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Abstract: Research on fall and movement detection with wearable devices has witnessed promising
growth. However, there are few publicly available datasets, all recorded with smartphones, which are
insufficient for testing new proposals due to their absence of objective population, lack of performed
activities, and limited information. Here, we present a dataset of falls and activities of daily
living (ADLs) acquired with a self-developed device composed of two types of accelerometer and
one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL
types performed by 14 healthy and independent participants over 62 years old, and data from one
participant of 60 years old that performed all ADLs and falls. These activities were selected based
on a survey and a literature analysis. We test the dataset with widely used feature extraction and a
simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection.
An individual activity analysis demonstrates that most errors coincide in a few number of activities
where new approaches could be focused. Finally, validation tests with elderly people significantly
reduced the fall detection performance of the tested features. This validates findings of other authors
and encourages developing new strategies with this new dataset as the benchmark.
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1. Introduction

The number of elderly people living alone has been continuously growing worldwide.
This independence comes with the risk of not receiving prompt attention if an accident occurs. A third
of the people over 65 years old suffer on average one fall per year [1], and this number grows with
age [2] and previous falls, where about one third develop fear of falling again [3,4]. Not receiving
attention in the first hour of the accident increases the risk of death and chronic affections [5]. This issue
has been widely addressed in recent years with systems that detect falls in elderly people, and
generate a prompt alert that can reduce the consequences related to medical attention response time [6].
These systems have acceptance among the objective population as a way to support their independence
and reduce their fear of falling [7].

Developers of fall detection systems are currently facing several challenges. Independently of
the acquisition strategy, most works are not tested with the objective population (elderly people),
reducing their accuracy in real-life applications [8]. Moreover, all public datasets exclusively contain
data from young adults, making it difficult to test new proposals [9]. Here, we make publicly available
a dataset with falls and activities of daily living (ADLs) acquired with a wearable device, and we
provide results of some of the most commonly used detection features with both young and elderly
people. The purpose of this work is to provide a benchmark for other researchers on the fall and
movement detection field, and to address two rarely discussed open issues: training with young
people features intended for elderly people, and setting-up algorithms for maximum accuracy instead
of maximum sensitivity.
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Falls are commonly detected with wearable or ambient-based systems (see [6,9–12] for reviews
in the field). Ambient-based sensors such as cameras are intrusive and do not solve the problem for
independent adults, who are not confined to closed spaces. According to [2], up to 50% of the falls in
independent elderly people occur outside the home premises. Wearable devices offer portability as
they can be used regardless of the user location. Available wearable devices include smartphone apps
and self-developed systems. In both cases, the preferred sensor is the triaxial accelerometer because
of its low cost, small size, and because it is built-in in almost all smartphones [6]. Smartphones are
a popular selection for authors because they include a robust hardware, a powerful processor, and they
are economically affordable [6,11]. However, the low cost of the individual components and design
tools has encouraged authors to develop their own embedded devices too [13].

Independently of the device used, authors have faced problems such as energy consumption,
battery life, false positives (the alarm turns on with ADL), false negatives (the alarm does not turn on
with falls), and user comfort issues. Specifically for smartphones, these devices are not designed for
constant use of the processor and sensors (the battery goes off in a couple of hours [11]). Additionally,
the smartphone may get hits and falls caused by manipulation, or the person may forget it in a table
after calling, making it less feasible for permanent monitoring.

New strategies for solving the aforementioned problems require testing. It requires acquiring
datasets with common types of falls and ADLs. In this sense, some authors analyzed how elderly
people fall. Back in 1993, authors in [5] performed a wide survey with 704 women over 65 years
old. They reported that most falls were caused by trips, slips and loss of balance. However, they did
not record data. About the conditions of the fall, in [14], the authors found that women were three
times more likely to hit the ground on the hips than men, and that most people fell in a forward
direction with 60% of prevalence. Most activities currently selected for testing algorithms are based on
these studies.

