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Abstract: We investigate emerging mobile crowd sensing (MCS) systems, in which new cloud-based
platforms sequentially allocate homogenous sensing jobs to dynamically-arriving users with uncertain
service qualities. Given that human beings are selfish in nature, it is crucial yet challenging to design
an efficient and truthful incentive mechanism to encourage users to participate. To address the
challenge, we propose a novel truthful online auction mechanism that can efficiently learn to make
irreversible online decisions on winner selections for new MCS systems without requiring previous
knowledge of users. Moreover, we theoretically prove that our incentive possesses truthfulness,
individual rationality and computational efficiency. Extensive simulation results under both real and
synthetic traces demonstrate that our incentive mechanism can reduce the payment of the platform,
increase the utility of the platform and social welfare.

Keywords: mobile crowd sensing system; online incentive; truthful mechanism; single-parameter
mechanism

1. Introduction

With abundant portable sensors (e.g., camera, compass, microphone, gyroscope, etc.) embedded
in mobile devices (e.g., smart phones, wearable devices, tablets, etc.), people are available to collect
sensing data when they roam in the city. Owing to the low deploying cost and high sensing coverage,
numerous mobile crowd sensing (MCS) systems spring up to solve large-scale mobile sensing tasks,
such as wireless signal strengths [1], traffic information mapping [2], air quality monitoring [3],
parking [4], and so on.

In a typical MCS system, a cloud-based platform first divides sensing tasks into a set of unit
sensing jobs. For example, collecting data for one location at one time slot can become a unit job for
collecting sensing data in the city during a long time. Then, the platform publishes these jobs and takes
rounds to make irreversible online decisions on user recruitment for every job before the deadline.
Mobile users join and leave the system dynamically with pleasure. The selected users submit data to
the platform after undertaking assigned sensing jobs.

Motivating users to participate is the key to the success of MCS systems. Since people are selfish
in general, few mobile users voluntarily participate in sensing, especially considering the fees of
uploading data through cellular networks and limited resources in smart phones, such as memory
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and energy. Consequently, MCS systems would fail without desirable sensing data from enough
participants. To solve this problem, the design of incentive mechanisms is an effective approach via
giving some rewards to users as compensations.

Besides the incentive mechanism, the quality of sensing service is crucial to the MCS system.
As we know, inefficient sensing produces low quality sensing data, which harms the preciseness of
MCS systems directly. To support the desired service, the platform shall select winners with high
qualities of sensing service. Recently, some research works [5–7] have proposed auction-based incentive
mechanisms with the consideration of the service quality. However, in these works, users’ sensing
qualities are known to the system as prior information while determining winners.

However, the users’ service qualities are uncertain and unknown to the system during winner
selections in practice. Since users move around and the wireless signals are not stable, users’ service
qualities vary at times. Moreover, as users’ service qualities can be only calculated after submitting
sensing data, the qualities are unknown to the platform while selecting winners. That is to say,
service qualities are ex post information. Recently, some research works [8–10] have paid attention to
the ex post service quality with the consideration of dynamic participation. However, their systems rely
on users’ historical movement regulations to estimate users’ service qualities. Without this previous
knowledge of users, these works cannot fit in a new MCS system. Besides, these works ignore users’
dishonest behaviors in overstating bidding prices, which results in more payment and less utility of
the platform.

To solve the aforementioned problem, we propose a novel truthful incentive-based on online
auction mechanism (TOAM) with the consideration of ex post service quality and dynamically-arriving
users for a new MCS system without requiring previous knowledge of the users. In TOAM, the
platform determines a winner according to the arriving users’ bidding prices and learned expected
service qualities in every allocation round. As users are selfish, but rational in general, users may
overstate their costs in their bids for higher payoff, which results in poor outcomes [11]. Hence,
truthfulness and individual rationality are essential in auction-based incentives, where truthful costs
are guaranteed in users’ bids and the payoff of winners is not negative. For the uncertain and unknown
service quality, we believe users’ expected service qualities are fixed. Furthermore, one user’s service
quality of one job is stochastically drawn from some unknown distributions. Therefore, the platform
learns users’ expected service qualities and makes sequential decisions on winner selections with an
exploration-exploitation trade-off. The exploration-exploitation is a balance between remaining with
the best choice that can gain the highest profits once and exploring a new choice that might give higher
profits in the future.

Calculating payment in truthful incentive mechanisms could be computationally impossible
owing to the online restriction [12]. To achieve computational efficiency, we adopt a framework
of designing a truthful-in-expectation mechanism with single-parameter users [12] in TOAM.
Here, the user’s expected service quality is the single parameter. With random sampled bidding
prices for winner selections and payment decisions, the key is to design a novel ex post monotonicity
of the allocation rule of sensing jobs.

The major technical contributions in our paper are as follows.

• To the best of our knowledge, this is the first truthful incentive based on auction theory
with consideration of ex post service qualities and dynamically-arriving users in a new MCS
system without requiring previous knowledge of users. In TOAM, the platform learns users’
expected service qualities and makes sequential online decisions on winner selections with an
exploration-exploitation trade-off.

