR
methods usually utilize an alternative iterative approach to incorporating image prior knowledge
about the solution into the reconstruction process. Therefore, the restoration and interpolation problem
both can be solved during the estimates of registration parameters.

According to the basic principle of POCS, incorporating a priori knowledge into the solution is
an interpretation of restricting the solution to be a member of a closed convex set Ci, which is defined
as a set of vectors satisfying a particular property. The main purpose of the POCS is to find a vector
through the recursion:

xn+1 = PmPm−1 · · · P2P1xn (1)

where the x is the single to be proposed, and it would be the pixel value in the application of SRR. Pi is
the projection operator which projects the x onto a closed convex set Ci(i = 1, 2, . . . m), n is a iteration
number, and x0 is an arbitrary starting point. Then, a data consistency constraint set used in the image
SRR for each pixel within the LR images yk[m1, m2] is defined as:

Ck
D[m1, m2] = {x[n1, n2] :

∣∣∣r(x)[m1, m2]
∣∣∣ ≤ δk[m1, m2]} (2)

where x[n1, n2] is the reconstructed pixel value in the HR images, δk[m1, m2] is a bound (threshold value)
reflecting the statistical confidence. r(x)[m1, m2] defined in Equation (3) is the residual error between
the pixel value yk[m1, m2] and the degradation value of x[n1, n2] calculated from a degradation model
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r(x)[m1, m2] = yk[m1, m2]− ∑
n1,n2

x[n1, n2]Wk[m1, m2; n1, n2] (3)

where Wk[m1, m2; n1, n2] is a matrix to describe the degradation model via blurring, motion and
subsampling operation.

The residual error r(x) reflects the difference between the reconstructed image and the real image,
and the two image pixel values are closer when the residual error is smaller. Therefore, the HR
image can be reconstructed by calculating the residual value in Equation (3) and the data consistency
constraint convex set in Equation (2). The δk in Equation (2) partly determines the results of the
reconstructed HR image. As the value of δk is large, the possibility of the residual error r(x) belonging
to [−δk, δk] is high. Then, the number of the correctional pixels by Equation (2) in reconstructed
HR image is low, which leads to rough reconstruction results. While the value of δk is small, the
reconstructed HR image generally suffers the noise problem due to the overflow pixel correction by
Equation (2). Most of the δk used in the existed POCS-based SRR methods is a fixed value, which
affects the accuracy of the HR reconstruction image. In order to overcome these problems, a novel
APOCS-BM method combining APOCS and blur metric is proposed in this paper, where the δk is
adaptive and automatically calculated by the image blur metric.

3. Hyperspectral Imagery Super-Resolution by Adaptive Projection onto Convex Sets (APOCS)
and Blur Metric

3.1. Image Blur Metric Based on Gabor Wavelet Transform

Image blur is a major operation in the degradation model (Wk[m1, m2; n1, n2] in Equation (3)),
which makes a contribution to the HR reconstruction image. In order to achieve APOCS, a novel
image blur metric assessment method based on Gabor wavelet transform is presented in this paper.
According to the feature of human vision system model (HVS), the edge and contour information in
an image is more sensitive than others. The edge and contour information is a kind of high frequency
information in the image processing domain, and they can be extracted from Gabor wavelet transform.
Therefore, the presented novel image blur metric assessment method is mainly based on the image
frequency information and its statistical features.

The flowchart of the image blur metric assessment method based on Gabor wavelet transform is
shown in Figure 1. The original image ( f (m1, m2)) in Figure 1 is from the Pavia university dataset, and
the spectral band is 28. The Gabor feature in Figure 1 is extracted by the Gabor wavelet transform, in
which the transform kernel function is

ψ→
k j
(
→
m) =

‖
→
k j‖

2

σ2 exp(− ‖
→
k j‖

2
‖→m‖

2

2σ2 )[exp(i
→
k j
→
m)− exp(− σ2

2 )]

→
k j =

(
kv cos ϕu

kv sin ϕu

) (4)

where kv, ϕu, and σ are the parameters utilized to gain the frequency and texture feature information,
and

→
m is the coordinate vector of image pixel. In order to divide the Gabor feature into two classes

(high and low frequency), an adaptive threshold-based frequency information extraction method is
employed in this paper. Let GF(m1, m2) be a value of the Gabor feature in Figure 1 with location
(m1, m2), then the GF(m1, m2) mean value mean(m1, m2) and variance value ε(m1, m2) are defined as:

mean(m1, m2) =
1
p2

(p−1)/2

∑
h=−(p−1)/2

(p−1)/2

∑
l=−(p−1)/2

GF(m1 + h, m2 + l) (5)