Once the selected ADL and falls are simulated and recorded, the raw acceleration data must be
processed and classified. Authors commonly filter the data, apply a feature extraction, and classify
activities as falls or ADL. The literature provides a wide number of features (see [9], Table 4 and [12],
Table 2 for complete lists). Unfortunately, there are not works in the literature tested with independent
elderly people (see [9], Table 1, and [12], Table 4) and available public datasets were all recorded
exclusively with young adults. In [8], for example, authors tested 13 state-of-the-art approaches with
real elderly people falls, and they found that the performance of these approaches severely decreased
under real-life conditions. However, they did not release the validation dataset, i.e., other authors
cannot analyze why those features reduced their performance, and, more importantly, how to solve it.
To our knowledge, there only exist four public datasets, all acquired using smartphones: Mobifall [15],
tFall [16], DLR [17], and project gravity [18]. Igual et al. [19] compared the former three and found
severe variability and performance issues of the analyzed algorithms.

In this paper, we present and make publicly available a complete dataset of falls and ADL acquired
with a self-developed embedded device that can be easily replicated (see [20,21] for example designs).
It includes young adults and elderly people performing a wide variety of activities selected from
a survey and previous studies. The dataset contains 19 types of ADLs and 15 types of falls. It includes
acceleration (from two accelerometers) and rotation (from a gyroscope) data from 38 volunteers divided
into two groups: 23 adults between 19 and 30 years old, and 15 elderly people between 60 and 75 years
old. The dataset is available for free download as Supplementary Materials [22], and videos of each
type of activity within the dataset are also included for helping the reader to replicate this work.
Additionally, a comparative analysis between several features used in the literature is presented as
a reference for future works.

2. Related Public Datasets

Our search on public datasets of falls and ADLs was focused on wearable devices, as ambient
based and video fall detection systems are too restrictive to help independent elderly people
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(the objective population of this work). We also considered some basic requirements for a dataset to
be useful: all activities must be well documented, the raw data must be freely available, the dataset
must contain both falls and ADLs ([23], for example, examining several public datasets, but none
including falls), and it must be reported in a peer-reviewed paper. Following these premises, we found
four datasets:

• MobiFall [15]: twenty-four volunteers (22 to 42 years old) performed nine types of ADLs and
four of falls using a Samsung Galaxy smartphone, Samsung, Seoul, South Korea. Nine subjects
performed falls and ADLs, while 15 performed only falls (three trials each).

• tFall [16]: ten participants between 20 and 42 years old. They recorded eight types of falls
(503 total recordings with two smartphones), and one week of continuous ADL recordings with
all participants carrying smartphones in the pockets and a handbag. The ADL trials were not
identified by activity.

• DLR [17]: sixteen subjects (23 to 50 years old). They recorded six types of ADLs, and the authors
did not specify the conditions of the falls (they belong to a single group). The files are too short
for some types of analysis.

• Project gravity [18]: three participants (ages 22, 26, and 32) performed 12 types of falls and
seven types of ADLs with a smartphone in the pocket.

None of these datasets includes elderly people, and their variety of activities and number of
subjects is limited compared to this work. Additionally, all authors used smartphones in the pocket for
recordings. Here, we fixed our device as a belt buckle as recommended in previous works [24,25].

3. Materials and Methods

3.1. Selection of Activities

Additionally to those falls and ADLs commonly tested in the literature (see [9], Table 4),
we performed a survey with elderly people living alone and administrative personnel from retirement
homes. The survey consisted of three main questions: For each fall incident, (i) which activity were you
performing when the fall happened? (ii) What produced the fall? A sliding, a faint, a trip, other? (iii) In
which orientation did the fall happen? What part of the body received the impact?. The survey was
conducted with 15 elderly people from the psycho-physic program of the Universidad de Antioquia
(between July and August 2014, in Medellín, Colombia), and 17 retirement homes (between October
2014 and January 2015, in Medellín and Manizales, Colombia).

As a result of the survey, the independent elderly people fall more when walking, taking a shower,
and walking up or down stairs; and fall less when trying to get up or sit down in a chair or a bed,
or bending. On the other hand, elderly people living in retirement homes fall more when walking and
when trying to get up from a chair or a bed and fall less when walking up or down stairs. The answers
given by the participants were consistent with the results presented in [5]. Table 1 shows the types of
falls selected for this work. Falling when walking up or down stairs was identified as a common type
of fall in the survey, but it was not included here because of the high risk of having an accident.
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Table 1. Types of falls selected for this work.