• To achieve truthfulness with the consideration of computational efficiency in our situation, we
adopt a framework proposed in [12] and design a novel ex post monotone allocation rule to select
proper winners.

• We analyze if TOAM possesses truthfulness, individual rationality and computational efficiency
theoretically. Besides, extensive simulation results on both real and synthetic traces verify the
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efficient of our incentive TOAM, which can decrease the payments, improve the utility of the
platform and social welfare.

The rest of the paper is organized as follows. We introduce our system model, review some
technical preliminaries and formulate our problem in Section 2. Our incentive TOAM is detailed in
Section 3. Three attractive properties of TOAM are proven in Section 4. We evaluate TOAM and
present the results in Section 5. Related work is reviewed in Section 6, and the conclusion is drawn in
Section 7 finally.

2. System Model, Technical Preliminaries and Problem Formulation

2.1. System Model

With an instance of MCS systems shown in Figure 1, we introduce our system model. The system
consists of two types of entities, namely the platform residing in the cloud and a set of mobile phone
users, denoted as N = {1, 2, ..., n}. For the platform, the IaaSmodel of the cloud service presented
in [13] can be used so as to run the platform in a trusted state. For the mobile phone users, they can
download corresponding crowd sensing applications to participate in collecting sensory data.
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Figure 1. An example of the mobile crowd sensing system.

To conduct some homogeneous sensing tasks, at first, the platform publishes a set of unit
sensing jobs in order to collect sensory data from a set of locations L = {l1, l2, ...} before deadline T.
Then, at any time slot t(t ≤ T), the platform selects a winner from a set of arriving users Njt(Njt ⊆ N)

at any location lj(lj ∈ L) to execute a sensing job. To simplify, we assume users can complete one
sensing job at their current locations within one slot. Since users roam in the city and participate in
sensing activities intermittently, the available users for a job in location lj vary with time. Therefore,
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the platform should make sequential online decisions to allocate jobs. An the end of the time slot, the
system pays the winner rational money after receiving sensing data.

To select appropriate users, both users’ costs and service qualities should be considered. The cost
ci (i.e., cmin ≤ ci ≤ cmax) of user i for one sensing job is private information, where cmin and cmax are
known as the minimum and maximum cost. To calculate the cost, the application in a mobile phone
can measure the cost of resources (e.g., computing resource and energy) for undertaking one unit
sensing job. cmax and cmin are the maximum and minimum costs of resources in various mobile phones
measured by the system before the mobile crowd sensing systems’ release. On account of different
sensing devices equipped in mobile phones and users’ diverse behaviors, users have differential service
qualities. We believe every user’s sensing ability is static, so we assume the expected service quality qi
(i.e., qmin ≤ qi ≤ qmax) of user i is fixed and also privately held by user i, where qmin and qmax are the
minimum and maximum value, respectively. Users’ service qualities vary with time, so we assume
that the service quality qit of user i at time slot t is a stochastic parameter following a fixed distribution
on [qmin, qmax] with expectation qi. There are many methods to reflect users’ service qualities, such
as directly calculating the deviation of users’ sensory data from the ground truths [14], inferred from
users’ data by utilizing algorithms proposed in [15–17] without ground truths, etc. However, as our
auction-based incentive is not restricted to any particular methods of quality calculation, the details of
these methods are out of the scope of this paper. Instead, we give some values to represent qualities
directly, where a high quality value means good service quality.

A general assumption [18] is given in this paper about auction mechanisms, i.e., users are
symmetric, independent and risk-neutral. That is to say, users have the same common knowledge,
except their private information, and determine their bidding prices independently, so as to achieve
their maximum utilities without worrying about risks.

2.2. Technical Preliminaries

We review some crucial solution concepts used in this paper.

Definition 1. (A user’s utility at time slot t): At time slot t, the utility ui of user i ∈ N equals uit = pit − ci
if user i is online and selected as a winner to execute one sensing job, where pit denotes the payment from the
platform; otherwise, uit = 0.

Definition 2. (Platform’s utility): The utility of the platform is defined as Equation (1), where α is a coefficient
that transforms service quality to monetary reward, and xit = 1 (or 0) indicates that user i is chosen (or not) at
time t.

u0 = ∑
t≤T

∑
lj∈L

∑
i∈Njt

(αqi − pit)xit, where xit = {0, 1}, ∀i ∈ N (1)

Definition 3. (Social welfare): Social welfare of the mobile crowd sensing system is defined as Equation (2):

π = u0 + ∑
t≤T

∑
lj∈L

∑
i∈Njt

uit = ∑
t≤T

∑
lj∈L

∑
i∈Njt

(αqi − ci)xit, where xit = {0, 1}, ∀i ∈ N (2)

Definition 4. (Individual rationality): A mechanism satisfies the individual rationality constraints if the utility
uit of user i is not negative at every time slot t before deadline T.