ε(m1, m2) =
1
p2

(p−1)/2

∑
h=−(p−1)/2

(p−1)/2

∑
l=−(p−1)/2

|GF(m1 + h, m2 + l)−mean(m1, m2)| (6)
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where p is the neighborhood size, and it is an odd number. The frequency information in the
neighborhood of GF(m1, m2) is captured by the mean(m1, m2) and ε(m1, m2). Then an adaptive
threshold is utilized to achieve the GF(m1, m2) classification via the captured frequency information.
The adaptive threshold t(m1, m2) is defined as:

t(m1, m2) = mean(m1, m2) + ε(m1, m2) (7)

the classification result C(m1, m2) of the GF(m1, m2) is defined as:

C(m1, m2) =

{
1, i f GF(m1, m2) > t(m1, m2)

0, others
(8)

where value 1 in C(m1, m2) describes the high frequency information, value 0 represents the low
frequency information. Let HF(m1, m2) = C(m1, m2), and LF(m1, m2) = 1− HF(m1, m2). Therefore,
the high frequency region HFR(m1, m2) and low frequency region LFR(m1, m2) in the original image
f (m1, m2) are calculated by

HFR(m1, m2) = HF(m1, m2) · f (m1, m2)

LFR(m1, m2) = LF(m1, m2) · f (m1, m2)
(9)

where (·) means the multiplication of two elements in different matrices with the same location.
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Figure 1. Flowchart of the image blur metric assessment method.

The separated frequency information is gained from Gabor wavelet transform and the adaptive
threshold-based frequency information extraction. In order to calculate the image blur metric
automatically, four statistical features extracted from separated frequency information are utilized in
our method,: horizontal absolute difference, mean horizontal absolute difference, vertical absolute
difference and mean vertical absolute difference. The four statistical features in the high frequency
(HFRhad(m1, m2), HFRmhad, HFRvad(m1, m2), HFRmvad) are defined as:
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HFRhad(m1, m2) = |HFR(m1, m2 + 1)− HFR(m1, m2 − 1)|

HFRmhad = 1
MN

M
∑

m1=1

N
∑

m2=1
HFRhad(m1, m2)

HFRvad(m1, m2) = |HFR(m1 + 1, m2)− HFR(m1 − 1, m2)| (10)

HFRmvad =
1

MN

M

∑
m1=1

N

∑
m2=1

HFRvad(m1, m2) (11)

where M, N is the original image size. The four statistical features in the low frequency
(LFRhad(m1, m2), LFRmhad, LFRvad(m1, m2), LFRmvad) are defined as:

LFRhad(m1, m2) = |LFR(m1, m2 + 1)− LFR(m1, m2 − 1)|

LFRmhad = 1
MN

M
∑

m1=1

N
∑

m2=1
LFRhad(m1, m2)

LFRvad(m1, m2) = |LFR(m1 + 1, m2)− LFR(m1 − 1, m2)|

LFRmvad = 1
MN

M
∑

m1=1

N
∑

m2=1
LFRvad(m1, m2) .

(12)

The statistical features of separated frequency information are gained by Equations (10) and (11).
Combined with these statistical features, an image blur metric assessment (AIBM) is utilized to describe
the hyperspectral image blur metric in our method:

AIBM =
LFRmhad + LFRmvad
HFRmhad + HFRmvad

(13)

Figure 2 shows AIBM with different blur images, and the spectral band of the blur images is
28. These blur images are gained from the Pavia university dataset with a 5× 5 Gaussian kernel of
different standard deviations (the standard deviation of Gaussian kernel is 0.1, 0.5, 1 and 2). From the
comparison of different blur images, it can be observed that the AIBM is decreasing with the increasing
level of image blur, and the blur metric of the image is well described by the proposed method.
The Algorithm 1 is the steps of the image blur metric assessment method.
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Figure 2. Blur images gained from the Pavia university dataset with a 5× 5 Gaussian kernel of different
standard deviations. (a) The standard deviation of Gaussian kernel is 0.1; (b) the standard deviation of
Gaussian kernel is 0.5; (c) the standard deviation of Gaussian kernel is 1; (d) the standard deviation of
Gaussian kernel is 2. (a) AIBM = 1.3588; (b) AIBM = 1.3366; (c) AIBM = 1.2952; (d) AIBM = 1.2473.