Code Activity Trials Duration

F01 Fall forward while walking caused by a slip 5 15 s
F02 Fall backward while walking caused by a slip 5 15 s
F03 Lateral fall while walking caused by a slip 5 15 s
F04 Fall forward while walking caused by a trip 5 15 s
F05 Fall forward while jogging caused by a trip 5 15 s
F06 Vertical fall while walking caused by fainting 5 15 s
F07 Fall while walking, with use of hands in a table to dampen fall, caused by fainting 5 15 s
F08 Fall forward when trying to get up 5 15 s
F09 Lateral fall when trying to get up 5 15 s
F10 Fall forward when trying to sit down 5 15 s
F11 Fall backward when trying to sit down 5 15 s
F12 Lateral fall when trying to sit down 5 15 s
F13 Fall forward while sitting, caused by fainting or falling asleep 5 15 s
F14 Fall backward while sitting, caused by fainting or falling asleep 5 15 s
F15 Lateral fall while sitting, caused by fainting or falling asleep 5 15 s

ADLs of Table 2 were selected based on: common activities, activities that are similar
(in acceleration waveform) to falls, and activities with high acceleration that can generate false
positives. All ADL and falls selected for this work were approved by a physician specialized in
sports. The Supplementary Materials contains videos of each type of fall and ADL performed by the
participants, as an effort to solve another drawback in the literature: showing the exact conditions of
the recordings [22].

Table 2. Types of activities of daily living selected for this work.

Code Activity Trials Duration

D01 Walking slowly 1 100 s
D02 Walking quickly 1 100 s
D03 Jogging slowly 1 100 s
D04 Jogging quickly 1 100 s
D05 Walking upstairs and downstairs slowly 5 25 s
D06 Walking upstairs and downstairs quickly 5 25 s
D07 Slowly sit in a half height chair, wait a moment, and up slowly 5 12 s
D08 Quickly sit in a half height chair, wait a moment, and up quickly 5 12 s
D09 Slowly sit in a low height chair, wait a moment, and up slowly 5 12 s
D10 Quickly sit in a low height chair, wait a moment, and up quickly 5 12 s
D11 Sitting a moment, trying to get up, and collapse into a chair 5 12 s
D12 Sitting a moment, lying slowly, wait a moment, and sit again 5 12 s
D13 Sitting a moment, lying quickly, wait a moment, and sit again 5 12 s
D14 Being on one’s back change to lateral position, wait a moment, and change to one’s back 5 12 s
D15 Standing, slowly bending at knees, and getting up 5 12 s
D16 Standing, slowly bending without bending knees, and getting up 5 12 s
D17 Standing, get into a car, remain seated and get out of the car 5 25 s
D18 Stumble while walking 5 12 s
D19 Gently jump without falling (trying to reach a high object) 5 12 s

3.2. Participants

This database was generated with collaboration of 38 volunteers divided into two groups: elderly
people and young adults. Elderly people group was formed by 15 participants (8 male and 7 female),
and the young adults group was formed by 23 participants (11 male and 12 female). Table 3 shows age,
weight, and height of each group. Individual information is available in the readme [22]. The elderly
people group is formed by retired employees of the Universidad de Antioquia and parents of current
employees. They all were healthy and independent, and none of them presented gait problems.
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Table 3. Age, height and weight of the participants.

Sex Age Height (m) Weight (kg)

Elderly Female 62–75 1.50–1.69 50–72
Male 60–71 1.63–1.71 56–102

Adult Female 19–30 1.49–1.69 42–63
Male 19–30 1.65–1.83 58–81

Young adults performed ADLs and falls. Elderly people did not perform falls and activities
D06, D13, D18, and D19 from Table 2 due to recommendations of the physician specialized in sports.
Additionally, some elderly people did not perform some activities due to personal impairments
(or medical recommendation). The participant of 60 years old identified by code SE06, who is an expert
in Judo simulated both falls and ADLs.

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Bio-Ethics Committee of the Medicine Faculty, Universidad de Antioquia UDEA
(Medellín, Colombia). Additionally, all participants were evaluated by a physician specialized in sports.

3.3. Experimental Set-Up

The dataset was recorded with a self-developed embedded device composed of a Kinets
MKL25Z128VLK4 microcontroller (NPX, Austin, Texas, USA), an Analog Devices (Norwood,
Massachusetts, USA) ADXL345 accelerometer (configured for ±16 g, 13 bits of analog to digital
converter –ADC), a Freescale MMA8451Q accelerometer (±8 g, 14 bits of ADC), an ITG3200 gyroscope
(±2000◦/s, 16 bits of ADC. Texas Instruments, Dallas, Texas, USA), an SD card for recording, and a
1000 mA/h generic battery. The device was fixed to the waist of the participants (Figure 1). This location
provides high distinction among activities for a single accelerometer system [24,25].

x

yz

Figure 1. Device used for acquisition. The self-developed embedded device included two accelerometers
and a gyroscope. It was fixed to the waist of the participants.