Definition 5. (Ex-post monotonicity of the allocation rule [12]): An allocation rule is ex post monotone if
increasing one user’s bidding price does not raise his or her probability of winning while keeping others’ bidding
prices the same.
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Definition 6. (Truthful-in-expectation mechanism [12,19]): A mechanism is truthful-in-expectation if a
risk-neutral user maximizes expected utility by adopting a truthful strategy in bidding, whatever the bids of
others, where the expectation is taken with random coin flips of the mechanism.

Definition 7. (Computational efficiency [20]): An incentive is computational efficiency if it takes polynomial
time to produce the outcome.

2.3. Problem Formulation

As users’ service qualities are uncertain and unknown, the goal of the platform is to select
winners with the largest expected service qualities and smallest costs to execute sensing jobs.
Mathematically, this can be represented as follows:

max ∑
t≤T

∑
lj∈L

∑
i∈Njt

qixit

min ∑
t≤T

∑
lj∈L

∑
i∈Njt

cixit

s.t. xit = {0, 1}, ∀Njt ⊆ N

(3)

There are two objectives in the above Equation (3): To maximize the sum of the expected
service qualities of winners and to minimize the sum of the costs of winners. It is not easy to
solve multi-objective programming; we take a common approach in optimization and convert this
multi-objective programming to a single-objective programming. Then, the platform aims to select
cost-effective workers with the highest expected price-quality ratios as follows.

max ∑
t≤T

∑
lj∈L

∑
i∈Njt

(qi/ci)xit

s.t. xit = {0, 1}, ∀Njt ⊆ N
(4)

We utilize the technique of designing a single-parameter mechanism to solve the above problem.
Though two parameters—cost and expected service quality—should be considered in allocations,
users’ costs can be revealed in their bidding prices if truthfulness is guaranteed. Thus, the expected
service quality is the single-parameter in the above problem. However, in order to guarantee the
deterministic truthfulness, it is costly or impossible to calculate winners’ payments by adopting the
Vickrey–Clarke–Groves (VCG) auction due to online constraints in MCS systems. Therefore, to satisfy
computational efficiency, our goal turns into the design of a truthful-in-expectation mechanism with
the consideration of dynamically-arriving users and their unknown service qualities.

For the single-parameter mechanism, Babioff et al. [12] propose a generic framework in which
an ex post monotone allocation rule can be transformed into a truthful-in-expectation mechanism via
involving random perturbation to users’ bidding prices. To achieve our goal, we aim to design a novel
ex post monotone allocation rule that can be transformed into a truthful-in-expectation mechanism by
utilizing the transformation proposed in [12].

Given a monotone allocation rule A and a parameter µ ∈ (0, 1), we describe the transformation
procedure proposed in [12] with our situation so as to realize a truthful-in-expectation mechanism.

1. User i submits his or her bidding price bi (i.e., bi ≤ cmax) when he or she participates in the
system for the first time.

2. The platform computes user i’s new bidding price b̃i for allocation as follows. With probability
1− µ, b̃i = bi; else, b̃i = biβ

1/(1−µ) + cmax(1− β1/(1−µ)),where β ∈ (0, 1) is picked uniformly
at random.

3. For every time slot t, the platform assigns sensing jobs to users for every sensing location lj
according to the allocation rule A(B̃jt), where B̃jt consists of new bidding prices for all users
in Njt.
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4. The platform calculates users’ payments as follows. For every selected user i, pit = bi if b̃i = bi;
otherwise pit = bi + 1/µ(cmax − bi). For any other unselected user k, pkt = 0.

Table 1 lists frequently-used notations.

Table 1. Frequently-used notations.

Notation Description

N, i Set of users and a user.
n Number of users.
T, t Deadline and a time slot.
L, lj Set of locations and the j-th location.
Njt Set of arriving users at a location lj at time slot t.
ci, bi User i’s cost and bidding price.
b̃i User i’s new bidding price for allocation.
cmax, cmin Maximum and minimum cost.
qit, qi, q̂i User i’s service quality at time slot t, expected service quality and learned expected service quality.
pit, uit User i’s payment and utility at time slot t.
u0 Utility of the platform.
Sjt Active set of users at location lj at time slot t.
ni User i’s number of being randomly selected.
ri, rit User i’s total observed service quality and observed service quality at time slot t.
b−i Others’ bidding prices, except user i.
b+i User i’s alternate bidding price that is higher than bi.
B Bid vector of all users with bi and b−i.
B+ Alternate bid vector of all users with b+i and b−i.
q̂it(B), q̂it(B+) User i’s learned expected service quality at time slot t with the bid vector B and B+.
Pit(B), Pit(B+) User i’s probability of being selected at time slot t with the bid vector B and B+.