Sensors 2017, 17, 82 6 of 20

Algorithm 1. Steps of the image blur metric assessment method:

Step 1: Set the initial value of p (Equation (5));
Step 2: Compute the Gabor feature GF(m1,m2) via Equation (4);
Step 3: Compute the mean value m(m1,m2) and variance value ε(m1,m2) of the Gabor feature with

Equations (5) and (6);
Step 4: Compute the adaptive threshold t(m1,m2) (Equation (7)) and achieve the Gabor feature

classification (Equation (8));
Step 5: Gain the separated frequency information HFR(m1,m2) and LFR(m1,m2) via Equation (9);
Step 6: Extract the statistical features HFRhad(m1,m2), HFRmhad, HFRvad(m1,m2), HFRmvad and

LFRhad(m1,m2), LFRmhad, LFRvad(m1,m2), LFRmvad from the separated frequency
information (Equations (10) and (11));

Step 7: Compute the image blur metric assessment AIBM via statistical features (Equation (12)).

3.2. Proposed APOCS-Blur Metrics (BM) Method

The presented image blur metric assessment AIBM (Equation (12)) in the last subsection is
automatically calculated by the statistical features of separated frequency information. With the
contribution of AIBM, a novel super-resolution reconstruction algorithm for hyperspectral imagery
based on adaptive projection onto convex sets and image blur metric is proposed in this paper.
The steps of Algorithm 2 are shown below:

Algorithm 2. Steps of the proposed APOCS-BM method:

Step 1: Set the initial value of p (Equation (5)), α, β, t0 (Equation (13)) and iteration number Itn;
Step 2: Gain the initial HR image H from the LR image L1 by linear interpolation, calculate the

AIBM[m1,m2] and ALR
IBM for each LR image L1~L4;

Step 3: For i = 1,2, . . . , Itn
for j = 1,2, 3, 4

Step 3.1: Calculate the affine motion parameters for LR image Lj;
Step 3.2: Gain the estimation value Hes of H via the affine motion parameters and

point spread function;
Step 3.3: Calculate the residual Rj(i);
Step 3.4: Calculate the adaptive threshold value δk[m1,m2];
Step 3.5: If Rj(i) > δk[m1,m2] or Rj(i) < −δk[m1,m2]

Step 3.5.1: refresh H with the estimation value Hes;
end If

end for
end for

Step 4: output the reconstructed HR image H.

The input of the proposed APOCS-BM method is four LR images L1 ∼ L4, and an iteration
operation (in Step 3) is employed to improve the accuracy of the reconstructed HR image. The initial
HR image H is calculated from L1 via a linear interpolation operation. In the steps of calculating
the HR image estimation value Hes (Steps 3.1 and 3.2), affine motion parameters and a point spread
function are utilized. Then the residual Rj(i) between estimation value Hes and the initial HR image H
is gained. The adaptive threshold value δk[m1, m2] (Equation (2)) used in the APOCS-BM method is
defined as:

δk[m1, m2] = α · AIBM[m1, m2]

ALR
IBM

· t0 + β (14)
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where AIBM[m1, m2] is the blur metric assessment of an image patch with center location (m1, m2).
The image patch size is 8 × 8 in our method. ALR

IBM is the blur metric assessment of the LR image, α is
the weight coefficient, β is the correction factor, and t0 is a threshold value. Finally, the reconstructed
HR image H is refreshed by Step 3.5. In order to describe the algorithm in more detail, Figure 3
presents a flowchart of the single iteration processing for the proposed APOCS-BM method.
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The image used in Figure 3 is from the Pavia university dataset with the same spectral band in
Figure 2. In Figure 3, the input of the proposed APOCS-BM method is four LR images; the LR image 1
is down-sampled from the original hyperspectral imagery. LR images 2, 3 and 4 are gained from LR
image 1 convolving with a 5 × 5 Gaussian kernel of standard deviation 0.1, 0.2 and 0.5, respectively.
The initial HR image used in Figure 3 is calculated from LR image 1 via a linear interpolation operation.
Then the iteration processing from LR image 1 to LR image 4 is utilized to update the initial HR image.
The input of each iteration processing is the output (HR image) of each last iteration, and the iteration
processing order is LR images 1, 2, 3 and 4. The reconstructed HR image is refreshed by the iteration
processing of four LR images. It can be observed that the spatial information and visual details in the
HR image are effectively recovered by the proposed APOCS-BM method.