Only acceleration data acquired with the ADXL345 sensor was used in this work, as it is energy
efficient and provides the larger span. However, the data recorded with the other accelerometer and
the gyroscope are also publicly available for further studies. The orientation of the sensor (see Figure 1)
presents the positive z-axis in the forward direction, the positive y-axis in the gravity direction, and the
positive x-axis pointing to the right side of the participant. All tests were performed with the original
frequency sample of 200 Hz.

The classrooms and open spaces of a coliseum at the Universidad de Antioquia (Medellín,
Colombia) were used for recording the activities. In order to guarantee safety conditions, falls were
simulated using safety landing mats. Activity D17 from Table 2 was recorded using the copilot chair
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of a Renault Logan car. The time required for recording all trials was approx. 1.5 h for each elderly
person and 3.5 h for each young adult.

3.4. Fall Detection Algorithms

Here, we test commonly known features as a way to provide a preliminary analysis with the
proposed dataset. We follow the common pipeline to process the data: preprocessing, feature extraction,
classification, and validation.

3.4.1. Preprocessing Stage

Preprocessing is critical in the performance of the classification algorithms and their computational
burden. In this work, we performed a comparison between using preprocessing or not in fall detection.
The preprocessing stage consisted of a 4th order IIR Butterworth low-pass filter with cut-off frequency
of 5 Hz. This filter was selected due to its simplicity, as it presented similar results than more elaborated
IIR and FIR filters (including different cut-off frequencies) that we analyzed in preliminary tests.

3.4.2. Feature Extraction

The objective of this stage is to maximize the separation between ADL and falls. We tested several
commonly used features listed in ([9], Table 4 and [12], Table 2) (original implementation details can
be followed in the references therein). We separated the features in five groups: amplitude, orientation
angle, statistical moments, critical phase time, and area under the curve. Table 4 includes those features
that presented the best overall performance.

Here, one sample of acceleration in the three axis is defined as the vector~a = [ax, ay, az]T ∈ <3,
the sliding window used for computing the dynamic features is denoted with ã[k] = [~aT [k− Nv +

1], . . . ,~aT [k]]T ∈ <Nv×3, at time sample k, where Nv is the number of samples in the selected window.
The standard deviation operator is defined as σ(·), and RMS refers to the Root Mean Square value.
The integrals were computed with the trapezoid method, with limits k− Nv + 1 to k.

Table 4. Feature extraction characteristics used to test the proposed dataset.

Type Code Feature Equation

Amplitude
C1 Sum vector magnitude C1[k] = RMS(ã[k]) =

√
a2

x[k] + a2
y[k] + a2

z [k]

C2 Sum vector magnitude on horizontal plane C2[k] =
√

a2
x[k] + a2

z [k]
C3 Maximum peak-to-peak acceleration amplitude C3[k] = RMS

(
max(ã[k])−min(ã[k])

)

Orientation

C4 Angle between z-axis and vertical C4[k] = atan2
(√

(ãx[k])2 + (ãz[k])2,−ãy[k]
)

C5 Orientation of person’s trunk C5[k] = σ

(
atan

(
RMS(ãx[k], ãz[k])

ãy[k]

))
C6 Orientation change in horizontal plane C6[k] = mean(~ax[k− N]) ·mean(~ax[k])

Time C7 Jerk (rate of acceleration change) C7[k] =
~ax[k]−~ax[k− N]

t[k]− t[k− N]

Statistics
C8 Standard deviation magnitude on horizontal plane C8[k] =

√
σ2

x [k] + σ2
z [k]; with σi = std

(
ãi[k]

)
C9 Standard deviation magnitude C9[k] =

√
σ2

x [k] + σ2
y [k] + σ2

z [k]