3. Incentive Mechanism Design

3.1. System Overview

For simplicity, we assume that there is one sensing task that needs to collect data from all sensing
locations L during T time slots. The platform divides the tasks into a set of spatio-temporal sensing
jobs. For example, T sequential sensing jobs are required to be allocated for each location lj(lj ∈ L).
Since users move around and participate in sensing intermittently, the platform requires selecting
winners irrevocably in sequential auction rounds. Take one auction round for a job at sensing location
lj during time t as an example: TOAM includes seven steps, as shown in Figure 2. We describe the
procedure of our mechanism briefly as follows:

1. The platform announces the sensing job when users arrive at location lj.
2. If users are new in the system, they create and submit their optimal bidding prices for this job

to the platform independently. Otherwise, users are just required to show their willingness
of participation.

3. The platform obtains users’ information for this allocation. If users are new, the platform gets and
records their bidding prices from their bids. Otherwise, the system obtains users’ information
from the storage, including users’ bidding prices, estimated expected service qualities, and so on.

4. Based on users’ new bidding prices perturbed by the platform randomly and users’ expected
service qualities observed by the platform, the platform selects a winner to perform this job.

5. At the end of time t, the winner submits sensory data to the platform.
6. The platform updates the information of the winner if necessary according to the allocation rule.
7. The platform pays the winner with a rational price.
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Figure 2. Our incentive framework for a mobile crowd sensing system with dynamic users and
uncertain service quality.

3.2. Allocation Algorithm

As we described before, the key of TOAM is to design an ex post monotone sensing task allocation
algorithm. In reality, users who compete for one job vary over time. In order to realize the ex post
monotone, the allocation algorithm should be designed carefully to control the influence of the liar
who overstates his or her bidding price. The main idea of our algorithm can be reduced to four
points principally.

1. For one job, construct an active set of users according to a bidding bound (reserve price) for
a later random selection. In order to decrease the winning probability of the liar, we select a
bidding bound from the arriving bidding prices with some probabilities. If users’ bidding prices
are higher than the bidding bound, remove these users from the set of arriving users. The rest of
arriving users construct the active set. To avoid removing too many users at the beginning of the
system, the probability of selecting a low bidding bound increases with the passage of time.

2. With the increasing updated number, we estimate users’ expected service qualities in the
non-decreasing trend. By doing so, it reduces the uncertain influence of being selected on
the learned expected service qualities.

3. Update winners’ information (including the expected service qualities) if they are selected
randomly. Due to the liar’s overstated bidding price, some others may win instead of the liar.
We call these winners direct-winners. These direct-winners’ expected service qualities may be
improved in this way. Thus, the liar’s winning probability can be reduced to a certain extent in
the future.

4. Do not update winners’ information if they are selected according to the price-quality
ratios. If winners are selected according to price-quality ratios, the updated information of
direct-winners may affect the results. However, as winners’ information remains the same in
this way, the direct-winners will not disturb others more. Therefore, the influence of the liar
is controlled.

The pseudocode of the allocation algorithm in TOAM is shown in Algorithm 1. We take an
allocation round at location lj during time slot t as an example.
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If there is no user for this allocation round, the platform does nothing. Otherwise, in Algorithm 1,
there are three cases of being selected from the set Njt of available users, which are random selection
for initialization, random selection with the bidding bound limitation and greedy selection according
to the price-quality ratios. By these random selections, users will not leave MCS systems since they
have not won sensory jobs for a long time. We use C1, C2 and C3 to represent each case, respectively.

• C1: We randomly select a new user as the winner from Njt. We call users who have joined the
system, but have not undertaken sensory jobs new users. The platform updates the winner’s
corresponding information with the observed winner’s actual service quality at the end of time
slot t by calling updating Algorithm 2 (UpdateInformationofWinner).

• C2: The platform selects the winner randomly with the bidding bound limitation. There are three
steps. Firstly, we randomly designate a user from Njt. Secondly, construct an active set Sjt of users
with the bidding bound limitation. Thirdly, if the designated user is in the active set Sjt, he or she
is the winner. Then, update the winner’s corresponding information at the end of time slot t by
calling updating Algorithm 2 (UpdateInformationofWinner).

• C3: If the randomly-designated user is not in Sjt, the platform optimistically picks the user with
the highest estimated price-quality ratio among the users in Sjt.

Algorithm 1: Allocation algorithm.

1 //Initialize the number nk of being randomly selected for every user k, total observed service
quality rk and the learned expected service quality q̂k.

2 for k ∈ N do
3 nk = 0, rk = 0, q̂k = 0.0001;

4 for t = 1 to T do
5 for lj ∈ L do
6 if There is no user at location lj at time slot t then
7 continue;

8 Set the active set of users empty Sjt = ∅;
9 Set the winner index equal to −1 for initialization i = −1;

10 //C1: selection for initialization.
11 if There are new users in the set of arriving users Njt then
12 Randomly select a new user k as a winner i = k;
13 Update the information of winner i UpdateInformationofWinner(i);

14 if Winner has not been determined i == −1 then
15 Randomly designate a user d from the set of arriving users Njt;
16 Sort users by their bidding prices in increasing order ;
17 Decide the ranking index of the bidding bound with the probability of

pg,t =
e(τ−t)g

∑g=1,g≤|Njt |
e(τ−t)g , ∀g ≤ |Njt|; let g be the selected ranking index;

18 //Let h(k) be a function that maps the ranking index k to a user.
19 Construct an active set Sjt of users
20 for k = 1 to g do
21 Sjt = Sjt ∪ {h(k)};
22 //C2: random selection with bidding bound limitation.
23 if d ∈ Sjt then
24 The designated user d is the winner i = d;
25 Update the information of winner i UpdateInformationofWinner(i);

26 //C3: greedy selection according to the price-quality ratios.
27 else
28 The user with the largest price-quality ratio in Sjt is the winner

i = arg maxk∈Sjt
(q̂k/b̃k);
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Algorithm 2: UpdateInformationofWinner.