In the proposed method, the patch size selection in the calculation of AIBM is mainly determined
by the size of LR image. All the LR image sizes used in the experiment are 128 × 128. In comparing
with other sizes, we found that the image patch 8 × 8 has the best performance in our method. In some
other POCS-based SRR methods, the number and the LR image scale factor of inputs can be increased.
However, the time cost is also increased, and the robustness and reliability in these algorithms are
hard to be maintained. In order to speed up the algorithm, the initial HR image H is gained from the
LR image L1 by linear interpolation. If the initial estimation of H is set to 0, the reconstructed result is
very close to the original one, and only the iteration number Itn should be larger than usual.
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4. Experiments and Results

To evaluate the performance of the proposed APOCS-BM method, a series of experiments are
performed on the Pavia and Jinyin Tan databases. All our experiments are done using MATLAB R2016b
(Mathworks Corporation, MA, USA)on a 3.1 GHz Intel i5-2400 with 16GB RAM. The Pavia database
consists of the Pavia University (PaviaU) scene and Pavia Centre (PaviaC) scene, which were captured
by ROSIS sensor (German Aerospace Center (DLR), Cologne, Germany) during a flight campaign over
Pavia in northern Italy. Part of the channels are removed due to noise; the number of spectral bands is
102 for PaviaC and 103 for PaviaU. The Jinyin Tan dataset is a scene of Jinyin Tan, a grassland located
in Qinghai province, western China, which was captured by an airborne sensor named Lantian [25,26].
The number of spectral bands is 103. The image size of all HR used in the experiment is 256× 256 pixels,
which is part of the original dataset, and the image size of LR is 128 × 128 pixels. In order to evaluate
the algorithm fairly, average peak signal noise ratio (A-PSNR), average structural similarity (A-SSIM)
and spectral angle mapper (SAM) are employed as quality indexes. The A-PSNR and A-SSIM are
calculated from the average value of whole spectral bands. The SAM represents the spectral distortion
between the original and reconstructed HR image by absolute angles. The value of SAM should be zero
when the reconstructed HR image is the same as the original. In the experiment, the proposed method
is also compared with the linear interpolation method, DCT-based method [10], Kim [19], POCS [17]
and sparse representation-based SR (SR-SR) method [20].

4.1. PaviaU and PaviaC Dataset

In the proposed APOCS-BM method, the original input is a single LR image (marked as LR image
1 in Figure 3) with a size of 128× 128 pixels. The first step of the proposed method is to obtain another
three LR images (marked as LR image 1, LR image 2 and LR image 3 in Figure 3), which are gained
from the original input LR image convolving with a 5 × 5 Gaussian kernel of standard deviation 0.1,
0.2 and 0.5, respectively. Then, the four LR images are utilized to reconstruct the HR image. In the
experiment, in order to achieve the universal property of the proposed method on different datasets,
the patch size (p), iteration number (Itn) and t0 are all the same, where p = 5, Itn = 2 and t0 = 1.

(a) PaviaU dataset results

The other parameters used in the PaviaU dataset are: α = 0.8, β = 1. Figure 4 shows the visual
results of the PaviaU HSI dataset using different SRR methods. For the purpose of visualization by
a human observer, the 80th, 28th and 9th spectral bands of the PaviaU dataset are chosen as the R, G
and B channels of the color images in Figure 4. It can be observed that the results gained by linear
interpolation method or DCT-based method [10] are blurrier than the others. The POSC [17]-based
results in Figure 4e are over-sharpened, and the edges and corners are partly changed. From the
visual comparison in Figure 4, it can be seen that the proposed APOCS-BM method achieves better
spatial-spectral information recovery than the other methods.

In order to further compare the results with other methods, Figure 5a shows the spectral curves
of reconstructed HR images (all spectral images). The horizontal axis is the spectral number, and the
vertical axis is the gray value of the spectral image in the same coordinate (the coordinate located at
(181,23), shown in Figure 5c). The difference values between the reconstructed spectral curve and
the original spectral curve are presented in Figure 5b, the baseline represented by a black dotted line
is the original spectral curve. It can be observed that the closer the spectral curves to the baseline,
the better the result. From the comparison of different spectral curves in Figure 5, the spectral curve
reconstructed by the proposed APOCS-BM method is the best of all reconstructed spectral curves.
Table 1 shows the A-PSNR, A-SSIM and SAM of different reconstructed results. We can find that the
proposed method has better performance than A-PSNR, A-SSIM and SAM.
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Figure 4. False color image of experimental results for the PaviaU dataset (color composite of R: 80,
G: 28, B: 9). (a) original HR image; (b) linear interpolation results; (c) DCT-based method [10] results;
(d) Kim [19] results; (e) POCS [17] results; (f) SRSR [20] results; (g) proposed APOCS-BM method results.

Table 1. Comparison results of A-PSNR, A-SSIM and SAM on the PaviaU dataset.