Area

C10 Signal magnitude area C10[k] =
1
N

(∫
|ãx[k]|dt +

∫
|ãy[k]|dt +

∫
|ãz[k]|dt

)
C11 Signal magnitude area on horizontal plane C11[k] =

1
N

(∫
|ãx[k]|dt +

∫
|ãz[k]|dt

)
C12 Activity signal magnitude area C12[k] =

∫ (√
ã2

x[n] + ã2
y[n] + ã2

z [n]
)

dn

C13 Activity signal magnitude area on horizontal plane C13[k] =
∫ (√

ã2
x[n] + ã2

z [n]
)

dn

C14 Velocity (approx.) C14[k] =
1
N

√(∫
ãx[k]dt

)2
+

(∫
ãz[k]dt

)2
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3.4.3. Classification

A simple to implement threshold-based classifier was selected for this work. Threshold-based
classification is still the most widely used strategy for fall detection, as it is less computationally
intensive than support vector machines and similar classification algorithms [11]. We analyzed
two widely used alternatives: Threshold 1 (T1) which follows maximum accuracy, and Threshold 2
(T2) which maximizes the sensitivity (fall detection capability). The sensitivity (SE), specificity (SP)
and accuracy (AC) were computed as follows [26]:

SE =
TP

TP + FN
SP =

TN
TN + FP

AC =
SE + SP

2
, (1)

where TP and TN are the true positives and negatives; FP and FN the false positives and negatives,
respectively. The way we computed the accuracy allows using an unbalanced number of ADLs
and fall trials in a single test. Validation data was tested with the chosen thresholds following
a 10-fold cross-validation.

Figure 2 shows an example of the preprocessing stage and the computation of feature C8

for ADL D11 (trying to get-up from a chair and fail—Figure 2a) and fall F05 (trip and fall while
jogging—Figure 2b), with threshold T1. This ADL was selected because of its high peak acceleration.
Despite this, C8 peak was around 40% below the threshold value (Figure 2a—bottom). On the other
hand, feature C8 far crossed the threshold during fall F05 (Figure 2b—bottom). Note that while jogging
before the fall, which is a high acceleration activity, feature C8 was always below the threshold.
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(a)Activity of daily living –ADL: trying to get-up from a chair
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(b) Fall: trip and fall while jogging

Figure 2. Example of processing and classification. The features are computed after the filtering process
of the raw data. (a) ADL D11 gives C8 values below threshold T1 (horizontal red line); (b) Feature C8

crosses the threshold when the fall in activity F05 is detected.

3.4.4. Cross-Validation

The robustness of the classification stage was analyzed with a 10-fold cross-validation set-up.
All analysis were performed guaranteeing the same proportion of falls and ADLs in the groups.
Each group was used in one fold as validation data.

In the following section, we analyze three commonly discussed issues: the effect of preprocessing,
the importance of including elderly people in the training stage, and the way the threshold is selected.
We finish this study with a novel activity-by-activity analysis that demonstrates how most errors occur
in specific activities.
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4. Results

4.1. Effect of Filtering as the Preprocessing Stage

We initially tested the effect of filtering before applying the features of Table 4. We used data from
all 38 subjects for this analysis (4510 trials). Figure 3 shows the mean accuracy obtained in validation
with each feature after a 10-fold cross-validation for both raw and filtered data. Dynamic features were
computed within sliding-horizon windows with full overlap. The window size (Nv) for each feature
was selected based on a heuristic analysis with windows between 200 ms and 2 s. Most dynamic
features are commonly associated with the prior to the fall phase, or with the critical phase of the
fall, which are estimated between 300–500 ms [27]. However, in this work, only C10, C11, and C14

performed better with a window of Nv = 500 ms. The other dynamic features improved with Nv = 1 s
(200 samples).

Raw data Filtered100

95

85

90

80

75

70
 C1    C2    C3     C4    C5    C6     C7    C8    C9    C10    C11   C12   C13   C14

[%]

Feature

Figure 3. Accuracy obtained in validation after a 10-fold cross-validation without (raw data) and with
preprocessing (filtered). Features C2 and C8 achieved 95.0% and 96.1% of accuracy when the filter was
applied, respectively. However, not all features improved their performance after filtering.

From Figure 3, features C2 and C8 obtained the higher accuracy once the filter was applied
(95.0%± 1.2% and 96.1%± 0.75%, respectively). This result is consistent with the literature ([9], Table 1).
In this case, C2 would be preferred as it is static, i.e., it requires less memory and computational effort
to be computed. The main difference between C2 and the well known sum vector magnitude (C1) is
that it only includes the horizontal plane (x-axis and z-axis in our device). The position of the sensor
in the center of mass of the body allows neglecting the vertical axis from the computation. With this,
we reduce the number of false positives caused by the high accelerations achieved in the y-axis with
many ADLs (walk, run, jump, etc.).