1 //Input: user i;
2 Update the number of being randomly selected ni = ni + 1;
3 Add the observed service quality rit to the total service quality ri = ri + rit;

4 Update the learned expected service quality q̂i = max( ri
ni
+

√
8 ln t

ni
, q̂i );

4. Theoretic Analysis

To prove the ex post monotonicity of our allocation algorithm, we introduce some definitions at
first. Assume user i overstates the bidding price. Let B = (b−i, bi) denote the bid vector of all users,
where bi is user i’s bid and b−i denotes others’ bids. Let B+ = (b−i, b+i ) be the alternative bid vector,
where b+i > bi, but the others’ bidding prices remain the same as in B. q̂it(B) and q̂it(B+) are defined
as the learned expected service quality of user i at time slot t with the bid vector B and the bid vector
B+, respectively. Let Pit(B) and Pit(B+) represent the probability that user i is chosen at time t with
the bid vector B and the bid vector B+, respectively.

Lemma 1. At any end of time slot t, the learned expected service quality q̂it(B) of user i with bid vector B is
not lower than q̂it(B+) with bid vector B+, that is q̂it(B) ≥ q̂it(B+).

Proof. From the allocation algorithm, we can see, at any time t, users’ expected service qualities may
be updated when they are selected only in case C1 and C2. Now, we use mathematical induction to
prove this lemma.

At time t = 0, the case C1 is the only possible case of being chosen since all users are new in
the system. Therefore, the probability of being chosen is the same with different bid vectors, that is
Pi0(B) = Pi0(B+). Therefore, q̂i0(B) = q̂i0(B+), and the lemma is true at the end of time slot t = 0.

As shown in the algorithm, users’ service qualities remain the same with their last appearances in
the system if they quit the system temporarily. Furthermore, users’ service qualities can be updated
only when they are in the system. Therefore, we mainly describe the time slots when user i joins the
system. Assume the lemma is true at end of time tk − 1(tk − 1 ≥ 0). Now, we need to show that the
lemma is also true at the end of time tk, where user i is in the system at time tk.

• C1: It is easy to see Pitk (B) = Pitk (B+) with different bid vectors if he or she is new in the system
at t = tk. Therefore, the lemma is true.

• C2: User i can be selected if user i is designated and stays in the active set. Now, we analyze user
i’s probability of satisfying these two conditions. (1) As the random designated user is irrelevant
with respect to his or her bidding price, user i’s probability of being designated is not related to
the bid vector. (2) The selection of the ranking index bound is independent of the users’ bidding
prices. Therefore, the ranking index bound is the same with different bid vectors. Since bi < b+i ,
the ranking index of user i with bid vector B is not larger than that with bid vector B+. Therefore,
user i’s probability of staying in the active set with bid vector B is not lower than that with bid
vector B+. To sum up, Pitk (B) ≥ Pitk (B+). Since the service quality increases with the updated
number and q̂i(tk−1)(B) ≥ q̂i(tk−1)(B+), we can get q̂itk (B) ≥ q̂itk (B+).

Therefore, q̂itk (B) ≥ q̂itk (B+). To sum up, q̂it(B) ≥ q̂it(B+) at any end of time t.

Lemma 2. At any end of time slot t, the learned expected service quality q̂jt(B) of user j(j ∈ N \ {i}) with bid
vector Bis not higher than q̂jt(B+) with bid vector B+, that is q̂jt(B) ≤ q̂jt(B+).

Proof. As shown in the proof of Lemma 1, we also adopt mathematical induction to prove this lemma.



Sensors 2017, 17, 79 10 of 17

From the proof of Lemma 1, it is easy to see q̂j0(B) = q̂j0(B+). Assume the lemma is true at the
end time t = tk − 1(tk − 1 ≥ 0). Now, we need to show q̂jtk (B) ≤ q̂jtk (B+) when user j is in the system
at time tk.