Measures Linear
Interpolation

DCT-Based
Method [10]

Kim
[19]

POCS
[17]

SR-SR
Method [20]

Proposed
Method

A-PSNR 20.8478 24.9727 25.1193 25.7390 26.9570 28.5050
A-SSIM 0.5347 0.6824 0.7108 0.7161 0.8069 0.8435

SAM 0.2148 0.1192 0.1100 0.1002 0.1016 0.0817
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Figure 5. Spectral curves of pixel (181, 23) in the PaviaU dataset. (a) Spectral curves of different
methods; (b) Difference values of spectral curves (the black dotted line is the baseline, the red line
represents the results of the proposed methods); (c) spectral curve location.
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(b) PaviaC dataset results

The parameters used in the PaviaC dataset are: α = 1, β = 1. The false color image of experimental
results for the PaviaC dataset are shown in Figure 6, and the spectral band numbers chosen to be
the R, G and B channels are the same as PaviaU. The spectral curves with location (233, 163) are
shown in Figure 7. From the comparison of false color image and spectral curves, the reconstructed
HR images via the proposed APOCS-BM method contain more spatial-spectral information than the
other aforementioned methods. The mean difference value in Figure 7b is smaller than the value in
Figure 5b, which is mainly caused by the different material properties. The A-PSNR, A-SSIM and SAM
results are shown in Table 2; similar to Table 1, the proposed method performs the best in the different
quality indexes.

Table 2. Comparison results of A-PSNR, A-SSIM and SAM for the PaviaC dataset.

Measures Linear
Interpolation

DCT-Based
Method [10]

Kim
[19]

POCS
[17]

SR-SR
Method [20]

Proposed
Method

A-PSNR 21.4309 25.6022 25.7052 26.3187 27.3867 29.0013
A-SSIM 0.4959 0.6539 0.6761 0.6816 0.7916 0.8292

SAM 0.2633 0.1333 0.1225 0.1093 0.1208 0.0949
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Figure 6. False color image of experimental results for the PaviaC dataset (color composite of R: 80,
G: 28, B: 9). (a) original HR image; (b) linear interpolation results; (c) DCT-based method [10] results;
(d) Kim [19] results; (e) POCS [17] results; (f) SRSR [20] results; (g) proposed APOCS-BM method results.
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Figure 7. Spectral curves of pixel (233,163) in the PaviaC dataset. (a) Spectral curves of different
methods; (b) Difference values of spectral curves (the black dotted line is the baseline, the red line
illustrates the results of the proposed methods); (c) spectral curve location.
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4.2. Jinyin Tan Dataset

The Jinyin Tan dataset was captured by the airborne sensor Lantian [21,22]. The Jinyin Tan dataset
1 (the main scene is a water box) and Jinyin Tan dataset 2 (the main scene is grassland) comprise the
Jinyin Tan dataset. The details are shown in Figure 8, and the whole image size of the Jinyin Tan is
1681× 1681 pixels. The 48th, 30th and 11th spectral bands in the Jinyin Tan dataset 1 are chosen as
the R, G and B channels of the false color images in Figures 8 and 9. The parameters used in the two
datasets are: α = 1.2, β = 1, which have the best performance in the experiment. α and β affect the
calculation of the adaptive threshold value δk, which is used in APOCS. When α and β are increased,
the adaptive threshold value is increased. In Algorithm 2’s Step 3.5, the amount of the pixel refreshed
in H is decreased, but the accuracy of the constructed result (HR image) may be low. When these
parameters are decreased, the amount of the pixel refreshed in H is increased, but the noise may be
added through this increase. Therefore, α and β are different with different applications.
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Figure 8. False color image of Jinyin Tan dataset 1 (water box) and Jinyin Tan dataset 2 (grassland)
captured from the Jinyin Tan dataset, color composite of R: 48, G: 30, B: 11.

(a) Jinyin Tan dataset 1 (water box)

The false color images of experimental results for the Jinyin Tan dataset 1 are shown in Figure 9,
and the spectral curves with location (82, 184) are shown in Figure 10. The difference value in Figure 10b
is much smaller than the values in Figures 5b and 7b, which has a better reconstruction performance in
the Jinyin Tan dataset 1. From the visual comparison in Figure 9, we can see that the corners and image
texture information of the water box obtained by the proposed method are much better than for the
others. It also can be observed that the spatial-spectral information gained via the proposed method is
closer to the original signals from Figure 10. Table 3 shows the A-PSNR, A-SSIM and SAM of different
experimental results for the Jinyin Tan dataset 1. The A-PSNR in the proposed method is 44.7879, and
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the constructed HR image is really close to the original HR image. The SAM in the proposed method is
0.0411, which means the spectral distortion between the original and reconstructed HR image is really
small. The quality indexes in Table 3 prove that the proposed APOCS-BM method performs better
than the others in the Jinyin Tan 1 dataset.
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Figure 9. False color image of experimental results for the Jinyin Tan dataset 1 (color composite of
R: 48, G: 30, B: 11). (a) original HR image; (b) linear interpolation results; (c) DCT-based method [10]
results; (d) Kim [19] results; (e) POCS [17] results; (f) SRSR [20] results; (g) proposed APOCS-BM
method results.