Regarding the other features, it is evident that not all of them improved their performance after
filtering. Specifically, those based on integration behaved better without preprocessing, which is
expected as they may reduce high frequency noise as a low-pass filter. Feature C13, for example,
achieved similar accuracy to C2 without the need of implementing a digital filter. Selecting the best
fitted feature would depend on the embedded device used and the way they are implemented. Finally,
orientation and time based features presented an overall poor performance (comparable to the sum
vector magnitude).

The inclusion of the filtering stage also defines the minimum allowed frequency sample.
A preliminary analysis indicated that more elaborated filters or higher cut frequency values did
not improve the accuracy. This result is meaningful as it suggests that a frequency sample of up to
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11 Hz could be enough for fall detection (lower than any work in the literature), with its respective
burden reduction. This gives an advantage to those features that performed better with the filter, given
that the frequency sample is critical in wearable devices. This is because (i) the system remains more
time in idle state; and (ii) more separation among samples allows more computations of the classifier.
SisFall dataset was released with its original 200 Hz frequency sample, as a way to encourage other
authors to obtain their own conclusions.

For illustrative purposes, in the remainder of this paper, we only show results of the five features
that best performed: C2, C3, C8, C9, and C13.

4.2. Training with Young vs. Elderly People

Our second proof-of-principle experiment accounted if training fall detection algorithms with
young adults is adequate to use with elderly people. Table 5 shows sensitivity (SE), specificity (SP)
and accuracy (AC) results after a 10-fold cross-validation performed only with data from young
adults, and the results of using the obtained T1 thresholds (included in Table 6) to test with data from
elderly people.

Table 5. Sensitivity (SE), specificity (SP) and accuracy (AC) after training with young adults and
validating either with young adults or elderly people.

Feature
Young Elderly

SE SP AC SE SP AC

C2 94.28 96.13 95.21 77.33 97.67 87.49
C3 98.53 80.50 89.51 84.00 96.42 90.21
C8 95.54 96.38 95.96 85.33 98.10 91.72
C9 97.79 80.70 89.25 88.00 96.42 92.21
C13 92.56 94.41 93.49 62.67 95.19 78.93

The analysis presented mixed results. C2, C8 and C13 lost performance while C3 and C9 even
improved their accuracy (AC) when validated with elderly people. However, all features significantly
reduced their sensitivity (SE, true positive rate). These results coincide with those presented in [8]. It is
noteworthy, as there are clear differences among the participants of both studies. The SisFall dataset
we release in this work is intended to help develop fall detection algorithms for healthy independent
elderly people, while authors in [8] obtained their dataset with highly impaired institutionalized
Parkinson’s patients.

The generalized variation in sensitivity and specificity (which increased in validation with
elderly people) suggests a shift in all activities with respect to the threshold. We performed a second
comparative analysis to determine if the threshold is better adjusted when the algorithms are trained
exclusively with elderly people. Table 6 shows the validation accuracy of elderly people and threshold
T1 values from the previous analysis (test 1), and a new analysis training the algorithms only with
elderly people (test 2). As a result, all features improved their performance with the new training
(first two columns). Additionally, all features diminished their T1 values, which confirms the shift
between young and elderly people. This result makes evident the need of including data from elderly
people in the training stage, especially because after training with elderly people, the accuracy was
still below the one obtained with young people.
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Table 6. Variation in accuracy and threshold T1 after training exclusively with the young but validating
with elderly people (test 1), and then training and validating with elderly people (test 2).

Feature
AC (%) with Elderly Threshold T1

Test 1 Test 2 Test 1 Test 2

C2 87.49 90.45 ± 5.89 1.07 ± 0.029 0.97 ± 0.012
C3 90.21 90.85 ± 7.25 1.48 ± 0.017 1.23 ± 0.024
C8 91.72 92.36 ± 6.80 0.40 ± 0.004 0.36 ± 0.003
C9 92.21 92.58 ± 7.10 0.43 ± 0.009 0.36 ± 0.002
C13 78.93 80.73 ± 5.62 0.08 ± 9.35 × 10−5 0.07 ± 0.002

A close review of individual activities of SisFall provided the following findings: (i) ADLs and falls
simulated by elderly people were smaller in amplitude than those simulated by young people. Then,
algorithms trained with data from young people tended to bias the thresholds upwards in amplitude;
(ii) most features tended to fail in the same activities. Figure 4 shows box-plots of the maximum
value obtained per activity with C8 feature (with young adults group exclusively). Note that only
few activities severely crossed the threshold (horizontal red line): jogging quickly (D04), jump (D18),
and falling backward when trying to sit (F11).
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Figure 4. Maximum value per activity obtained with C8. Most T1 threshold crossings (horizontal
red line) are contained in activities D04, D18 and F11.