• C1: From the proof of Lemma 1, we can see, q̂jtk (B) ≥ q̂jtk (B+).
• C2: User j can be selected if user j is the designated user and remains in the active set. As shown

in the proof of Lemma 1, user j’s probability of being randomly designated with bid vector B is
equal to that with bid vector B+. Now, we compute user j’s probability of being in the active set.
Since users join the system dynamically, user j may meet with user i at time tk. If user j and user i
come across at time tk, the ranking index of user j with bid vector B is not smaller than that with
bid vector B+ due to bi < b+i . If user j does not meet with user i at time tk, the ranking index of
user j with B equals that with B+. Therefore, user j’s probability of staying in the active set with B
is not higher than that with B+. From the above analysis, we can see Pjtk (B) ≤ Pjtk (B+). Since the
service quality increases with the updated number and q̂j(tk−1)(B) ≤ q̂j(tk−1)(B+), we can derive
q̂jtk (B) ≤ q̂jtk (B+) at the end of time t = tk.

Therefore, q̂jtk (B) ≤ q̂jtk (B+). To sum up, the lemma is true at any end of time t.

Lemma 3. At any time slot t, user i’s probability of being selected with bid vector B is not lower than that with
bid vector B+, that is Pit(B) ≥ Pit(B+).

Proof. Mathematical induction is utilized to prove this lemma. It is easy to see that the lemma is true
at time t = 0, that is Pi0(B) ≥ Pi0(B+).

Assume the lemma is true at the end time tk − 1(tk − 1 ≥ 0). Now, we need to show
Pitk (B) ≥ Pitk (B+). As the description of Algorithm 1, there are three cases C1, C2 and C3 that
user i can be selected. For the first two cases C1 and C2, the lemma is true, as we have proven in the
Lemma 1.

Assume user i is in location lj at time tk. For case C3, user i can be selected if the following three
conditions are satisfied simultaneously.

• User g (g ∈ Njtk \ i) is the designated one, but user g is not in active set Sjtk . As shown in the case
C2 of Lemma 2, user g’s probability of being in active set with B is not lower than that with B+.

• User i is in active set Sjtk . As shown in the case C2 of Lemma 1, user i’s probability of being in Sjtk

with B is not lower than that with B+.
• User i has the highest estimated price-quality ratio among active users in

Sjtk . Since q̂itk (B) ≥ q̂itk (B+) is known from Lemma 1 and bi < b+i , we can
derive q̂itk (B)/bi ≥ q̂itk (B+)/b+i . For any other competitor g (g ∈ Njtk \ i), we can derive
q̂gtk (B)/bg ≤ q̂gtk (B+)/bg due to q̂gtk (B) ≤ q̂gtk (B+), which is known from Lemma 2. Therefore,
the probability of having the highest estimated price-quality ratio with bid vector B is not lower
than that with B+.

From the above analysis, Pitk (B) ≥ Pitk (B+) is true in the case C3.
Together with the case C1 and the case C2 proven before, we can derive Pitk (B) ≥ P+

itk
(B). To sum

up, the lemma is true for any time t.

Theorem 1. The allocation algorithm in TOAM is ex post monotone.

Proof. Following directly from Lemma 3 and the definition of the ex post monotonicity of allocation
rule in Definition 6, we can derive that our algorithm in TOAM is ex post monotone.

Corollary 1. Our allocation algorithm produces a truthful-in-expectation mechanism via applying the
transformation procedure with probability of perturbation µ.
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Theorem 2. Individual rationality in TOAM is guaranteed.

Proof. From the transformation procedure presented in Section 2.3, winners’ payments are not lower
than their costs. Thus, at any time slot t, the winner’s utility is uit = pit − ci = 1/µ(cmax − bi) ≥ 0. If
the user is not selected, uit = 0. Therefore, the user’s individual rationality is ensured since the user’s
utility is nonnegative.

Theorem 3. TOAM achieves computational complexity O(n log n) at each round.

Proof. The allocation algorithm is the most complex step in our incentive. As shown in Algorithm 1,
computation complexity is O(n log n), where O(n log n) is the computation complexity of ranking
with the maximum number of users who are competing for one job.

5. Performance Evaluation

5.1. Simulation Setup

We evaluate our proposed scheme by programming in C++. Our evaluation is based on real
trajectory sets from the Dartmouth College mobility traces [21] and synthetic MIT Campus traces,
which are generated by a time-variant community model (TVCM) [22]. Considering the integrity of
records and the movement regularities of users, we choose the data from 21 September 2003 to 20
October 2003 with 566 access points (APs) for the former datasetand select the top 100 active users. For
the latter traces, we generate 30 days traces of 100 users with 100 virtual APs respectively by using
the same parameter settings as in [22] to mimic the real MIT mobile social networks [23]. Each AP is
regarded as a location. Users can participate in a sensing job when they arrive at any AP. The platform
selects a winner if available to collect sensory data for every AP at every sensing time slot.

Each user’s cost and expected service quality are set as two random parameters that follow a
[0, 1] uniform distribution respectively. Considering the dishonest behavior of overstating bidding
prices, users can raise their prices by a random percentage premium from 0.01% to 99.99%. Every
user’s quality of sensing for one sensing job follows a uniform distribution with the expectation of
his or her service quality. The coefficient that transforms service quality to monetary reward α is set
to two. As the ranges of service and cost are the same, we choose two to balance the influence of the
service quality and the bidding price. Moreover, we set the parameter µ = 0.02 for sampling bidding
prices in TOAM. Evaluation results are averaged over 100 runs.