Table 3. Comparison results of A-PSNR, A-SSIM and SAM on Jinyin Tan dataset 1.

Measures Linear
Interpolation

DCT-Based
Method [10]

Kim
[19]

POCS
[17]

SR-SR
Method [20]

Proposed
Method

A-PSNR 37.9661 40.0457 40.0424 40.1739 43.8014 44.7879
A-SSIM 0.9608 0.9696 0.9720 0.9727 0.9869 0.9885

SAM 0.0876 0.0621 0.0600 0.0572 0.0588 0.0411
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Figure 10. Spectral curves of pixel (82, 184) in the Jinyin Tan dataset 1. (a) Spectral curves of different
methods; (b) Difference values of spectral curves (the black dotted line is the baseline, the red line
represents the results of the proposed methods); (c) spectral curve location.
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(b) Jinyin Tan dataset 2 (grassland)

Like the Jinyin Tan dataset 1, the false color images of experimental results for the Jinyin Tan
dataset 2 are shown in Figure 11, the spectral curves with location (182, 44) are shown in Figure 12,
and the quality indexes are shown in Table 4. The 48th, 30th and 11th spectral bands are chosen as the
R, G and B channels of the false color images in Figure 11. It can be observed that the difference value
in Figure 12b is smaller than 2, and the reconstructed HR images in the Jinyin Tan dataset 2 have the
best performance of difference value. From the comparison in the figures and quality indexes, we can
see that the reconstructed HR images by the proposed method are much better than by the others, and
the spatial-spectral information is well enhanced.
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Figure 11. False color image of experimental results for the Jinyin Tan dataset 2 (color composite of
R: 48, G: 30, B: 11). (a) original HR image; (b) linear interpolation results; (c) DCT-based method [10]
results; (d) Kim [19] results; (e) POCS [17] results; (f) SRSR [20] results; (g) proposed APOCS-BM
method results.

Table 4. Comparison results of A-PSNR, A-SSIM and SAM in the Jinyin Tan dataset 2.

Measures Line
Interpolation

DCT-Based
Method [10]

Kim
[19]

POCS
[17]

SR-SR
Method [20]

Proposed
Method

A-PSNR 47.3629 52.4696 50.7218 50.7808 51.1665 55.5370
A-SSIM 0.9897 0.9905 0.9910 0.9914 0.9947 0.9966

SAM 0.0610 0.0544 0.0474 0.0488 0.0448 0.0405
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Figure 12. Spectral curves of pixel (182, 44) in the Jinyin Tan dataset 2. (a) Spectral curves of different
methods; (b) Difference values of spectral curves (the black dotted line is the baseline, the red line
shows the results of the proposed methods); (c) spectral curve location.
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In the experiment, we also compared the execution times of different methods. Table 5 shows
the average execution time of different methods for the PaviaU dataset, PaviaC dataset, Jinyin Tan
dataset 1 and Jinyin Tan dataset 2. The average execution time is for the reconstruction of a single
HR image, not the whole spectral band. It can be observed that the average execution times in line
interpolation, DCT-based method [10] and Kim [19] are close, and line interpolation is the fastest.
However, the results gained by these methods do not perform well in the comparison of visual or
spectral curves. The average execution times in the proposed method and POSC [17] are close, but
they are much slower than line interpolation method. The SR-SR method [20] suffers the largest
execution time, the main reason being the big dictionary used in the sparse coding and reconstruction.
Considering the execution time and reconstruction accuracy of the HR image, the proposed method
has the best performance.

Table 5. Average execution time of different methods for all datasets (single HR image).