During this study, we observed differences in the way young adults behaved and fell with respect
to elderly people. As previously stated by [28], the dynamics of simulated (mimicked) and real-world
falls can be different. They found that young people simulating falls tend to do it faster without trying
to avoid the impact. This behavior can be observed in the videos released as Supplementary Materials
of this paper [22]. On the other hand, because of his age and experience in Judo, the elderly person
that performed falls always tried to cushion the hits, which is what we expect from someone having
an undesired fall.

We acknowledge that our dataset only includes simulated falls of one elderly person (subject SE06),
who also is a Judo expert (not representative of the population). However, it allowed us to obtain
five controlled repetitions of 15 different types of falls (for a total of 75 falls). Authors in [8]
obtained 29 real falls, but they did not release them and their population was also distant from
independent elderly people. Additionally, they did not provide detailed information about each fall
condition. SisFall is the first public dataset that includes ADLs from elderly people and falls from an
elderly person.
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4.3. Zero False Negatives

One way to increase the effectiveness of the fall detection algorithms consists of including a false
alarm button, which allows the user to cancel ADL detected as falls (false positives) [29]. This method
allows moving the threshold just below the minimum fall values (as T2 does) [12]. Table 7 shows
the specificity and accuracy obtained after a 10-fold cross-validation with all 38 subjects (sensitivity
achieved approx. 99.99% ± 0.2% in all features). The loss of performance in all features is evident,
failing in up to seven of every 10 ADL, and achieving only 84% of accuracy with C9 (the best feature).

Table 7. Specificity (SP) and accuracy (AC) after testing data from all subjects with threshold T2.

Feature SP AC

C2 32.97 ± 6.46 66.43 ± 3.06
C3 59.04 ± 5.56 79.49 ± 2.70
C8 38.34 ± 5.58 69.14 ± 2.71
C9 67.97 ± 2.86 83.96 ± 1.37
C13 37.80 ± 3.42 68.88 ± 1.69

A fall detection system should not miss a single fall due to the medical implications every fall may
carry on. Based on this statement, results with threshold T2 may be more meaningful than with T1.
However, a failure rate of nearly 50/50 in ADL is prohibitive in real-life applications (the subject would
be regularly pressing the false alarm button). The need of improving fall detection features stands, as a
poor feature extraction requires more computationally intensive classifiers with the consequent battery
life reduction [11].

5. Discussion

Research on elderly fall detection lacks public datasets with activities and falls simulated by
elderly people. Available datasets have few activities and none include falls from the objective
population. In this paper, we presented and made publicly available the SisFall dataset. It consisted of
up to 34 activities (falls and ADLs) that were performed by 38 participants with a wearable device
fixed to their waist. One of the participants was an elderly person that simulated both ADL and falls.
Together with the dataset, we included videos of all simulated activities as an effort to help other
researchers to replicate this work.

The SisFall dataset contains more participants, types of activities and recordings than any other
publicly available dataset. It consists of 2706 ADL and 1798 falls, including data from 15 healthy
independent elderly persons. To our knowledge, no public dataset contains data from elderly people,
and their number of recordings is smaller (Mobifall: 342 ADLs and 288 falls; TFall: continuous ADLs
and 240 falls; DLR: 961 ADLs and 56 falls; and Project Gravity: 138 ADLs and 72 falls).

We developed and released this dataset as a benchmark for other authors in the field. In that sense,
we tested it with some of the most widely used features to detect falls, with three proof-of-principle
experiments: the effect of the preprocessing stage, the importance of including data from elderly people,
and how a threshold focused on maximum sensitivity severely reduces the specificity. Explanations
about preprocessing are commonly simplified in most approaches available in the literature. Here,
with a simple 4th order Butterworth filter, we increased the accuracy of several features. However,
not all features improved their performance, which is expected as they share an integral-based nature;
but it is a fact not previously discussed in the literature. Nevertheless, preprocessing is crucial in fall
detection as it defines the minimum acquisition frequency, which, in this work, we found to be at
11 Hz for those features that indeed improved with the filtering stage.