5.2. Comparing Algorithms

We compare TOAM with random and greedy schemes. In the random scheme, the platform
randomly chooses a winner if possible to perform a sensing job for every location at every time
slot. In the greedy scheme, the platform randomly selects a winner if he or she is new in the system.
Otherwise, the platform selects a winner with the highest estimated price-quality ratio among arriving
users. In both schemes, the platform updates the learned expected service quality of the winner i

following q̂i = max( ri
ni
+

√
8 ln t

ni
, q̂i). In both the random and greedy schemes, the winners get paid as

much as they ask.

5.3. Performance Comparison

We evaluate the performance of different schemes in four metrics—average total payments,
quality level of sensing service, profit of platform and social welfare under two datasets, respectively.

We vary the time slot from 50 s to 500 s with an increment of 50 s in the two datasets. Figure 3
shows the results under the Dartmouth trace datasets. In Figure 3a, the average payment of the platform
in TOAM is 33.04% and 28.70% on average lower than that in random and greedy, respectively. This is
because TOAM ensures that users provide truthful prices (lowest bidding prices), while users overstate
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prices to pursue higher payments in random and greedy. The payment decreases with the increasing
slot gap because the number of sensing jobs is cut down. Since the highest payment of users is fixed,
the payment of the platform decreases with less jobs. In Figure 3b, the average quality of sensing in
TOAM is 3.36% greater than that in random and 4.04% lower than that in greedy on average. This is
because some users with high costs and qualities may be removed when we select a bidding bound
with a probability to construct the active user set.
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Figure 3. Performance comparisons under the Dartmouth dataset with 100 users. (a) Comparison of
average payment; (b) Comparison of average service quality; (c) Comparison of the average utility of
the platform; (d) Comparison of average social welfare.

In Figure 3c, the utility of the platform in TOAM is 114.10% and 42.33% greater than that in
random and greedy, respectively. This is because TOAM stimulates users to report their truthful
costs with similar service qualities comparing with the other two schemes. The social welfare of the
sensing system in the TOAM algorithm is 117.98% and 43.89% greater than that in random and greedy,
respectively, in Figure 3d. As users are overpaid from the platform as rewards for submitting truthful
prices, the increase is a little greater than that in Figure 3c.

Figure 4 shows the results under synthetic MIT traces. Though the density of users in one AP is
greater than that in Dartmouth, the results are similar to Figure 3 under Dartmouth traces. As these
figures show similar trends, we omit other details.
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Figure 4. Performance comparisons under the MIT dataset with 100 users. (a) Comparison of average
payment; (b) Comparison of average service quality; (c) Comparison of the average utility of the
platform; (d) Comparison of average social welfare.

6. Related Work

At first, we review some incentive mechanisms for MCS systems that consider one or two factors
of service quality, truthfulness and dynamically-arriving users respectively. Then, we retrospect some
truthful single-parameter mechanisms.

6.1. Incentive Mechanisms for the Mobile Crowd Sensing System

In order to encourage users to submit timely event reports with high quality, a differentiated
monetary incentive for a city management system is proposed in [24]. To estimate the quality of
sensing data, the authors in [25] extend the expectation maximization (EM) algorithm combining
maximum likelihood estimation and Bayesian inference. The quality of sensing data is defined as the
probability that a participant submits sensing data in a valid interval. In [20], the authors present an
auction-based incentive for quality-aware and fine-grained MCS in order to maximize the expected
expenditure of the platform, where mobile users submit their declared qualities for subtasks and
bidding prices before selection. In the above works, the quality of sensing data is considered; but users
are static, and truthfulness is not guaranteed.

An online framework is proposed for an MCS system with stochastic arrivals of sensing requests
and the dynamic participation of users in [26]. Based on stochastic Lyapunov optimization techniques
combined with the idea of weight perturbation, the platform makes online decisions, including
admissions of sensing requests and sensing time purchasing from users. In [27], the authors design a
recruitment framework for MCS campaigns in opportunistic networks. In this work, users are selected
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optimally in order to generate the required space-time paths across the network. In [28], an online
task assignment algorithm follows the mobility model of users in MCS systems so as to minimize the
average makespan of assigned tasks. While the dynamic participation of users is considered in these
work, users’ service qualities and dishonest behaviors are ignored.

In [29], the authors design a truthful incentive based on a combinatorial auction for a participatory
sensing system, where the platform announces a set of tasks, and users take subsets of these tasks
according to their preferences. The system selects an optimal set of users to complete tasks in order to
maximize its utility. In [30], the authors introduce a reverse auction framework to design a truthful
incentive considering the dimension of location information. In these works, truthfulness is ensured,
but users’ service qualities and dynamic participation are ignored.