Method Line
Interpolation

DCT-Based
Method [10]

Kim
[19]

POCS
[17]

SR-SR
Method [20]

Proposed
Method

Average time(s) 0.0024 0.0073 0.0597 1.7011 12.2114 1.8414

5. Conclusions

In this paper, a novel super-resolution reconstruction algorithm for hyperspectral imagery via
adaptive projection onto convex sets and image blur metric is proposed. In the step of assessing
the low resolution (LR) image blur metric, a no-reference image blur metric assessment method
based on the Gabor wavelet transform is utilized. Then, the bound (Equation (13)) is automatically
calculated via image blur metric. Finally, the high resolution (HR) image is reconstructed by the
adaptive projection onto convex sets (APOCS) method. The fixed bound problem in POCS is efficiently
solved by the no-reference image blur metric assessment method. With the contribution of APOCS
and image blur metric, the image blur information is utilized during the reconstruction of the HR
image, which enhances the spatial-spectral information and effectively improves the reconstruction
accuracy. The experimental results for the PaviaU, PaviaC and Jinyin Tan datasets indicate that the
proposed method not only enhances spatial resolution, but also preserves the hyperspectral imagery
(his) spectral information well. Planned future work includes: (i) further improving the spatial
resolution and reconstruction accuracy; and (ii) achieving the hyperspectral imagery super-resolution
via Convolutional Neural Network (CNN).

Acknowledgments: This work is supported by Beijing Natural Science Foundation, China (BNSF 4162034);
National Natural Science Foundation of China (NSFC 41571369); Science and Technology Planning Project of
Qinghai Province, China (2016-NK-138); the Great Wall Scholars Programme of Beijing (CIT&TCD20150323).

Author Contributions: Shaoxing Hu and Shuyu Zhang proposed the new algorithm, and designed the
experiments; Shaoxing Hu performed the experiments; Shuyu Zhang analyzed the data; Aiwu Zhang contributed
analysis tools, Shaoxing Hu, Aiwu Zhang and Shatuo Chai contributed Jinyin Tan datasets; Shuyu Zhang wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bioucas-Dias, J.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral
remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]

2. Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution:
A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008,
46, 1301–1312. [CrossRef]

http://dx.doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.1109/TGRS.2007.912448


Sensors 2017, 17, 82 19 of 20

3. Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive prediction and visualization of chemical
composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci.
Emerg. Technol. 2012, 16, 218–226. [CrossRef]

4. Granero-Montagud, L.; Portalés, C.; Pastor-Carbonell, B.; Ribes-Gómez, E.; Gutiérrez-Lucas, A.; Tornari, V.;
Papadakis, V.; Groves, R.M.; Sirmacek, B.; Bonazza, A.; et al. Deterioration estimation of paintings by means
of combined 3D and hyperspectral data analysis. Proc. SPIE 2013, 8790. [CrossRef]

5. Scafutto, R.D.P.M.; de Souza Filho, C.R.; Rivard, B. Characterization of mineral substrates impregnated
with crude oils using proximal infrared hyperspectral imaging. Remote Sens. Environ. 2016, 179, 116–130.
[CrossRef]

6. Calin, M.A.; Parasca, S.V.; Savastru, R.; Manea, D. Characterization of burns using hyperspectral imaging
technique–A preliminary study. Burns 2015, 41, 118–124. [CrossRef] [PubMed]

7. Goto, A.; Nishikawa, J.; Kiyotoki, S.; Nakamura, M.; Nishimura, J.; Okamoto, T.; Ogihara, H.; Fujita, Y.;
Hamamoto, Y.; Sakaida, I. Use of hyperspectral imaging technology to develop a diagnostic support system
for gastric cancer. J. Biomed. Opt. 2015, 20. [CrossRef] [PubMed]

8. Zhang, H.; Zhang, L.; Shen, H.A. Super-resolution reconstruction algorithm for hyperspectral images.
Signal Process. 2012, 92, 2082–2096. [CrossRef]

9. Tsai, R.Y.; Huang, T.S. Multiple Frame Image Restoration and Registration. In Advances in Computer Vision
and Image Processing; JAI Press Inc.: Greenwich, CT, USA, 1984; pp. 317–339.

10. Yaroslavsky, L.; Happonen, A.; Katyi, Y. Signal Discrete Sinc-Interpolation in DCT Domain: Fast Algorithms;
SMMSP: Toulouse, France, 2002; pp. 7–9.

11. Anbarjafari, G.; Demirel, H. Image super resolution based on interpolation of wavelet domain high frequency
subbands and the spatial domain input image. ETRI J. 2010, 32, 390–394. [CrossRef]

12. Ji, H.; Fermüller, C. Robust wavelet-based super-resolution reconstruction: Theory and algorithm. IEEE Trans.
Pattern Anal. Mach. Intell. 2009, 31, 649–660. [CrossRef] [PubMed]

13. Sun, J.; Xu, Z.; Shum, H.Y. Image Super-Resolution Using Gradient Profile Prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, AK, USA, 23–28 June 2008;
pp. 1–8.