In the second test, we analyzed the effect of training with young adults on a system developed to
work with elderly people, which is usual in the field despite preliminary evidence that the results are
biased [8]. Similar to this previous work, we found that the sensitivity is highly affected in all features
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once they are validated with the objective population. Note that Bagalà et al. [8] used 29 real falls of
highly impaired Parkinson’s patients. In our case, we used 75 falls under controlled conditions from
a single independent elderly person, which is also a martial arts expert. It is noteworthy that, despite
the large difference among validation sets, our results presented the same trend of [8]. Moreover,
when the classifiers were trained with elderly people, the accuracy was still lower than with young
people. These findings suggest that, due to the overall higher acceleration that young people show
in all activities, including ADLs, and falls from elderly people, it is crucial to obtain proper results.
Additionally, the lower accuracy obtained when training with elderly people suggests that there is
a need of a better feature extraction.

Developing a better feature extraction should be focused on specific activities. There are not many
works focused on the types of falls elderly people suffer (most authors were limited to perform the
same activities of previous works). However, the answers of our survey, previous works [5] and our
findings suggest that if properly selected, authors could use a small sample of activities for their own
tests. Performing an individual activity analysis (as presented in Figure 4) should help with the design
of new features.

Our final test consisted of placing the threshold (T2) below the fall value with minimum amplitude.
In practice, fall detection systems are expected to detect all falls, while keeping the false positive rate
as low as possible. Results of Table 7 presented poor results in all features. Note how a not too large
increment in sensitivity caused significant reductions in specificity. This fact is noteworthy, as most
works focus on maximizing accuracy instead of favoring fall detection. Authors that addressed this
issue usually included a false-alarm button as part of their methodology [29].

Our dataset may be biased by two facts: (i) all of our falls were simulated (mimicked).
Klenk et al. [28] stated that young people tend to fall faster than in real-life conditions; (ii) we only
included falls from one independent elderly person; and, as a martial arts expert, this subject is not
representative of the population. With respect to the first fact, the results of Section 4.2 show that
training with young people effectively shows higher accelerations. However, this difference can be
quantified and corrected by comparing their mean acceleration per activity versus the elderly subjects
on the same dataset. About the second fact, our falls from an elderly person (Section 4.2) presented
the same trend of a previous work that included real falls of impaired elderly people [8]. However,
the crucial point here are the problems with obtaining real falls from healthy independent elderly
people. In our case, we only had permission from the Ethics committee for simulating falls with
one participant (SE06). Indeed, this participant always tried to soften the fall (as any person trying
to avoid a fall would do). We consider that going farther with a wider and more realistic elderly fall
dataset would be extremely challenging. Independent elderly people (the target of this work) fall on
average once per year, i.e., to acquire a single fall would require a full year of continuous recording.
Moreover, in this way, the actual conditions of the fall (activity, side of falling, etc.) may never be
known. Despite these possible biases, we expect that this dataset will be a useful benchmark for other
authors to test their own approaches and to solve the open issues presented in this work.

6. Conclusions

In this paper we presented and released SisFall, a fall and movement dataset acquired with
38 participants (15 of them elderly people). The data were acquired with an accelerometer fixed to
their body. Along with this dataset we demonstrated that a 5 Hz fourth order filter keeps enough
information for detecting falls on independent elderly people. Additionally, we showed that (as Bagalá
et al. stated for institutionalized impaired elderly people) training fall detection algorithms with young
people is not adequate for detecting falls on independent elderly people. The main problem found
is that young people simulate falls and ADL with more acceleration than the expected with elderly
people. Finally, we showed why finding maximum accuracy in fall detection algorithms is not a good
measure for real-life applications, where the sensibility of the system must be fitted to detect falls,
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while reducing the false positive rate as possible. However, all tested features presented poor results
with this requisite.

Supplementary Materials: The following files are available online [22]:

• SisFall movement and fall dataset. Text files with all recorded activities and a Readme with particular
information of all subjects and recordings.

• Video recordings of all activities. Each activity included in the SisFall dataset was video recorded and
included in this material.

• Tables and figures with results of all features. The same experiments shown along the paper with only five
features were performed with the 14 selected for this work.
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