In [8], the authors design an incentive mechanism that characterizes both the information quality
and timeliness of a specific real-time-sensed quantity simultaneously. Information quality is defined
as the probability of the presence or absence of the sensing locations. Therefore, information quality
can be sampled from a normal distribution with a variable learned from historical experience. In [9],
the authors aim at increasing the quality of data directly and introduce gamification to location-based
services. The quality indicator is calculated as the probability that the sensory data are categorized to
the wrong category at one specific location. In order to increase the qualities of the spacial coverage of
locations, the system shows points to users for encouraging users to move there. Considering users’
differential capabilities and uncontrollable mobility [10], designs an incentive to select a minimum
subset of participants to satisfy the quality-of-information requirements of multi-tasks with the limited
budget. This optimization problem is converted to a nonlinear knapsack problem. The system selects
users with the maximum marginal profit under a limited budget dynamically. Users’ sensing qualities
for specific locations are associated with the probabilities of arriving there based on historical records.
In [31], the authors utilize users’ daily activities, which are known as a priori information, to design a
recruitment scheme for participatory sensing, where the similarities of users’ behaviors are utilized to
predict the quality of data. Therefore, the allocation problem becomes a collaborative filtering problem.
In these works, users’ service qualities are unknown, and users participate dynamically. However,
users’ dishonest behaviors are neglected. That is to say, truthfulness is not guaranteed. Besides, these
works rely on historical records to start their incentive. Therefore, these above works cannot apply to a
new MCS system.

The authors in [5] treat users’ participation levels as users’ service qualities and formalize a
truthful incentive based on auction model. In [6], the authors propose truthful incentive mechanisms
based on both single-minded and multi-minded combinatorial auctions with the consideration of the
information of users’ qualities. However, users’ qualities are known as a priori information while
selecting winners. In [7], a truthful incentive mechanism is designed based on a quality-driven auction
with an indoor localization system as an example. A probabilistic model is proposed to evaluate the
reliability of the sensing data as the users’ service qualities. In these above works, truthfulness is
guaranteed. However, users are static, and users’ service qualities are assumed to be known when the
sensing platform selects users. In [32], the authors propose a privacy-preserving reputation system
for participatory sensing applications, where users exchange information in a lawful manner, and
misbehaving can cause them loose their anonymity. However, we use the payment to design a truthful
mechanism in order to guarantee users’ honest behaviors in bidding prices based on auction theory.
Moreover, users’ service qualities are known as prior knowledge in [32], while they are uncertain
information in our work when the platform selects the winners.

The works in [33,34] are the pioneer works on designing online truthful incentive mechanisms
based on online auction. The work in [33] models users’ nature of opportunistically occurring in
the crowd sensing areas. In the system, the platform decides whether to select users to undertake
tasks when they arrive at the system. The authors in [34] design an online truthful incentive based
on an online auction model under a budget constraint with the consideration of users’ dynamic
participation. The platform selects a subset of users before a specified deadline in order to maximize
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the value of service, which is assumed to be a non-negative monotone submodular function. In [35], a
task is also assumed to be allocated to one user and can be completed in a single slot. The authors
design a near-optimal truthful incentive mechanism for the online task allocation scenario, given
uncertain arrivals of tasks, dynamic users and users’ strategic behaviors. In [36], a long-term user
participation incentive based on a Lyapunov-based VCG auction is provided for a time-dependent and
location-aware participatory sensing system. All of these above works are designed with consideration
of the dynamic users and the truthfulness of the mechanisms, but they ignore users’ differential
service qualities.

6.2. Truthful Single-Parameter Mechanisms

Our work also relates to the single-parameter mechanism. Myerson [18] and Archer et al. [37]
state that an allocation rule should be monotone in terms of reported bids for a truthful mechanism
with single-parameter users. In [12], a general procedure is proposed to transform an ex post monotone
allocation rule into a randomized mechanism for the realization of truthfulness in expectation
and individual rationality. Moreover, an ex post monotone allocation rule is proposed with the
consideration of the stochastic value of users. Since users are static in this allocation rule, it cannot
be applied in our situation. In [38], the authors design an ex post truthful incentive via applying the
transformation presented in [12] for the crowd source application, where a series of binary labeling
tasks needs to be completed. While users’ service qualities are unknown, users are static in this
work. In [19], the authors design an ex post monotone allocation rule and transform it via [12] to
achieve a truthful-in-expectation mechanism. In this work, the data on shared routers have dynamic
prioritization, and demand models are stochastic. While the rest of the capacity of routers is dynamic,
the characteristic of capacity is different from users’ dynamic participation. Different from these
previous work, in this paper, we design a novel monotone allocation rule with the consideration of
dynamically-arriving users and transform it via [12] to achieve a truthful-in-expectation incentive in
MCS systems.

7. Conclusions

In this paper, for homogenous sensing tasks in a new MCS system, we propose a truthful incentive
TOAM based on online auction theory with the consideration of both uncertain service qualities and
dynamically-arriving users. We analyze the three crucial properties in TOAM theoretically, which
are truthfulness, individual rationality and computational efficiency. In the future, we will focus on a
more complex online MCS system where users can compete for heterogeneous tasks and make proper
schedules to undertake a bundle of tasks during a certain time.
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