14. Irani, M.; Peleg, S. Improving Resolution by Image Registration. CVGIP Graph. Models Image Process. 1991,
53, 231–239. [CrossRef]

15. Shen, H.; Zhang, L.; Huang, B.; Li, P. A MAP approach for joint motion estimation, segmentation, and
super resolution. IEEE Trans. Image Process. 2007, 16, 479–490. [CrossRef] [PubMed]

16. Elad, M.; Feuer, A. Superresolution restoration of an image sequence: Adaptive filtering approach. IEEE Trans.
Image Process. 1999, 8, 387–395. [CrossRef] [PubMed]

17. Stark, H.; Oskoui, P. High-resolution image recovery from image-plane arrays, using convex projections.
JOSA A 1989, 6, 1715–1726. [CrossRef]

18. Xu, Z.Q.; Zhu, X.C. Super-Resolution Reconstruction of Compressed Video Based on Adaptive Quantization
Constraint Set. In Proceedings of the First International Conference on Innovative Computing, Information
and Control, Beijing, China, 30 August–1 September 2006; pp. 281–284.

19. Kim, K.I.; Kwon, Y. Example-Based Learning for Single-Image Super-Resolution, Joint Pattern Recognition Symposium;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 456–465.

20. Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans.
Image Process. 2010, 19, 2861–2873. [CrossRef] [PubMed]

21. Marcia, R.F.; Willett, R.M. Compressive Coded Aperture Super Resolution Image Reconstruction.
In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing,
Las Vegas, NV, USA, 31 March–4 April 2008; pp. 833–836.

22. Pan, Z.; Yu, J.; Huang, H.; Hu, S.; Zhang, A.; Ma, H.; Sun, W. Super-resolution based on compressive sensing
and structural self-similarity for remote sensing images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4864–4876.
[CrossRef]

23. Liu, Y.; Wang, J.; Cho, S.; Finkelstein, A.; Rusinkiewicz, S. A no-reference metric for evaluating the quality of
motion deblurring. ACM Trans. Graph. 2013, 32. [CrossRef]

24. Kerouh, F.; Serir, A. A no reference quality metric for measuring image blur in wavelet domain. Int. J. Digit.
Inf. Wirel. Commun. 2012, 4, 767–776.

http://dx.doi.org/10.1016/j.ifset.2012.06.003
http://dx.doi.org/10.1117/12.2020336
http://dx.doi.org/10.1016/j.rse.2016.03.033
http://dx.doi.org/10.1016/j.burns.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/24997530
http://dx.doi.org/10.1117/1.JBO.20.1.016017
http://www.ncbi.nlm.nih.gov/pubmed/25604546
http://dx.doi.org/10.1016/j.sigpro.2012.01.020
http://dx.doi.org/10.4218/etrij.10.0109.0303
http://dx.doi.org/10.1109/TPAMI.2008.103
http://www.ncbi.nlm.nih.gov/pubmed/19229081
http://dx.doi.org/10.1016/1049-9652(91)90045-L
http://dx.doi.org/10.1109/TIP.2006.888334
http://www.ncbi.nlm.nih.gov/pubmed/17269640
http://dx.doi.org/10.1109/83.748893
http://www.ncbi.nlm.nih.gov/pubmed/18262881
http://dx.doi.org/10.1364/JOSAA.6.001715
http://dx.doi.org/10.1109/TIP.2010.2050625
http://www.ncbi.nlm.nih.gov/pubmed/20483687
http://dx.doi.org/10.1109/TGRS.2012.2230270
http://dx.doi.org/10.1145/2508363.2508391


Sensors 2017, 17, 82 20 of 20

25. Li, H.; Zhang, A.; Hu, S. A Multispectral Image Creating Method for a New Airborne Four-Camera System
with Different Bandpass Filters. Sensors 2015, 15, 17453–17469. [CrossRef] [PubMed]

26. Zhang, A.; Hu, S.; Meng, X.; Yang, L.; Li, H. Toward High Altitude Airship Ground-Based Boresight
Calibration of Hyperspectral Pushbroom Imaging Sensors. Remote Sens. 2015, 7, 17297–17311. [CrossRef]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s150717453
http://www.ncbi.nlm.nih.gov/pubmed/26205264
http://dx.doi.org/10.3390/rs71215883
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Projection onto Convex Set-Based Super-Resolution Reconstruction (SRR) 
	Hyperspectral Imagery Super-Resolution by Adaptive Projection onto Convex Sets (APOCS) and Blur Metric 
	Image Blur Metric Based on Gabor Wavelet Transform 
	Proposed APOCS-Blur Metrics (BM) Method 

	Experiments and Results 
	PaviaU and PaviaC Dataset 
	Jinyin Tan Dataset 

	Conclusions 

